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Thread Allocation in Chip Multiprocessor Based 

Multithreaded Network Processors 

 
Abstract—This work tries to derive ideas for thread 
allocation in Chip Multiprocessor (CMP)-based 
network processors performing general applications by 
Continuous-Time Markov Chain modeling and Petri 
net simulations. The concept of P-M ratio, where P and 
M indicate the computational and memory access 
overhead when processing a packet, is introduced and 
the relation to thread allocation is explored. Results 
indicate that the demand of threads in a processor 
diminishes rapidly as P-M ratio increases to 0.066, and 
decreases slowly afterwards. Observations from a 
certain P-M ratio can be applied to various 
software-hardware combinations having the same 
ratio.   
 
1. Introduction 

The advantages of traditional 
multithreaded-multiprocessor architectures are 
three-fold: increasing the computing power 
considerably by interconnecting a number of 
processing elements; sharing limited memory resource 
with others and thus form a distributed shared-memory, 
and tolerating the memory access overhead by 
multithreading. However, the memory subsystem tends 
to be the performance bottleneck because of the burden 
of long access delay. Fortunately, today’s technology 
has made it possible to put several processors and 
memory banks on a single chip such that memory 
access latency is significantly reduced. This kind of 
architectures is emerging as chip multiprocessor (CMP) 
based multithreaded processors [1-3].  

Though the architecture is promising in its scalability 
and extensibility, especially in the form of some 
network processors, the determination of architectural 
parameters such as numbers of processors, threads in a 
processor, and memory banks, is not trivial given a 
specific application and a performance target. 
Furthermore, since one proper configuration today may 

not be suitable tomorrow due to different evolving 
speeds of manufacturing technologies of the functional 
units, some general guidelines may be demanded for 
efficient and appropriate parameter determination. 

A number of recent works concerning the modeling 
of CMP based multithreaded network processors can be 
found in [6-10]. Though detailed parameters are 
included and programming paradigms are analyzed, the 
discussion of thread allocation is substantially ignored. 
Lakshmanamurthy et al. propose a methodology for 
analyzing the performance of the Intel IXP2400 [18]. 
But they focus only on the validation of the system 
performance; the processor and memory utilizations are 
not addressed and design guidelines are not 
comprehensively investigated. 

In this work, we aim to unveil possible hints for 
future design of the architecture by (1) developing a 
preliminary analytical model and (2) building a Petri 
net simulation environment for model validation and 
design implications observation. Our approach 
considers both memory and ready queuing effects that 
are often ignored in other works. Though the validated 
analytical model is found not scalable enough for deep 
observations, the simulation results demonstrate 
interesting design implications. We propose a concept 
named P-M ratio, where P and M represent the 
computational and memory access overheads of an 
application, and estimate a projection between P-M 
ratios and the corresponding appropriate number of 
threads in a processor. Workarounds to the memory 
bottleneck occurring at small P-M ratios are also 
discussed. 

The rest of this article is organized as follows. 
Section 2 reviews related works and introduces the 
concept of thread allocation schemes. Section 3 
elaborates the analytical model. Section 4 details the 
construction of the Petri net simulation environment, 
validates the analytical model, and presents some 
interesting simulation results. Conclusive remarks and 
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future work are given in section 5. 
 

2. Architectural Assumption on the 
Thread Allocation Scheme 

Thread allocations should be carefully discussed 
before analyzing the architecture. Four thread 
allocation schemes are possible to real implementations, 
in which at most one thread is active in a processor. 
The first is that a thread is responsible for a complete 
packet processing. Nonetheless, this scheme may 
require intricate inter-thread communications in order 
to maintain the packet ordering in a flow. 

Figure 1 presents another two schemes, the 
homogeneous and heterogeneous thread allocations. In 
the homogeneous allocation, all threads in a processor 
belong to the same type, e.g. receiver, scheduler, 
transmitter, etc. Each thread in a processor deals with 
only part of the packet processing and after that, it 
signals a certain thread in the succeeding processor for 
further processing. A thread in a processor may have 
either fixed or dynamic task assignment, namely it may 
stick to a certain input port or may support other ports 
whenever necessary. Notably, since all threads in a 
processor are of the same type, this scheme has a 
relaxed requirement for instruction memory size and 
exhibits desirable cache locality. Nonetheless, the 
processing load is unlikely to be distributed to 
processors evenly, and packet ordering is hard to 
maintain. 

Fig. 1. Homogeneous and heterogeneous thread 
allocations. At most one thread is active per processor. 

 
This situation can be avoided with the 

heterogeneous allocation, where traffic is assigned to 
processors by some load-balancing hardware [11] and 
mechanisms. In this scheme, threads in a processor 
belong to different types and are supposed to take an 
equal charge in the packet processing. Though a large 
instruction memory is needed to support various tasks, 
it will not be a problem because general header 
processing applications consist of less than 5K 
[12]instructions, which has already been supported in 
many commercial products such as the Intel IXP2400 
[13]. Another edge of the scheme is the minor 

synchronization overhead, since the inter-thread 
communication is done using global registers in the 
processor. For the reasons discussed above, we take the 
heterogeneous allocation as the base assumption in our 
model throughout this work. 

 
3. Analytical Model 

In this section we present an approximate analysis of 
the architecture using the Continuous-Time Markov 
chain. We define the state space of the model, derive 
the transition rates, and solve the model. In addition to 
the heterogeneous allocation determined in the 
previous section, we proceed with the assumption of 
blocking processing as shown in Fig. 2. The blocking 
processing contrasts with the non-blocking processing 
in that no buffer exists between two adjacent threads. 
That is, a thread cannot pass the processed packet to its 
successor if the successor is busy. Since normally the 
packet processing overhead, including computation and 
memory access, is fairly distributed among threads, this 
simplified assumption has limited influence on the 
correctness of the model while considerably reducing 
the state space. 

 
Fig. 2. The blocking and non-blocking packet 

processing schemes. A thread tT  accesses memory 

with rate tr  during the processing. 

 
3.1. State Definition and State Space 

Determination 
Our model considers I processors, each of which 

contains J threads, and aims to characterize the 
behaviors of processors, threads and memory. To do 
that, we need to clarify possible activities, i.e. status 
transitions, of a thread. They are depicted in Fig. 3 and 
elaborated below. When a packet arrives at an idle 
thread, the thread either enters the ready queue of the 
processor waiting for execution, or enters the active 
status if no thread is currently active. Sometimes it 
issues a memory access to, for instance, perform table 
lookups and manipulate packet descriptors. Once 
serviced it re-enters the ready queue, or goes directly 
back to execution if the ready queue is empty. 
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Normally, the thread becomes idle again after the 
packet is processed and passed to the succeeding thread. 
Nonetheless, it may get stuck and enter the finished 
status if the succeeding thread is busy with a packet. 

 

   
Fig. 3. Status transitions of a thread. 

 
According to the above descriptions we can formally 

define a state of the system as 
 

JjIisssS jij <≤<≤= 0 and 0  ),......( ,,00,0
,  

where 
}:4 ,:3 ,:2 ,:1 ,:0{, finishedreadymemactiveidles ji ∈  

represents the status of jiT , , the jth thread in processor 

i. Furthermore we define 
}0 and 0 , |{)( ,, JjIiksskS jiji <≤<≤== , so that 

the number of executing processors and number of 
accesses in the memory system equal to |)1(| S  and 

|)2(| S , respectively. We also define 

}0 ,2|{ )( ,, Jjssih jiji <≤==  so that the number of 

queued memory accesses of processor i is denoted by 
|)(| ih . Besides, the RSS (Random Selection for 

Service), rather than the FIFO, is assumed as the 
queuing discipline for both memory and ready queues. 
This assumption further diminishes the state space by 
disregarding the ordering information in the queues, 
and is proven not to affect the correctness of the 
analytical result in section 4. Taking (I,J)=(2,2) as an 
example, the state space can be derived by excluding 
unreachable states exhibiting the following properties: 
1. A processor has more than one active thread. For 

instance, 1,1,0,0) ( . 

2. At least one ready thread but no active thread, such 
as 2,3,0,0) ( . One of the ready threads must enter 

the active status as long as the previous active 
thread completes its processing. 

3. 10  ,0  while4 1,, −<≤== + Jjss jiji
. In this 

case jiT ,  must pass the packet immediately to 

1, +jiT  rather than staying finished. 

4. 41, =−Jis ; similar to 3, 
1, −JiT  must send out the 

packet directly. 
 

3.2. Determination of the Status Transition 
Diagram and State Transition Matrix 

We will need the state transition matrix in order to 
solve the model. To derive the matrix, however, we 
have to deal with the status transition rate diagram of 
threads since a state change occurs when one or more 
threads alter its status. By assuming the packet arrival 

rate for processor i as iλ , memory access rate and 

service time of the jth thread in that processor as jir ,  

and ji ,1 μ , memory service rate as m, and number of 

queued memory accesses from the processor as h, we 
can have the status transition rate diagram shown in Fig. 
4. Notably the service rates, as well as the memory 
access rates, of threads having same thread index in all 
processors are set the same because of the homogeneity 
among those threads. That is, 

jji μμ =,
 and 

jji rr =, . Packet arrival rates for all processors, which 

are also homogeneous, are set to λ . 
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Two additional transitions can be discovered out of 
Fig. 3 and shown in Fig. 4, the active to active and 
active to ready transitions. The former occurs when an 
active thread switches out and is then chosen again to 
process the packet from its finished predecessor; the 
latter is similar except that it is not chosen for 
execution but put into the ready queue. 

Notice that two dotted status transitions in Fig. 4 do 
not have a rate because of being follower transitions. A 
status transition of a thread is regarded as a follower if 
it does not initiate a status transition but simply follows 
a certain activator transition which is launched by 
another thread actively. For example, a finished thread 
blocked by its successor can transit to the idle status 
(firing the follower transition) only after the successor 
finishes processing and passes down the packet (firing 
the activator transition). Another example is that a 
ready thread will never enter the active status unless a 
thread switches out from active. The state transitions 
and transition matrix can therefore be determined 
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according to the status transition diagram. Specifically, 
a state transition is considered valid if there exists only 
one activation event containing an activator transition 
and possibly a number of corresponding follower 
transitions.  
 
3.3. Performance Estimation for the 

Analytical Model 
The performance metrics that we are interested in 

from the analytical model include the processor and 
memory efficiencies. We can compute these measures 
from the stationary probability vector, π , for the 
Markov chain. The mean number of executing 
processors, which we call processing power (

powerP ), 

and the processor utilization, which we call processor 
efficiency (

efficiencyP ), are then calculated from the 

vector as 
 

|))1(|)(( SSP
S

power ×=∑ π  , and (1) 

 / IPP powerefficiency = . (2) 

Memory utilization, which we call memory efficiency 

( efficiencyM ), number of memory accesses in memory 

system ( accessesM ), and ready queue length of a 

processor ( lengthR ) can be calculated as 

 

∑
=∃

=
2 : , 

)(
jisS

efficiency SM π , (3) 

|)2(|)( SSM
S

access ×=∑π , and (4) 

ISSR
S

length /|)3(|)( ⎟
⎠

⎞
⎜
⎝

⎛ ×= ∑π . (5) 

 
4. Simulation  

Some tools have been available for simulating the 
CMP-based multithreaded architecture [14, 15]. 
Though accurate, they focus mainly on the low-level 
configuration such as cache structure and lack 
flexibility in thread allocation. In this section, we 
describe the construction of the simulation environment 
based on timed, colored Petri nets (CPNs) [16, 17]. It is 
used to validate the analytical model discussed in the 
previous section as well as to observe possible hints for 
future design. 

 
4.1. Design of the Petri Net Based Simulation 

Environment 
The key challenge in simulating memory queuing 

effect is that an outgoing memory access must go back 

to the thread where it is issued. For that purpose, we 
adopt the event-driven CPN-Tools [17] as our simulator. 
The features it supports, including the colored tokens, 
stochastic functions and hierarchical editing, provide 
efficiency in the construction of timed, colored Petri 
nets corresponding to our model. To give a general idea 
of the design of the Petri net based model, we use an 
example whose configuration of (I,J) is (1,2) shown in 
Fig. 5. Simulations for larger I and J are constructed in 
a similar way. 

The sample Petri net implements the processor and 
memory subsystems shown in Fig 5(a) and 5(b), 
respectively, and works as following. A token is added 
as the initial marking in places such as the P0_token 
(for processor 0), TK0_0 and TK0_1 (for thread 0 and 
1), Pkt_Gen0 (for packet generator), and Init (for 
memory). Among those tokens the one in Pkt_Gen0 is 
designed to be a colored token, which represents a 
packet and carries information about the processor 
index (i), thread index (j), and the number of memory 
accesses (k) the thread is obligated to perform to 
process the packet. The tokens of the others are simply 
non-colored ones. 

In the processor subsystem, the inter-arrival time of 
packets is exponentially distributed with mean E using 
the function expDelay, and the availability of a thread 
is dependent on whether a token is in both places of the 
processor and thread. When a packet arrives at B0_0, 
namely a colored token is fired by the transition Delay0, 
and if there is a token in both P0_token and TK0_0, the 
packet is admitted by consuming those three tokens and 
firing the transition Tran0_0_0. After that, the packet is 
processed for P/J computation cycles (active state) and 
M/J memory accesses are assigned to the thread by 
setting k= M/J, where P and M denote the numbers of 
computational instructions and memory accesses 
required to process a packet, respectively. The CPI 
(cycle per instruction) is assumed to be 1. 

The memory access takes place by firing transitions 
Tran0_0_1 and S1 through P_out which is a common 
interface for all processors. The packet then enters the 
queue (M_buf) of the memory subsystem and gets 
serviced if no other is present. After a service time of L 
cycles (memory access state), the packet is passed back 
to T0_0 where it is issued according to the i and j in the 
token. The same procedure executes repeatedly until k 
becomes 0. The packet is passed to B0_1, waiting to be 
admitted by the next thread where operations similar to 
the above are carried out before leaving the system. 

The simulation design differs from the analytical 
model in that the memory access rate and thread 
service rate are deterministic. The memory queue not 
shown in the above example is implemented in the 
M_buf using utilities of the CPN-Tools. 



 5 

 

 
Fig. 5. An example hierarchical CPN describing (a) a 
processor containing two threads, and (b) the memory 

subsystem. 
 
4.2. Model Validation by Simulations 

The analytical model is validated by simulations. 
Our first observation is that, as presented in Table 2, 
the analytical results are mostly within 10% of the 
blocking simulation results. The discrepancy comes 
from the different assumptions between the model and 
the simulation. The former assumes non-deterministic 
behaviors in the instruction processing, memory access 
rate and memory service time, while the latter uses 
deterministic ones in order to be realistic. In fact, the 
discrepancy can be reduced to be less than 3% if all 
activities are presumed to be non-deterministic in the 
simulation. Second, the deviation further extends to be 
within 5-25% when comparing the blocking with the 
non-blocking simulation, meaning that the existence of 
buffer fairly influences the precision of the model. Due 

to the state space explosion of the analytical model, we 
focus on the simulation, specifically the non-blocking 
scheme which resembles real implementations. 

 
Table 2. Validation of the analytical model against the 
blocking and non-blocking cases. The non-blocking 

case resembles real implementations. 

 
 

4.3. Simulation Setup 
Two networking applications, Simple Forwarding 

(SF) and DiffServ (DS), are involved in the simulations. 
The statistics of the computational and memory access 
instructions for handling a packet are configured 
according to [18] which uses a CMP-based 
multithreaded network processor. For simplicity, we 
assume that all memory accesses are of the same type, 
so the (P, M)s of the SF and DS are configured as (235, 
12) and (555, 30).  

Our goal is to investigate the relationship among 
processors, threads and memory banks. To do this, a 
term named P-M ratio is defined as 

r accesslatency peccesses # of mem a

snstructiontational i# of compu

 loadmem access

nal loadcomputatio

×
= , 

and three sets of simulations are conducted: 
simulations with P-M ratio smaller than 1, close to 1, 
and larger than 1, respectively. A large (small) P-M 
ratio means the processor overhead is relatively higher 
(lower) than the memory’s and is thought to be an 
unbalanced processor-memory combination, whereas a 
P-M ratio close to 1 is considered as a sensible one. In 
fact all networking applications can be categorized into 
these three aspects. Table 3 details the configurations of 
three different P-M ratios for the SF and DS. The 
memory service times of SRAM are set to 20 and 90 
cycles, respectively, referring to the Intel IXP1200 and 

(a) 

(b) 
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IXP2400 [19] network processors. A memory service 
time of 5 cycles is also incorporated to simulate the 
case in which P-M ratio is larger than 1. 
 
Table 3. Different kinds of P-M ratios: (a) smaller than 
1, (b) close to 1, and (c) larger than 1. Memory access 
latencies are configured as those of the IXP1200 and 

IXP2400. 
App. Mem. access load P-M ratio 
SF 10809012 =×  (a) 0.217  235/1080=  

 2402012 =×  (b) 10.98 235/240 ≅=  
 60512 =×  (c) 3.92  235/60 =  

DS 27009030 =×  (a) 0.205  555/2700=  

 6002030 =×  (b) 10.925  555/600 ≅=  

 150530 =×  (c) 7.3150/555 =  

 
4.3.1. Simulations with three P-M Ratios 
 
Simulations with a P-M Ratio Smaller Than 1 

Figure 6 shows the results of the simulations with 
P-M ratios smaller than 1 taken from Table 3. 
Apparently the memory access overhead is relatively 
so large that the processor efficiency is low and only 
two threads are enough to utilize the memory. The SF 
and DS have similar processor and memory utilizations 
because of similar P-M ratios. 

 
 
Simulations with a P-M Ratio Close to 1 

Figure 7 shows the simulation results using a P-M 
ratio close to 1. SDRAM, another popular memory 
architecture in addition to the SRAM with a service 
time of 40 cycles is involved for comparison. From the 
figure we can see that for SRAM-SF and SRAM-DS 
the utilizations of both processor and memory are 
similar because the ratios are close to 1. Moreover, the 
benefit of utilizing memory from adding threads, taking 
the SDRAM-SF as an example, becomes less obvious 
as the memory utilization exceeds 90%. This 

observation also suggests that J=5 is most appropriate 
for applications with a P-M ratio close to 1, since the 
memory utilization of the SRAM-SF has reached 90% 
when J is 5 and the benefit from adding extra thread is 
limited. Specifically, we can further assert that J <5 is 
appropriate for the VPN (Virtual Private Network) 
processing while J >5 for the Intrusion Detection and 
Prevention as well as the Anti-Virus. The former has 
more computational operations whereas the latter two 
have greater memory access overhead, than the SF and 
DS. 

 
Fig. 7. Processor and memory utilizations for different 

numbers of threads.  
 

Simulations with a P-M Ratio Larger Than 1 
The memory service time is assumed to be 5 cycles so that 

memory overhead is relatively less than that of the processor. 
The corresponding P-M ratios are 9.3)125/(235 ≅×  and 

7.3)305/(555 ≅× , respectively for SF and DS. The memory 

sustains the access load until four processors are incorporated 
for both SF and DS. Interestingly, though memory is 
apparently not a bottleneck when I=1 and 2, the processor is 
not fully utilized as shown in Fig. 8. This suggests that the J, 
which could lead to the low processor utilization, must be 
carefully estimated before using a fast memory module. 
Furthermore, the fifth processor contributes limitedly to 
utilizing the memory while resulting in low processor 
efficiency, implying that J, rather than I, should be increased 
to 4 when (I,J)=(4,3). 
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Discussions  
The processing overhead of a packet is determined 

by the software, i.e. application, and hardware 
specifications, in which the former affects the number 
of computational and memory access operations while 
the latter determines the duration of each operation. 
Since the processing time is measured in cycles instead 
of normal time scales (ex: secμ ), the metric of P-M 

ratio is independent of any single specification but their 
relative overhead; so are the discovered observations. 
Furthermore, examination on one P-M ratio can be 
applied to various software-hardware combinations. 
Therefore, rather than by involving several applications 
to gain software/hardware -dependent observations 
which is frequently unfeasible due to significant 
implementation effort, this approach derives general 
ideas by classifying all combinations into three aspects, 
namely smaller than one, close to one and larger than 
one.  

With the investigation on these aspects and results 
from one of our previous studies [20], a projection can 
be estimated between P-M ratios and their 
corresponding J, as shown in Fig. 10. It is interesting to 
see that the demand for J rapidly lessens as the P-M 
ratio increases to 0.066, and slowly decreases 
afterwards. Notably the projection should be 
ladder-like in practice since J is always an integer. 

 

 
 

4.3.2. Solutions for the Memory Bottleneck 
Memory usually becomes the bottleneck because of 

not only the nature of the application but the speed gap 
between processor and memory. To tackle the problem, 
three common solutions are investigated and compared: 
enlarging the cache size for better hit ratio; adopting a 
memory access efficient algorithm, and adding more 
memory banks. Figure 10 compares the effectiveness 
of the solutions for the DS when (I,J)=(5,5) and L=20. 
The hit ratio is assumed to be 16.6% and 33.3%, 
respectively, by reducing the number of memory 
accesses from 30 to 25 and 20. As for the memory 
access efficient algorithm, we proceed by supposing a 

classification algorithm having memory accesses 50% 
less (from 10 to 5 accesses) while computational 
instructions 100% more (from 160 to 320 instructions) 
than the original algorithm, i.e. (P,M) from (555,30) to 
(715,25). The idea is that more computational 
instructions are usually traded for less memory 
accesses. We consider the effect of multiple banks by 
employing two banks and looking into two situations in 
which memory accesses are (1) evenly distributed and 
(2) distributed with ratios of 1:2 and 1:4. The cause of 
the second situation is the data structure and the nature 
of the application or the algorithm. For example, in a 
pattern matching application using the classic 
Aho-Corasick algorithm [21], it is unlikely to split the 
goto table evenly into memory banks, resulting in 
unbalanced memory access locality. Even if it is 
possible, the problem remains since the matching 
frequently returns to the root state stored in a certain 
bank.

Cache 
effects 

Mem acc 
efficient 

algorithm

Two 
banks 

10 20 30 40 50 60 70 80

HR=33.3%

HR=16.6%

b1:b2 = 1:2

Performance improvement (%)

b1:b2 = 1:1

b1:b2=1:4

  
Fig. 10. Performance improvement from the three 

solutions with respect to (I,J)=(5,5) performing the DS. 
The hit ratio of 16.6% and 33.3% are simulated by 
using (P, M)=(555,25) and (555,20), while (715,25) is 
designed to mimic a system with a memory access 
efficient classification algorithm. Ratios of 1:1, 1:2 and 
1:4 are investigated for the two-bank case. 
 

From the figure we can see that with a hit ratio of 
16.6%, an improvement of 21% can be obtained. The 
improvement advances to 51.5%, 2.5 times of that of 
16.6% ratio, for a hit ratio of 33.3%. The benefit from a 
memory access efficient algorithm is 21.5%, similar to 
the one with 16.6% hit ratio, despite the increased 
number of computational instructions. The 
performance gain is best when introducing another 
memory bank. However, it degrades from 81% to 15% 
as the distribution of memory accesses becomes 
unbalanced. 

 
5. Conclusions and Future Work 

Fig. 9. Projection on the P-M ratios and the 
corresponding J’s. 10 and 13 are estimated for J 
when practically executing the Intrusion Detection 
and Prevention application with the Aho-Corasick 
and Wu-Manber algorithms, respectively. 
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In this work, we try to derive possible design 
implications for CMP based multithreaded network 
processors by developing a preliminary analytical 
model as well as simulations based on the timed, 
colored Petri net. To date, this work is the first research 
that practically models I processors and J threads per 
processor based on the thread allocation discussions 
and queuing effect considerations for memory and 
ready queues.  

Although the analytical model is verified to have 
similar behavior to the non-blocking simulation which 
quite resembles real implementations, we focus on the 
latter in order to have precise observations. The 
concept of P-M ratio, which is intended to cover 
general networking applications, is introduced and 
investigated; a projection is estimated between P-M 
ratios and the corresponding appropriate number of 
threads in a processor. It is found that the demand for J 
rapidly lessens as the P-M ratio increases to 0.066, and 
slowly decreases afterwards. Observations from a 
certain P-M ratio can be applied to various 
software-hardware combinations having the same 
ratio. 

.As to solving the memory bottleneck resulted from 
small P-M ratio, adding memory banks best improves 
the performance, though the effectiveness depends 
heavily on the data structure of the 
application/algorithm.  
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