
 1

Thread Allocation in Chip Multiprocessor Based

Multithreaded Network Processors

Abstract—This work tries to derive ideas for thread
allocation in Chip Multiprocessor (CMP)-based
network processors performing general applications by
Continuous-Time Markov Chain modeling and Petri
net simulations. The concept of P-M ratio, where P and
M indicate the computational and memory access
overhead when processing a packet, is introduced and
the relation to thread allocation is explored. Results
indicate that the demand of threads in a processor
diminishes rapidly as P-M ratio increases to 0.066, and
decreases slowly afterwards. Observations from a
certain P-M ratio can be applied to various
software-hardware combinations having the same
ratio.

1. Introduction

The advantages of traditional
multithreaded-multiprocessor architectures are
three-fold: increasing the computing power
considerably by interconnecting a number of
processing elements; sharing limited memory resource
with others and thus form a distributed shared-memory,
and tolerating the memory access overhead by
multithreading. However, the memory subsystem tends
to be the performance bottleneck because of the burden
of long access delay. Fortunately, today’s technology
has made it possible to put several processors and
memory banks on a single chip such that memory
access latency is significantly reduced. This kind of
architectures is emerging as chip multiprocessor (CMP)
based multithreaded processors [1-3].

Though the architecture is promising in its scalability
and extensibility, especially in the form of some
network processors, the determination of architectural
parameters such as numbers of processors, threads in a
processor, and memory banks, is not trivial given a
specific application and a performance target.
Furthermore, since one proper configuration today may

not be suitable tomorrow due to different evolving
speeds of manufacturing technologies of the functional
units, some general guidelines may be demanded for
efficient and appropriate parameter determination.

A number of recent works concerning the modeling
of CMP based multithreaded network processors can be
found in [6-10]. Though detailed parameters are
included and programming paradigms are analyzed, the
discussion of thread allocation is substantially ignored.
Lakshmanamurthy et al. propose a methodology for
analyzing the performance of the Intel IXP2400 [18].
But they focus only on the validation of the system
performance; the processor and memory utilizations are
not addressed and design guidelines are not
comprehensively investigated.

In this work, we aim to unveil possible hints for
future design of the architecture by (1) developing a
preliminary analytical model and (2) building a Petri
net simulation environment for model validation and
design implications observation. Our approach
considers both memory and ready queuing effects that
are often ignored in other works. Though the validated
analytical model is found not scalable enough for deep
observations, the simulation results demonstrate
interesting design implications. We propose a concept
named P-M ratio, where P and M represent the
computational and memory access overheads of an
application, and estimate a projection between P-M
ratios and the corresponding appropriate number of
threads in a processor. Workarounds to the memory
bottleneck occurring at small P-M ratios are also
discussed.

The rest of this article is organized as follows.
Section 2 reviews related works and introduces the
concept of thread allocation schemes. Section 3
elaborates the analytical model. Section 4 details the
construction of the Petri net simulation environment,
validates the analytical model, and presents some
interesting simulation results. Conclusive remarks and

Yuan-Chen Lai
Department of Information Management, National Taiwan University of

Science and Technology, Taipei, Taiwan
laiyc@cs.ntust.edu.tw

Yi-Neng Lin, Ying-Dar Lin
Department of Computer Science, National Chiao-Tung University, Hsinchu, Taiwan

{ynlin,ydlin}@cs.nctu.edu.tw

This work was supported in part by the Taiwan Natioanl
Science Council's Program of Excellence in Research, and in
part by grants from Cisco and Intel

 2

future work are given in section 5.

2. Architectural Assumption on the
Thread Allocation Scheme

Thread allocations should be carefully discussed
before analyzing the architecture. Four thread
allocation schemes are possible to real implementations,
in which at most one thread is active in a processor.
The first is that a thread is responsible for a complete
packet processing. Nonetheless, this scheme may
require intricate inter-thread communications in order
to maintain the packet ordering in a flow.

Figure 1 presents another two schemes, the
homogeneous and heterogeneous thread allocations. In
the homogeneous allocation, all threads in a processor
belong to the same type, e.g. receiver, scheduler,
transmitter, etc. Each thread in a processor deals with
only part of the packet processing and after that, it
signals a certain thread in the succeeding processor for
further processing. A thread in a processor may have
either fixed or dynamic task assignment, namely it may
stick to a certain input port or may support other ports
whenever necessary. Notably, since all threads in a
processor are of the same type, this scheme has a
relaxed requirement for instruction memory size and
exhibits desirable cache locality. Nonetheless, the
processing load is unlikely to be distributed to
processors evenly, and packet ordering is hard to
maintain.

Fig. 1. Homogeneous and heterogeneous thread
allocations. At most one thread is active per processor.

This situation can be avoided with the

heterogeneous allocation, where traffic is assigned to
processors by some load-balancing hardware [11] and
mechanisms. In this scheme, threads in a processor
belong to different types and are supposed to take an
equal charge in the packet processing. Though a large
instruction memory is needed to support various tasks,
it will not be a problem because general header
processing applications consist of less than 5K
[12]instructions, which has already been supported in
many commercial products such as the Intel IXP2400
[13]. Another edge of the scheme is the minor

synchronization overhead, since the inter-thread
communication is done using global registers in the
processor. For the reasons discussed above, we take the
heterogeneous allocation as the base assumption in our
model throughout this work.

3. Analytical Model

In this section we present an approximate analysis of
the architecture using the Continuous-Time Markov
chain. We define the state space of the model, derive
the transition rates, and solve the model. In addition to
the heterogeneous allocation determined in the
previous section, we proceed with the assumption of
blocking processing as shown in Fig. 2. The blocking
processing contrasts with the non-blocking processing
in that no buffer exists between two adjacent threads.
That is, a thread cannot pass the processed packet to its
successor if the successor is busy. Since normally the
packet processing overhead, including computation and
memory access, is fairly distributed among threads, this
simplified assumption has limited influence on the
correctness of the model while considerably reducing
the state space.

Fig. 2. The blocking and non-blocking packet

processing schemes. A thread tT accesses memory

with rate tr during the processing.

3.1. State Definition and State Space

Determination
Our model considers I processors, each of which

contains J threads, and aims to characterize the
behaviors of processors, threads and memory. To do
that, we need to clarify possible activities, i.e. status
transitions, of a thread. They are depicted in Fig. 3 and
elaborated below. When a packet arrives at an idle
thread, the thread either enters the ready queue of the
processor waiting for execution, or enters the active
status if no thread is currently active. Sometimes it
issues a memory access to, for instance, perform table
lookups and manipulate packet descriptors. Once
serviced it re-enters the ready queue, or goes directly
back to execution if the ready queue is empty.

 3

Normally, the thread becomes idle again after the
packet is processed and passed to the succeeding thread.
Nonetheless, it may get stuck and enter the finished
status if the succeeding thread is busy with a packet.

Fig. 3. Status transitions of a thread.

According to the above descriptions we can formally

define a state of the system as

JjIisssS jij <≤<≤= 0 and 0),......(,,00,0
,

where
}:4 ,:3 ,:2 ,:1 ,:0{, finishedreadymemactiveidles ji ∈

represents the status of jiT , , the jth thread in processor

i. Furthermore we define
}0 and 0 , |{)(,, JjIiksskS jiji <≤<≤== , so that

the number of executing processors and number of
accesses in the memory system equal to |)1(| S and

|)2(| S , respectively. We also define

}0 ,2|{)(,, Jjssih jiji <≤== so that the number of

queued memory accesses of processor i is denoted by
|)(| ih . Besides, the RSS (Random Selection for

Service), rather than the FIFO, is assumed as the
queuing discipline for both memory and ready queues.
This assumption further diminishes the state space by
disregarding the ordering information in the queues,
and is proven not to affect the correctness of the
analytical result in section 4. Taking (I,J)=(2,2) as an
example, the state space can be derived by excluding
unreachable states exhibiting the following properties:
1. A processor has more than one active thread. For

instance, 1,1,0,0) (.

2. At least one ready thread but no active thread, such
as 2,3,0,0) (. One of the ready threads must enter

the active status as long as the previous active
thread completes its processing.

3. 10 ,0 while4 1,, −<≤== + Jjss jiji
. In this

case jiT , must pass the packet immediately to

1, +jiT rather than staying finished.

4. 41, =−Jis ; similar to 3,
1, −JiT must send out the

packet directly.

3.2. Determination of the Status Transition
Diagram and State Transition Matrix

We will need the state transition matrix in order to
solve the model. To derive the matrix, however, we
have to deal with the status transition rate diagram of
threads since a state change occurs when one or more
threads alter its status. By assuming the packet arrival

rate for processor i as iλ , memory access rate and

service time of the jth thread in that processor as jir ,

and ji ,1 μ , memory service rate as m, and number of

queued memory accesses from the processor as h, we
can have the status transition rate diagram shown in Fig.
4. Notably the service rates, as well as the memory
access rates, of threads having same thread index in all
processors are set the same because of the homogeneity
among those threads. That is,

jji μμ =,
 and

jji rr =, . Packet arrival rates for all processors, which

are also homogeneous, are set to λ .

 λ
jr

idle (0) active (1)

h
m

finished (4)

λ

mem (2)ready (3)

1
ju

h
m

2
ju

3
ju

4
ju λ

jr

idle (0) active (1)

h
m

finished (4)

λ

mem (2)ready (3)

1
ju

h
m

2
ju

3
ju

4
ju

Fig. 4. Status transition rate diagram of

jiT ,
.

sn
n

k
j

jk
j ' nonzero ofnumber : ,or 0 μ

μ
μ = .

Two additional transitions can be discovered out of
Fig. 3 and shown in Fig. 4, the active to active and
active to ready transitions. The former occurs when an
active thread switches out and is then chosen again to
process the packet from its finished predecessor; the
latter is similar except that it is not chosen for
execution but put into the ready queue.

Notice that two dotted status transitions in Fig. 4 do
not have a rate because of being follower transitions. A
status transition of a thread is regarded as a follower if
it does not initiate a status transition but simply follows
a certain activator transition which is launched by
another thread actively. For example, a finished thread
blocked by its successor can transit to the idle status
(firing the follower transition) only after the successor
finishes processing and passes down the packet (firing
the activator transition). Another example is that a
ready thread will never enter the active status unless a
thread switches out from active. The state transitions
and transition matrix can therefore be determined

 4

according to the status transition diagram. Specifically,
a state transition is considered valid if there exists only
one activation event containing an activator transition
and possibly a number of corresponding follower
transitions.

3.3. Performance Estimation for the

Analytical Model
The performance metrics that we are interested in

from the analytical model include the processor and
memory efficiencies. We can compute these measures
from the stationary probability vector, π , for the
Markov chain. The mean number of executing
processors, which we call processing power (

powerP),

and the processor utilization, which we call processor
efficiency (

efficiencyP), are then calculated from the

vector as

|))1(|)((SSP
S

power ×=∑ π , and (1)

 / IPP powerefficiency = . (2)

Memory utilization, which we call memory efficiency

(efficiencyM), number of memory accesses in memory

system (accessesM), and ready queue length of a

processor (lengthR) can be calculated as

∑
=∃

=
2 : ,

)(
jisS

efficiency SM π , (3)

|)2(|)(SSM
S

access ×=∑π , and (4)

ISSR
S

length /|)3(|)(⎟
⎠

⎞
⎜
⎝

⎛ ×= ∑π . (5)

4. Simulation

Some tools have been available for simulating the
CMP-based multithreaded architecture [14, 15].
Though accurate, they focus mainly on the low-level
configuration such as cache structure and lack
flexibility in thread allocation. In this section, we
describe the construction of the simulation environment
based on timed, colored Petri nets (CPNs) [16, 17]. It is
used to validate the analytical model discussed in the
previous section as well as to observe possible hints for
future design.

4.1. Design of the Petri Net Based Simulation

Environment
The key challenge in simulating memory queuing

effect is that an outgoing memory access must go back

to the thread where it is issued. For that purpose, we
adopt the event-driven CPN-Tools [17] as our simulator.
The features it supports, including the colored tokens,
stochastic functions and hierarchical editing, provide
efficiency in the construction of timed, colored Petri
nets corresponding to our model. To give a general idea
of the design of the Petri net based model, we use an
example whose configuration of (I,J) is (1,2) shown in
Fig. 5. Simulations for larger I and J are constructed in
a similar way.

The sample Petri net implements the processor and
memory subsystems shown in Fig 5(a) and 5(b),
respectively, and works as following. A token is added
as the initial marking in places such as the P0_token
(for processor 0), TK0_0 and TK0_1 (for thread 0 and
1), Pkt_Gen0 (for packet generator), and Init (for
memory). Among those tokens the one in Pkt_Gen0 is
designed to be a colored token, which represents a
packet and carries information about the processor
index (i), thread index (j), and the number of memory
accesses (k) the thread is obligated to perform to
process the packet. The tokens of the others are simply
non-colored ones.

In the processor subsystem, the inter-arrival time of
packets is exponentially distributed with mean E using
the function expDelay, and the availability of a thread
is dependent on whether a token is in both places of the
processor and thread. When a packet arrives at B0_0,
namely a colored token is fired by the transition Delay0,
and if there is a token in both P0_token and TK0_0, the
packet is admitted by consuming those three tokens and
firing the transition Tran0_0_0. After that, the packet is
processed for P/J computation cycles (active state) and
M/J memory accesses are assigned to the thread by
setting k= M/J, where P and M denote the numbers of
computational instructions and memory accesses
required to process a packet, respectively. The CPI
(cycle per instruction) is assumed to be 1.

The memory access takes place by firing transitions
Tran0_0_1 and S1 through P_out which is a common
interface for all processors. The packet then enters the
queue (M_buf) of the memory subsystem and gets
serviced if no other is present. After a service time of L
cycles (memory access state), the packet is passed back
to T0_0 where it is issued according to the i and j in the
token. The same procedure executes repeatedly until k
becomes 0. The packet is passed to B0_1, waiting to be
admitted by the next thread where operations similar to
the above are carried out before leaving the system.

The simulation design differs from the analytical
model in that the memory access rate and thread
service rate are deterministic. The memory queue not
shown in the above example is implemented in the
M_buf using utilities of the CPN-Tools.

 5

Fig. 5. An example hierarchical CPN describing (a) a
processor containing two threads, and (b) the memory

subsystem.

4.2. Model Validation by Simulations

The analytical model is validated by simulations.
Our first observation is that, as presented in Table 2,
the analytical results are mostly within 10% of the
blocking simulation results. The discrepancy comes
from the different assumptions between the model and
the simulation. The former assumes non-deterministic
behaviors in the instruction processing, memory access
rate and memory service time, while the latter uses
deterministic ones in order to be realistic. In fact, the
discrepancy can be reduced to be less than 3% if all
activities are presumed to be non-deterministic in the
simulation. Second, the deviation further extends to be
within 5-25% when comparing the blocking with the
non-blocking simulation, meaning that the existence of
buffer fairly influences the precision of the model. Due

to the state space explosion of the analytical model, we
focus on the simulation, specifically the non-blocking
scheme which resembles real implementations.

Table 2. Validation of the analytical model against the
blocking and non-blocking cases. The non-blocking

case resembles real implementations.

4.3. Simulation Setup
Two networking applications, Simple Forwarding

(SF) and DiffServ (DS), are involved in the simulations.
The statistics of the computational and memory access
instructions for handling a packet are configured
according to [18] which uses a CMP-based
multithreaded network processor. For simplicity, we
assume that all memory accesses are of the same type,
so the (P, M)s of the SF and DS are configured as (235,
12) and (555, 30).

Our goal is to investigate the relationship among
processors, threads and memory banks. To do this, a
term named P-M ratio is defined as

r accesslatency peccesses # of mem a

snstructiontational i# of compu

 loadmem access

nal loadcomputatio

×
= ,

and three sets of simulations are conducted:
simulations with P-M ratio smaller than 1, close to 1,
and larger than 1, respectively. A large (small) P-M
ratio means the processor overhead is relatively higher
(lower) than the memory’s and is thought to be an
unbalanced processor-memory combination, whereas a
P-M ratio close to 1 is considered as a sensible one. In
fact all networking applications can be categorized into
these three aspects. Table 3 details the configurations of
three different P-M ratios for the SF and DS. The
memory service times of SRAM are set to 20 and 90
cycles, respectively, referring to the Intel IXP1200 and

(a)

(b)

 6

IXP2400 [19] network processors. A memory service
time of 5 cycles is also incorporated to simulate the
case in which P-M ratio is larger than 1.

Table 3. Different kinds of P-M ratios: (a) smaller than
1, (b) close to 1, and (c) larger than 1. Memory access
latencies are configured as those of the IXP1200 and

IXP2400.
App. Mem. access load P-M ratio
SF 10809012 =× (a) 0.217 235/1080=

 2402012 =× (b) 10.98 235/240 ≅=
 60512 =× (c) 3.92 235/60 =

DS 27009030 =× (a) 0.205 555/2700=

 6002030 =× (b) 10.925 555/600 ≅=

 150530 =× (c) 7.3150/555 =

4.3.1. Simulations with three P-M Ratios

Simulations with a P-M Ratio Smaller Than 1

Figure 6 shows the results of the simulations with
P-M ratios smaller than 1 taken from Table 3.
Apparently the memory access overhead is relatively
so large that the processor efficiency is low and only
two threads are enough to utilize the memory. The SF
and DS have similar processor and memory utilizations
because of similar P-M ratios.

Simulations with a P-M Ratio Close to 1

Figure 7 shows the simulation results using a P-M
ratio close to 1. SDRAM, another popular memory
architecture in addition to the SRAM with a service
time of 40 cycles is involved for comparison. From the
figure we can see that for SRAM-SF and SRAM-DS
the utilizations of both processor and memory are
similar because the ratios are close to 1. Moreover, the
benefit of utilizing memory from adding threads, taking
the SDRAM-SF as an example, becomes less obvious
as the memory utilization exceeds 90%. This

observation also suggests that J=5 is most appropriate
for applications with a P-M ratio close to 1, since the
memory utilization of the SRAM-SF has reached 90%
when J is 5 and the benefit from adding extra thread is
limited. Specifically, we can further assert that J <5 is
appropriate for the VPN (Virtual Private Network)
processing while J >5 for the Intrusion Detection and
Prevention as well as the Anti-Virus. The former has
more computational operations whereas the latter two
have greater memory access overhead, than the SF and
DS.

Fig. 7. Processor and memory utilizations for different

numbers of threads.

Simulations with a P-M Ratio Larger Than 1
The memory service time is assumed to be 5 cycles so that

memory overhead is relatively less than that of the processor.
The corresponding P-M ratios are 9.3)125/(235 ≅× and

7.3)305/(555 ≅× , respectively for SF and DS. The memory

sustains the access load until four processors are incorporated
for both SF and DS. Interestingly, though memory is
apparently not a bottleneck when I=1 and 2, the processor is
not fully utilized as shown in Fig. 8. This suggests that the J,
which could lead to the low processor utilization, must be
carefully estimated before using a fast memory module.
Furthermore, the fifth processor contributes limitedly to
utilizing the memory while resulting in low processor
efficiency, implying that J, rather than I, should be increased
to 4 when (I,J)=(4,3).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(1,1) (1,2) (1,3) (1,4) (1,5)

(I,J) combinations

U
ti

li
za

ti
on

SDRAM-SF-proc SDRAM-DS-proc
SRAM-SF-proc SRAM-DS-proc
SDRAM-SF-mem SDRAM-DS-mem
SRAM-SF-mem SRAM-DS-mem

0%

20%

40%

60%

80%

100%

(1,3) (2,3) (3,3) (4,3) (5,3)
(I,J) combinations

U
ti

li
za

ti
on

SF-proc
DS-proc
SF-mem
DS-mem

Fig. 8. Processor and memory efficiencies for
different Is.

Fig. 6. Processor and memory utilizations for DS
and SF with different numbers of threads. The
memory service time is 90 cycles.

0%

5%

10%

15%

20%

25%

(1,1) (1,2) (1,3) (1,4) (1,5)

(I,J) combinations

P
ro

ce
ss

or
 u

ti
li

za
ti
on

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
em

or
y

ut
il

iz
at

io
n

SRAM-SF-Proc

SRAM-DS-Proc

SRAM-SF-Mem

SRAM-DS-Mem

 7

Discussions
The processing overhead of a packet is determined

by the software, i.e. application, and hardware
specifications, in which the former affects the number
of computational and memory access operations while
the latter determines the duration of each operation.
Since the processing time is measured in cycles instead
of normal time scales (ex: secμ), the metric of P-M

ratio is independent of any single specification but their
relative overhead; so are the discovered observations.
Furthermore, examination on one P-M ratio can be
applied to various software-hardware combinations.
Therefore, rather than by involving several applications
to gain software/hardware -dependent observations
which is frequently unfeasible due to significant
implementation effort, this approach derives general
ideas by classifying all combinations into three aspects,
namely smaller than one, close to one and larger than
one.

With the investigation on these aspects and results
from one of our previous studies [20], a projection can
be estimated between P-M ratios and their
corresponding J, as shown in Fig. 10. It is interesting to
see that the demand for J rapidly lessens as the P-M
ratio increases to 0.066, and slowly decreases
afterwards. Notably the projection should be
ladder-like in practice since J is always an integer.

4.3.2. Solutions for the Memory Bottleneck
Memory usually becomes the bottleneck because of

not only the nature of the application but the speed gap
between processor and memory. To tackle the problem,
three common solutions are investigated and compared:
enlarging the cache size for better hit ratio; adopting a
memory access efficient algorithm, and adding more
memory banks. Figure 10 compares the effectiveness
of the solutions for the DS when (I,J)=(5,5) and L=20.
The hit ratio is assumed to be 16.6% and 33.3%,
respectively, by reducing the number of memory
accesses from 30 to 25 and 20. As for the memory
access efficient algorithm, we proceed by supposing a

classification algorithm having memory accesses 50%
less (from 10 to 5 accesses) while computational
instructions 100% more (from 160 to 320 instructions)
than the original algorithm, i.e. (P,M) from (555,30) to
(715,25). The idea is that more computational
instructions are usually traded for less memory
accesses. We consider the effect of multiple banks by
employing two banks and looking into two situations in
which memory accesses are (1) evenly distributed and
(2) distributed with ratios of 1:2 and 1:4. The cause of
the second situation is the data structure and the nature
of the application or the algorithm. For example, in a
pattern matching application using the classic
Aho-Corasick algorithm [21], it is unlikely to split the
goto table evenly into memory banks, resulting in
unbalanced memory access locality. Even if it is
possible, the problem remains since the matching
frequently returns to the root state stored in a certain
bank.

Cache
effects

Mem acc
efficient

algorithm

Two
banks

10 20 30 40 50 60 70 80

HR=33.3%

HR=16.6%

b1:b2 = 1:2

Performance improvement (%)

b1:b2 = 1:1

b1:b2=1:4

Fig. 10. Performance improvement from the three

solutions with respect to (I,J)=(5,5) performing the DS.
The hit ratio of 16.6% and 33.3% are simulated by
using (P, M)=(555,25) and (555,20), while (715,25) is
designed to mimic a system with a memory access
efficient classification algorithm. Ratios of 1:1, 1:2 and
1:4 are investigated for the two-bank case.

From the figure we can see that with a hit ratio of
16.6%, an improvement of 21% can be obtained. The
improvement advances to 51.5%, 2.5 times of that of
16.6% ratio, for a hit ratio of 33.3%. The benefit from a
memory access efficient algorithm is 21.5%, similar to
the one with 16.6% hit ratio, despite the increased
number of computational instructions. The
performance gain is best when introducing another
memory bank. However, it degrades from 81% to 15%
as the distribution of memory accesses becomes
unbalanced.

5. Conclusions and Future Work

Fig. 9. Projection on the P-M ratios and the
corresponding J’s. 10 and 13 are estimated for J
when practically executing the Intrusion Detection
and Prevention application with the Aho-Corasick
and Wu-Manber algorithms, respectively.

 8

In this work, we try to derive possible design
implications for CMP based multithreaded network
processors by developing a preliminary analytical
model as well as simulations based on the timed,
colored Petri net. To date, this work is the first research
that practically models I processors and J threads per
processor based on the thread allocation discussions
and queuing effect considerations for memory and
ready queues.

Although the analytical model is verified to have
similar behavior to the non-blocking simulation which
quite resembles real implementations, we focus on the
latter in order to have precise observations. The
concept of P-M ratio, which is intended to cover
general networking applications, is introduced and
investigated; a projection is estimated between P-M
ratios and the corresponding appropriate number of
threads in a processor. It is found that the demand for J
rapidly lessens as the P-M ratio increases to 0.066, and
slowly decreases afterwards. Observations from a
certain P-M ratio can be applied to various
software-hardware combinations having the same
ratio.

.As to solving the memory bottleneck resulted from
small P-M ratio, adding memory banks best improves
the performance, though the effectiveness depends
heavily on the data structure of the
application/algorithm.

Reference
[1] S. Kapil, H. McGhan, and J. Lawrendra, “A Chip
Multithreaded Processor for Network-Facing
Workloads,” IEEE Micro, vol. 24, no. 2, 2004.
[2] A. Fedorova, M. Seltzer, C. Small, and D.
Nussbaum, “Performance of Multithreaded Chip
Multiprocessors and Implications for Operating System
Design,” in Proc. of USENIX’05, April 2005.
[3] V. Ramamurthi, J. McCollum, C. Ostler, and K.S.
Chatha, “System Level Methodology for Programming
CMP based Multi-threaded Network Processor
Architectures,” in Proc. of International Symposium on
VLSI (ISVLSI), May 2005.
[4] R. S.-B., D. Culler, and T. Eicken, “Analysis of
multithreaded architectures for parallel computing,” in
Proc. of the 2nd Annual ACM Symposium on Parallel
Algorithms and Architectures, 1990.
[5] S.S. Nemawarkar, R. Govindarajan, G.R. Gao,
and V.K. Agarwal, “Analysis of Multithreaded
Multiprocessor Architectures with Distributed Shared
Memory”, in the Fifth IEEE Symposium on Parallel
and Distributed Processing, Dallas, pp.114-121, 1993.
[6] M. Franklin and T. Wolf, “A Network Processor
Performance and Design Model with Benchmark
Parameterization,” in Network Processor Workshop in

conjunction with Eighth International Symposium on
High Performance Computer Architecture, 2002.
[7] T. Wolf and J.S. Turner, “Design Issues for High-
Performance Active Routers,” IEEE JSAC, vol. 19, no.
3, 2001.
[8] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer,
“Comparing Analytical Modeling with Simulation for
Network Processors: A Case Study,” in Proc. of the
Design, Automation, and Test in Europe (DATE), 2003.
[9] P. Crowley, M. Fiuczynski, and J.-L. Baer, “On
the Performance of Multithreaded Architectures for
Network Processors,” UW Technical Report, 2001.
[10] P. Crowley and J.-L. Baer, “A Modeling
Framework for Network Processor Systems,” in
Network Processor Workshop in conjunction with
Eighth International Symposium on High Performance
Computer Architecture, 2002.
[11] W. Bux, W.E. Denzel, T. Engbersen, A.
Herkersdorf, and R.P. Luijten, “Technologies and
Building Blocks for Fast Packet Forwarding,” IEEE
Communications Magazine, January 2001.
[12] R. Ramaswamy and T. Wolf, “PacketBench: A
Tool for Workload Characterization of Network
Processing,” in Proc. of 6th IEEE Annual Workshop on
Workload Characterization, 2003.
[13] Intel IXP2400 network processor, http://www.
intel.com/design/network/products/npfamily/.
[14] D. Nussbaum, A. Fedorova, C. Small, “An
Overview of the Sam CMT Simulator Kit,” Technical
Report of Sun microsystems, June 2004.
[15] J.D. Davis, C. Fu, and J. Laudon, “The RASE
(Rapid, Accurate Simulation Environment) for Chip
Multiprocessors,” in Proc. of Workshop on Design,
Architecture and Simulation of Chip Multiprocessors,
November 2005.
[16] T. Murata, “Petri Nets: Properties, Analysis and
Applications,” Proc. of the IEEE, vol. 77, no. 4, 1989.
[17] A.V. Ratzer et al., “CPN Tools for Editing,
Simulating, and Analysing Coloured Petri Nets,” in
Proc. of the International Conference on Applications
and Theory of Petri Nets, 2003.
[18] S. Lakshmanamurthy, K. Y. Liu, Y. Pun, L.
Huston, and U. Naik, “Network Processor Performance
Analysis Methodology,” Intel Technology Journal, vol.
6 issue 3, 2002.
[19] D.E. Comer, “Network Systems Design using
Network Processors,” p. 282, Prentice Hall, 2004.
[20] Y.-N. Lin, Y.-C. Chang, Y.-D. Lin, and Y.-C. Lai,
"Resource Allocation in Network Processors for
Memory Access Intensive Applications," Journal of
Systems and Software, Vol. 80, Issue 7, July 2007.
[21] A. Aho and M. Corasick, “Fast Pattern Matching:
an Aid to Bibliographic Search,” Commun. ACM,
18(6):333-340, June 1975.

