Chapter 6: CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Multiple-Processor Scheduling
- Real-Time Scheduling
- Algorithm Evaluation
Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait.
- CPU burst distribution
Alternating Sequence of CPU And I/O Bursts

- load store
- add store
- read from file
- CPU burst
- I/O burst
- wait for I/O
- store increment index
- write to file
- CPU burst
- I/O burst
- wait for I/O
- load store
- add store
- read from file
- CPU burst
- I/O burst
- wait for I/O
Histogram of CPU-burst Times
CPU Scheduler

- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them.
- CPU scheduling decisions may take place when a process:
 1. Switches from running to waiting state.
 2. Switches from running to ready state.
 3. Switches from waiting to ready.
 4. Terminates.
- Scheduling under 1 and 4 is *nonpreemptive*.
- All other scheduling is *preemptive*.
Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program

- *Dispatch latency* – time it takes for the dispatcher to stop one process and start another running.
Scheduling Criteria

- CPU utilization – keep the CPU as busy as possible
- Throughput – # of processes that complete their execution per time unit
- Turnaround time – amount of time to execute a particular process
- Waiting time – amount of time a process has been waiting in the ready queue
- Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)
Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time
First-Come, First-Served (FCFS) Scheduling

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>24</td>
</tr>
<tr>
<td>P_2</td>
<td>3</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
</tr>
</tbody>
</table>

Suppose that the processes arrive in the order: P_1, P_2, P_3

The Gantt Chart for the schedule is:

Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$

Average waiting time: $\frac{0 + 24 + 27}{3} = 17$
Suppose that the processes arrive in the order P_2, P_3, P_1.

- The Gantt chart for the schedule is:

```
    P2  P3  P1
0   3   6   30
```

- Waiting time for $P_1 = 6$; $P_2 = 0$, $P_3 = 3$
- Average waiting time: $(6 + 0 + 3)/3 = 3$
- Much better than previous case.
- *Convoy effect* short process behind long process
Shortest-Job-First (SJR) Scheduling

- Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time.

- Two schemes:
 - nonpreemptive – once CPU given to the process it cannot be preempted until completes its CPU burst.
 - preemptive – if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is known as the Shortest-Remaining-Time-First (SRTF).

- SJF is optimal – gives minimum average waiting time for a given set of processes.
Example of Non-Preemptive SJF

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0.0</td>
<td>7</td>
</tr>
<tr>
<td>P_2</td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>P_3</td>
<td>4.0</td>
<td>1</td>
</tr>
<tr>
<td>P_4</td>
<td>5.0</td>
<td>4</td>
</tr>
</tbody>
</table>

- **SJF (non-preemptive)**

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td></td>
<td></td>
<td>P₃</td>
<td>P₂</td>
<td>P₄</td>
</tr>
</tbody>
</table>

- **Average waiting time** = \(\frac{(0 + 6 + 3 + 7)}{4} - 4 \)
Example of Preemptive SJF

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0.0</td>
<td>7</td>
</tr>
<tr>
<td>P_2</td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>P_3</td>
<td>4.0</td>
<td>1</td>
</tr>
<tr>
<td>P_4</td>
<td>5.0</td>
<td>4</td>
</tr>
</tbody>
</table>

- SJF (preemptive)

- Average waiting time = \(\frac{(9 + 1 + 0 + 2)}{4} - 3 \)
Determining Length of Next CPU Burst

- Can only estimate the length.
- Can be done by using the length of previous CPU bursts, using exponential averaging.

1. \(t_n \) = actual length of \(n^{th} \) CPU burst
2. \(\tau_{n+1} \) = predicted value for the next CPU burst
3. \(\alpha, 0 \leq \alpha \leq 1 \)
4. Define:

\[
\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n.
\]
Prediction of the Length of the Next CPU Burst

<table>
<thead>
<tr>
<th>CPU burst (t_j)</th>
<th>6</th>
<th>4</th>
<th>6</th>
<th>4</th>
<th>13</th>
<th>13</th>
<th>13</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>"guess" (τ_j)</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Examples of Exponential Averaging

- $\alpha = 0$
 - $\tau_{n+1} = \tau_n$
 - Recent history does not count.

- $\alpha = 1$
 - $\tau_{n+1} = t_n$
 - Only the actual last CPU burst counts.

- If we expand the formula, we get:
 $$\tau_{n+1} = \alpha t_n + (1 - \alpha) \alpha t_{n-1} + \ldots + (1 - \alpha)^j \alpha t_{n-j} + \ldots + (1 - \alpha)^{n-1} t_n \tau_0$$

- Since both α and $(1 - \alpha)$ are less than or equal to 1, each successive term has less weight than its predecessor.
Priority Scheduling

- A priority number (integer) is associated with each process.
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority).
 - Preemptive
 - nonpreemptive
- SJF is a priority scheduling where priority is the predicted next CPU burst time.
- Problem ≡ Starvation – low priority processes may never execute.
- Solution ≡ Aging – as time progresses increase the priority of the process.
Round Robin (RR)

- Each process gets a small unit of CPU time (*time quantum*), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.

- If there are *n* processes in the ready queue and the time quantum is *q*, then each process gets 1/*n* of the CPU time in chunks of at most *q* time units at once. No process waits more than (*n*-1)*q* time units.

- **Performance**
 - *q* large \(\Rightarrow\) FIFO
 - *q* small \(\Rightarrow\) *q* must be large with respect to context switch, otherwise overhead is too high.
Example of RR with Time Quantum = 20

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>53</td>
</tr>
<tr>
<td>P_2</td>
<td>17</td>
</tr>
<tr>
<td>P_3</td>
<td>68</td>
</tr>
<tr>
<td>P_4</td>
<td>24</td>
</tr>
</tbody>
</table>

The Gantt chart is:

```
P_1  P_2  P_3  P_4  P_1  P_3  P_4  P_1  P_3  P_3
0    20   37   57   77   97   117  121  134  154  162
```

Typically, higher average turnaround than SJF, but better response.
Time Quantum and Context Switch Time

<table>
<thead>
<tr>
<th>process time = 10</th>
<th>quantum</th>
<th>context switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 6</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>6 - 10</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>
Turnaround Time Varies With The Time Quantum

<table>
<thead>
<tr>
<th>process</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>6</td>
</tr>
<tr>
<td>P_2</td>
<td>3</td>
</tr>
<tr>
<td>P_3</td>
<td>1</td>
</tr>
<tr>
<td>P_4</td>
<td>7</td>
</tr>
</tbody>
</table>
Multilevel Queue

- Ready queue is partitioned into separate queues: foreground (interactive) and background (batch).
- Each queue has its own scheduling algorithm, foreground – RR and background – FCFS.
- Scheduling must be done between the queues.
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS
Multilevel Queue Scheduling

highest priority

- system processes

- interactive processes

- interactive editing processes

- batch processes

- student processes

lowest priority
Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way.
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service
Example of Multilevel Feedback Queue

Three queues:
- Q_0 – time quantum 8 milliseconds
- Q_1 – time quantum 16 milliseconds
- Q_2 – FCFS

Scheduling
- A new job enters queue Q_0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q_1.
- At Q_1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q_2.
Multilevel Feedback Queues

- quantum = 8
- quantum = 16
- FCFS
Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available.
- *Homogeneous processors* within a multiprocessor.
- *Load sharing*
- *Asymmetric multiprocessing* – only one processor accesses the system data structures, alleviating the need for data sharing.
Real-Time Scheduling

- **Hard real-time** systems – required to complete a critical task within a guaranteed amount of time.
- **Soft real-time** computing – requires that critical processes receive priority over less fortunate ones.
Dispatch Latency

Diagram showing the sequence of events in dispatch latency:
- Event
- Response interval
- Process made available
- Dispatch latency
- Real-time process execution
- Conflicts
- Dispatch
- Time
Algorithm Evaluation

- Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm for that workload.
- Queueing models
- Implementation
Evaluation of CPU Schedulers by Simulation

- Actual process execution
- Simulation for FCFS
 - Performance statistics for FCFS
- Simulation for SJF
 - Performance statistics for SJF
- Simulation for RR (Q = 14)
 - Performance statistics for RR (Q = 14)
Solaris 2 Scheduling

- **global priority**:
 - highest
 - lowest

- **scheduling order**:
 - first
 - last

- **class-specific priorities**:
 - real time
 - system
 - interactive and time sharing

- **scheduler classes**:
 - kernel threads of real-time LWPs
 - kernel service threads
 - kernel threads of interactive and time-sharing LWPs

- **run queue**
Windows 2000 Priorities

<table>
<thead>
<tr>
<th>Priority</th>
<th>real-time</th>
<th>high</th>
<th>above normal</th>
<th>normal</th>
<th>below normal</th>
<th>idle priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>time-critical</td>
<td>31</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>highest</td>
<td>26</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>above normal</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>normal</td>
<td>24</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>below normal</td>
<td>23</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>lowest</td>
<td>22</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>idle</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>