Lab1 – Simple IoT Application

NCTU Introduction to IoT

October 23, 2019
Outline

• Objective

• Device side
 • Controlling LED with Raspberry Pi / Switch / Light Sensor (LDR)
 • Temperature & Humidity monitoring

• Server side
 • Sending sensor values to a server
 • Controlling actuators via Website
Objective

• Simulating a smart-home environment (automatic lamp, environment monitoring):
 • Lamp will be turned on automatically if the room gets dark and turned off automatically if the room have enough light.
 • Controlling the lamp on the website.
 • Monitoring temperature and humidity on the website.
Device side
Basic

• Breadboard Connections

• Raspberry pi 4 pins
Controlling LED with Raspberry Pi (1)

• Diagram
Controlling LED with Raspberry Pi (2)

• Components:
 • LED
 • A resistor 220.

• Using file LEDAndRaspberry.py in source code
Controlling LED with Switch (1)

• Diagram
Controlling LED with Switch (2)

- Components:
 - LED
 - Switch
 - 2 resistors 220.

- Using file `LEDAndSwitch.py` in source code
Controlling LED with Light Sensor (1)

• Diagram
Controlling LED with Light Sensor (2)

• Components:
 • LED
 • Resistor 220
 • LDR (Light Dependent Resistor)
 • Capacitor 1μF

• Using file LEDAndLDR.py in source code
Temperature & Humidity monitoring

- sudo apt-get update
- sudo apt-get upgrade
- sudo apt-get install python3-dev python3-pip
- sudo python3 -m pip install --upgrade pip setuptools wheel
- sudo pip3 install Adafruit_DHT
Temperature & Humidity monitoring

• Components:
 • AM2302 DHT22 Sensor
 • VCC (+)
 • GND (-)
 • DAT (data)

• Using file LEDAndLDR.py in source code
Server side
• **Note:** we build the server on your laptop or PC by using Django. But we also can use some public clouds on the internet.

• Install python3

• Install virtual environment
 • `pip install virtualenv`

• Create virtual environment
 • `virtualenv <venv_name>`

• Active virtual environment
 • `<direction_of_environment>\Scripts\active`
Build A Server (2)

• Install Django
 • pip install django

• Install Django REST framework
 • pip install djangorestframework

• Create a project \textit{(from now you run all commands at this folder)}
 • django-admin startproject \texttt{SmartHomeProject}

• Create an application inside the project
 • python manage.py startapp \texttt{myApp}
Build A Server (3)

• Tell Django to use the application
 • `mysite/settings.py` → find `INSTALLED_APPS` → add 'myApp.apps.MyappConfig', 'rest_framework',

• Create model
 • `myApp/models.py` (into source code)

• Create serializers
 • `myApp/serializers.py` (source code)

• Add models to Django admin
 • `myApp/admin.py` (source code)
Build A Server (4)

- Create superuser (admin)
 - python manage.py createsuperuser
- Create view
 - myApp/views.py
- Create url
 - SmartHomeProject/urls.py (source code)
 - myApp/urls.py (source code)
Build A Server (5)

• Create HTML file
 • myApp/templates/index.html (source code)

• Create a database
 • python manage.py migrate

• Run server
 • python manage.py runserver 0.0.0.0:8000
Using website

• Access website
 • http://<serverIP>:8000/

• Django administration website
 • http://<serverIP>:8000/admin/
 • Go to this website to create an object of the Light model before the first time you use the home website.
 • Also create an object of the TemperatureData model by using admin website or Web API before the first time you use the home website.

• NOTE:
 • Please turn off your server’s firewall.
 • Add ALLOWED_HOSTS = ['*'] inside setting.py
Using web api

• url for temperature api
 • http://<serverIP>:8000/api/temperature

• url for light api
 • http://<serverIP>:8000/api/light

• Methods (install “requests” first: pip install requests)
 • GET: return data
 • Requests.get(‘url’)
 • POST: create data
 • Requests.get(‘url’, {‘key1’:‘data1’, ‘key2’:‘data2’})
Sending Sensor Values To A Server

• Components (using “Temperature & Humidity monitoring” slide)
• Using file InterfacingWithServer\TempHumidity.py in source code.
Controlling Actuators Via Website

• Components (using “Controlling LED with Light Sensor” slide)

• Using file `InterfacingWithServer\LEDAndLDR.py` in source code.
References

• Internet of things a hands-on approach by arshdeep bahga and vijay madisetti
 • https://pimylifeup.com/raspberry-pi-humidity-sensor-dht22/
 • https://projectiot123.com/2019/02/01/raspberry-pi-gpio-programming-example-for-servo-motor-using-python/
 • https://tutorial.djangogirls.org/en/