Chapter 2
Domain Specific IoTs
Outline

• Introduction
• Home Automation
• Cities
• Environment
• Energy
• Retail
• Logistics
• Agriculture
• Industry
• Health & Lifestyle
Introduction – Applications of IoT

- Health Care
 - Wearable Electronics
- Industry
 - Machine Diagnosis
 - Indoor Air Quality Monitoring
- Agriculture
 - Smart Irrigation
 - Green House Control
- Logistics
 - Route Scheduling
 - Fleet Tracking
 - Shipment Monitoring
 - Remove Vehicle Diagnostics
- Retail
 - Inventory Management
 - Smart Payments
 - Smart Vending Machines
- Home
 - Smart Lighting
 - Smart Appliances
 - Intrusion Detection
 - Smoke/Gas Detectors
- Cities
 - Smart Parking
 - Smart Roads
 - Structural Health Monitoring
 - Emergency Response
 - Surveillance
- Environment
 - Weather Monitoring
 - Air Pollution Monitoring
 - Noise Pollution Monitoring
 - Forest Fire Detection
- Energy
 - Smart Grids
 - Renewable Energy System
 - Prognostics
Home Automation
Home Automation (2/2)

• Smart Lighting
 • Control lighting by remotely (mobile or web applications)

• Smart Appliances
 • Provide status information to the users remotely

• Intrusion Detection
 • Use security cameras and sensors (PIR sensors and door sensors)
 • Detect intrusions and raise alerts
 • The alerts form: an SMS or an email sent to the user

• Smoke/Gas Detectors
 • Use optical detection, ionization, or air sampling techniques to detect the smoke
 • Gas detectors can detect harmful gases
 • Carbon monoxide (CO)
 • Liquid petroleum gas (LPG)
 • Raise alerts to the user or local fire safety department
Cities (1/2)

- Structural Health Monitoring
- Surveillance
- Emergency Services (Fire, Gas Leak, Water Leakage detection)
- Smart Lighting
- Smart Roads
- Smart Parking
Cities (2/2)

• Smart Parking
 • Detect the number of empty parking slots
 • Send the information over the internet and accessed by smartphones

• Smart Roads
 • Provide information on driving conditions, traffic congestions, accidents
 • Alert for poor driving conditions

• Structural Health Monitoring
 • Monitor the vibration levels in the structures (bridges and buildings)
 • Advance warning for imminent failure of the structure

• Surveillance
 • Use the large number of distributed and internet connected video surveillance cameras
 • Aggregate the video in cloud-based scalable storage solutions

• Emergency Response
 • Used for critical infrastructure monitoring
 • Detect adverse events
Environment (1/2)
Environment (2/2)

- **Weather Monitoring**
 - Collect data from several sensors (temperature, humidity, pressure, etc.)
 - Send the data to cloud-based applications and storage back-ends
- **Air Pollution Monitoring**
 - Monitor emission of harmful gases (CO₂, CO, NO, NO₂, etc.)
 - Factories and automobiles use gaseous and meteorological sensors
 - Integration with a single-chip microcontroller, several air pollution sensors, GPRS-modem, and a GPS module
- **Noise Pollution Monitoring**
 - Use a number of noise monitoring stations
 - Generate noise maps from data collected
- **Forest Fire Detection**
 - Use a number of monitoring nodes deployed at different locations in a forests
 - Use temperature, humidity, light levels, etc.
 - Provide early warning of potential forest fire
 - Estimates the scale and intensity
- **River Floods Detection**
 - Monitoring the water level (using ultrasonic sensors) and flow rate (using the flow velocity sensors)
 - Raise alerts when rapid increase in water level and flow rate is detected
Energy (1/2)
Energy (2/2)

• Smart Grids
 • Collect data regarding electricity generation, consumption, storage (conversion of energy into other forms), distribution, equipment health data
 • Control the consumption of electricity
 • Remotely switch off supply

• Renewable Energy Systems
 • Measure the electrical variables
 • Measure how much the power is fed into the grid

• Prognostics
 • Predict performance of machines or energy systems
 • By collect and analyze the data from sensors
Retail (1/2)
Retail (2/2)

- **Inventory Management**
 - Monitoring the inventory by the RFID readers
 - Tracking the products

- **Smart Payments**
 - Use the NFC
 - Customers store the credit card information in their NFC-enabled

- **Smart Vending Machines**
 - Allow remote monitoring of inventory levels
 - Elastic pricing of products
 - Contact-less payment using NFC
 - Send the data to the cloud for predictive maintenance
 - The information of inventory levels
 - The information of the nearest machine in case a product goes out of stock in a machine
Logistics (1/2)
Logistics (2/2)

• Route Generation & Scheduling
 • Generate end-to-end routes using combination of route patterns
 • Provide route generation queries
 • Can be scale up to serve a large transportation network

• Fleet Tracking
 • Track the locations of the vehicles in real-time
 • Generate alerts for deviations in planned routes

• Shipment monitoring
 • Monitoring the conditions inside containers
 • Using sensors (temperature, pressure, humidity)
 • Detecting food spoilage

• Remote Vehicle Diagnostics
 • Detect faults in the vehicle
 • Warn of impending faults
 • IoT collects the data on vehicle (speed, engine RPM, coolant temperature)
 • Generate alerts and suggest remedial actions
Agriculture (1/2)
Agriculture (2/2)

• Smart Irrigation
 • Use sensors to determine the amount of moisture in the soil
 • Release the flow of water
 • Using predefined moisture levels
 • Water Scheduling

• Green House Control
 • Automatically control the climatological conditions inside a green house
 • Using several sensors to monitor
 • Using actuation devices to control
 • Valves for releasing water and switches for controlling fans
 • Maintenance of agricultural production
Industry (1/2)
Industry (2/2)

• Machine Diagnosis
 • Sensors in machine monitor the operating conditions
 • For example: temperature & vibration levels
 • Collecting and analyzing massive scale machine sensor data
 • For reliability analysis and fault prediction in machines

• Indoor Air Quality Monitoring
 • Use various gas sensors
 • To monitor the harmful and toxic gases (CO, NO, NO₂, etc.)
 • Measure the environmental parameters to determine the indoor air quality
 • Temperature, humidity, gaseous pollutants, aerosol
Health & Lifestyle

• Health & Fitness Monitoring
 • Collect the health-care data
 • Using some sensors: body temperature, heart rate, movement (with accelerometers), etc.
 • Various forms: belts and wrist-bands

• Wearable electronic
 • Assists the daily activities
 • Smart watch
 • Smart shoes
 • Smart wristbands