Chapter 2

Domain Specific IoTs
Outline

- Introduction
- Home Automation
- Cities
- Environment
- Energy
- Retail
- Logistics
- Agriculture
- Industry
- Health & Lifestyle
Introduction – Applications of IoT
Home Automation

- Smart Lighting
- Smart Appliances
- Smoke/Fire Detector
- Smart Thermostat
- Intrusion Detection
Home Automation (2/2)

- **Smart Lighting**
 - Control lighting by remotely (mobile or web applications)

- **Smart Appliances**
 - Provide status information to the users remotely

- **Intrusion Detection**
 - Use security cameras and sensors (PIR sensors and door sensors)
 - Detect intrusions and raise alerts
 - The alerts form: an SMS or an email sent to the user

- **Smoke/Gas Detectors**
 - Use optical detection, ionization, or air sampling techniques to detect the smoke
 - Gas detectors can detect harmful gases
 - Carbon monoxide (CO)
 - Liquid petroleum gas (LPG)
 - Raise alerts to the user or local fire safety department
Cities (1/2)
Cities (2/2)

• Smart Parking
 • Detect the number of empty parking slots
 • Send the information over the internet and accessed by smartphones

• Smart Roads
 • Provide information on driving conditions, traffic congestions, accidents
 • Alert for poor driving conditions

• Structural Health Monitoring
 • Monitor the vibration levels in the structures (bridges and buildings)
 • Advance warning for imminent failure of the structure

• Surveillance
 • Use the large number of distributed and internet connected video surveillance cameras
 • Aggregate the video in cloud-based scalable storage solutions

• Emergency Response
 • Used for critical infrastructure monitoring
 • Detect adverse events
Environment (1/2)
Environment (2/2)

- Weather Monitoring
 - Collect data from several sensors (temperature, humidity, pressure, etc.)
 - Send the data to cloud-based applications and storage back-ends

- Air Pollution Monitoring
 - Monitor emission of harmful gases (CO_2, CO, NO, NO_2, etc.)
 - Factories and automobiles use gaseous and meteorological sensors
 - Integration with a single-chip microcontroller, several air pollution sensors, GPRS-modem, and a GPS module

- Noise Pollution Monitoring
 - Use a number of noise monitoring stations
 - Generate noise maps from data collected

- Forest Fire Detection
 - Use a number of monitoring nodes deployed at different locations in a forests
 - Use temperature, humidity, light levels, etc.
 - Provide early warning of potential forest fire
 - Estimates the scale and intensity

- River Floods Detection
 - Monitoring the water level (using ultrasonic sensors) and flow rate (using the flow velocity sensors)
 - Raise alerts when rapid increase in water level and flow rate is detected
Energy (1/2)
Energy (2/2)

• Smart Grids
 • Collect data regarding electricity generation, consumption, storage (conversion of energy into other forms), distribution, equipment health data
 • Control the consumption of electricity
 • Remotely switch off supply

• Renewable Energy Systems
 • Measure the electrical variables
 • Measure how much the power is fed into the grid

• Prognostics
 • Predict performance of machines or energy systems
 • By collect and analyze the data from sensors
Retail (1/2)
Retail (2/2)

• Inventory Management
 • Monitoring the inventory by the RFID readers
 • Tracking the products

• Smart Payments
 • Use the NFC
 • Customers store the credit card information in their NFC-enabled

• Smart Vending Machines
 • Allow remote monitoring of inventory levels
 • Elastic pricing of products
 • Contact-less payment using NFC
 • Send the data to the cloud for predictive maintenance
 • The information of inventory levels
 • The information of the nearest machine in case a product goes out of stock in a machine
Logistics (1/2)
Logistics (2/2)

• Route Generation & Scheduling
 • Generate end-to-end routes using combination of route patterns
 • Provide route generation queries
 • Can be scale up to serve a large transportation network

• Fleet Tracking
 • Track the locations of the vehicles in real-time
 • Generate alerts for deviations in planned routes

• Shipment monitoring
 • Monitoring the conditions inside containers
 • Using sensors (temperature, pressure, humidity)
 • Detecting food spoilage

• Remote Vehicle Diagnostics
 • Detect faults in the vehicle
 • Warn of impending faults
 • IoT collects the data on vehicle (speed, engine RPM, coolant temperature)
 • Generate alerts and suggest remedial actions
Agriculture (1/2)
Agriculture (2/2)

• Smart Irrigation
 • Use sensors to determine the amount of moisture in the soil
 • Release the flow of water
 • Using predefined moisture levels
 • Water Scheduling

• Green House Control
 • Automatically control the climatological conditions inside a green house
 • Using several sensors to monitor
 • Using actuation devices to control
 • Valves for releasing water and switches for controlling fans
 • Maintenance of agricultural production
Industry (1/2)
Industry (2/2)

- Machine Diagnosis
 - Sensors in machine monitor the operating conditions
 - For example: temperature & vibration levels
 - Collecting and analyzing massive scale machine sensor data
 - For reliability analysis and fault prediction in machines

- Indoor Air Quality Monitoring
 - Use various gas sensors
 - To monitor the harmful and toxic gases (CO, NO, NO_2, etc.)
 - Measure the environmental parameters to determine the indoor air quality
 - Temperature, humidity, gaseous pollutants, aerosol
Health & Lifestyle

• Health & Fitness Monitoring
 • Collect the health-care data
 • Using some sensors: body temperature, heart rate, movement (with accelerometers), etc.
 • Various forms : belts and wrist-bands

• Wearable electronic
 • Assists the daily activities
 • Smart watch
 • Smart shoes
 • Smart wristbands