Course Objective:

This unique course aims to prepare students with skills and disciplines, instead of domain knowledge, in network system design and evaluation. The skills and disciplines would enable students to do both system development/research and algorithmic research in either academia or industry. 6 topics are covered in two tracks. In the design track, we cover major system development issues from IC design to software techniques for BSP (board support package) and turn-key solutions, with each one lectured in 2 or 3 weeks where the front part and rear part are on concepts and tools/projects, respectively. In the evaluation track, the skills of benchmarking, simulation, and modeling are presented, with each one lectured in 2 weeks. 2 weeks are allocated, before the final exam, for student presentations of their term projects.

Students are asked to do a mini-project (can be finished in 3 hours) right after the lecture of each topic and turn in a 2-page report within 2 weeks. Students need to select one term-project topic before 4/15, and turn in an 8-page report and present in the class on 6/1 or 6/8. Both mini-projects and term-projects are done individually. The final exam is open-book and contains 6 problems asking how and why on the covered 6 methodologies and their tools.

Prerequisite: Computer Networks or equivalent

Textbook: On-line course slides

Grade: 6 mini-project reports (42% = 7% x 6), 1 8-page term-project report & presentation (30%), and 1 final exam (28%)

Course homepage: http://speed.cis.nctu.edu.tw/~ydlin/course/cn/nsd.html

Class hours: Monday 9:00AM-12:00NN (TBD) in ED027

Course agenda:

<table>
<thead>
<tr>
<th></th>
<th>Topic</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Network IC Design</td>
<td>3/2, 3/9, 3/16</td>
</tr>
<tr>
<td>2</td>
<td>BSP (Board Support Package)</td>
<td>3/23 & 3/30</td>
</tr>
<tr>
<td>3</td>
<td>Turn-Key Solutions</td>
<td>4/6 & 4/13</td>
</tr>
<tr>
<td>5</td>
<td>Benchmarking</td>
<td>4/27 & 5/4 (part of)</td>
</tr>
<tr>
<td>6</td>
<td>Simulation</td>
<td>5/4 (part of) & 5/11</td>
</tr>
<tr>
<td>7</td>
<td>Modeling</td>
<td>5/18 & 5/25</td>
</tr>
<tr>
<td>8</td>
<td>Term-Project Presentations</td>
<td>6/1 & 6/8 (8 min per student)</td>
</tr>
<tr>
<td>9</td>
<td>Final Exam</td>
<td>6/15</td>
</tr>
</tbody>
</table>
I. Design Track

1. NIC (Network Interface Card):
 - Topics: PHY & MAC Consideration and related C&I Issues
 - Tools: Verilog related tools
 - Mini-Project: Compile/simulate/synthesize Ethernet MAC
 - Term-Project: Write a network hardware module in Verilog (to be determined)

2. BSP (Board Support Package):
 - Topics: BSP, Bootloader, Embedded OS and Device Drivers
 - Tools: GNU Tool Chain, iBoot, Embedded Linux for ARM
 - Mini-Project: Compile/Install/Configure bootloader and embedded Linux kernel on target
 - Term-Project: Install/Configure web server package on target and enhance it as the embedded web server (to be determined)

3. Turn-Key:
 - Topics: Integrating connectivity, QoS, and Security, and Image building
 - Tools: CVS, uclibc/glibc, binutils, gcc, buildroot, and application packages
 - Mini-Project: Build an embedded Web server (thttpd) image with a video content by BuildRoot
 - Term-Project: Build an embedded firewall (iptables) with transparent proxies (squid, dansguardian) by BuildRoot

II. Evaluation Track

4. Benchmarking:
 - Topics: Black box testing and White box profiling
 - Tools: WebBench, Email Test Tool, Smartbits, Avalanche, gprof, kprof
 - Mini-Project: Benchmarking the Apache Web server by WebBench
 - Term-Project: Bottleneck analysis of the anti-virus proxy (Postfix + AmaVis + ClamAV) by gprof

5. Simulation:
 - Topics: Simulation models, and Result interpretation
 - Tools: ns-2 and CPN (Color Petri Net)
 - Mini-Project: Simulating TCP on ns-2 & simulating a simple protocol on CPN
 - Term-Project: Simulating and comparing RED and FIFO on ns-2,
 Or simulating dining philosophers on CPN

6. Modeling:
 - Topics: System modeling and Markov chain
 - Tools: Mathlab7
 - Mini-Project: Computing the Markov chain steady state probability of a dual-core processor with a coprocessor
 - Term-Project: Extend the mini-project by automatically generating the transition rate matrix and comparative analysis