Inside Linux Router

Dr. Ying-Dar Lin
High Speed Network Lab.
Department of Computer Information Science
National Chiao Tung University
May 15, 1999
Content

- What’s inside the router box?
- Linux Architecture
- Modules and Daemons
- Protocols and Algorithms
- Packet Flows: User/Control-plane
- New feature: QoS
What’s inside the router box?

- Much the same as the PC with “LINUX” inside!!
Modules & Daemons

User Space
- routed (RIP) / gated (RIP, OSPF, IS-IS, BGP, ...etc)

Kernel Space
- Routing Table
- Protocol Driver
- Adapter Driver
- Adapter Driver

Control packet
Data packet

Copyright © 林盈達@交大資訊科學系
Protocols and Algorithms

- **Standard**
 - Protocol: ICMP, RIP, OSPF, IS-IS, BGP, etc.
 - Algorithm:
 - Shortest path computation
 - Distance Vector: Bellman-Ford
 - Link State: Dijkstra

- **Non-standard**
 - Protocol: IGRP (Cisco)
 - Algorithms:
 - checksum computation
 - Routing Table lookup
Distance Vector Routing (Bellman-Ford)

For destination F

\[(\equiv, -) (\equiv, -) (11, C) (9, D) (9, D)\]

\[(\equiv, -) (4, F) (4, F) (4, F) (4, F)\]

\[(\equiv, -) (6, C) (6, C) (6, C) (6, C)\]

\[(\equiv, -) (7, F) (7, F) (7, F) (7, F)\]

\[(\equiv, -) (0, F) (0, F) (0, F) (0, F)\]
Problems with Distance Vector

- No link-bandwidth consideration
 - only cares instantaneous queue length
 - instability & oscillation

- Only rapidly to Good News
 - travel at the rate of one hop per exchange

- But leisurely to Bad News
 - count to infinite
 - No router ever has a value a few more higher than the minimum of all its neighbors
Link State Routing (Dijkstra)

For destination A
Link State Routing

- Ex: IS-IS, OSPF
- Learn neighbors & their network addresses
 - (HELLO packet)
- Measure link state
 - (ECHO packet)
- Building link state packets
 - (router id, sequence, age, (neighbors, cost),)
- Distribute link state packets to all other routers
 - check and update the table
 - (source router, sequence, age, send flags, ACK flags)
- Compute new routes
 - run Dijkstra’s algorithm locally
Packet Flows - User/Control Plane

User

Kernel

IP

MAC driver

Data Plane

Control Plane

Notation

Copyright © 林盈達@交大資訊科學系
Control-Plane : Shortest Path(1/2)

- RIP in routed - Bellman-Ford

<table>
<thead>
<tr>
<th>RIP Routing Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIP Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 7 8 15 16 31</td>
</tr>
<tr>
<td>Command</td>
</tr>
<tr>
<td>Address Family</td>
</tr>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>*Subnet Mask</td>
</tr>
<tr>
<td>*Next Hop IP Address</td>
</tr>
<tr>
<td>Metric</td>
</tr>
<tr>
<td>Repeat of previous 20 bytes</td>
</tr>
</tbody>
</table>

* Only in RIP-2
Control-Plane: Shortest Path (2/2)

- OSPF in gated - Dijkstra (Dynamic Programming)

OSPF Routing Table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
<th>Distance metric</th>
</tr>
</thead>
</table>

OSPF Header

<table>
<thead>
<tr>
<th>0</th>
<th>7</th>
<th>8</th>
<th>15</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Type</td>
<td>Packet Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router ID</td>
<td>Area ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checksum</td>
<td>Authentication Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 林盈達@交大資訊科學系
User-Plane Processing (1/2) - Linux Router

- Receive a packet
 - dest. IP addr. = this port IP addr.?
 - Yes: Control-plane
 - No: User-plane

 IP Protocol Field
 - ICMP, TCP, UDP

- TTL=0?
 - Yes: Send ICMP to packet source
 - No: Routing Table Lookup

- Packet Modification
- Forward the packet
User-Plane Processing (2/2) - Layer 3 switch

- Layer 2 switching (using MAC DA)
 - DA MAC learned?
 - Yes
 - MAC DA = this router port MAC address?
 - Yes
 - Send the packet to CPU
 - No
 - Dest. IP = this router port IP address?
 - Yes
 - Routing table lookup to find next hop IP address
 - ARP table lookup to find next hop MAC address
 - Send the packet to the next hop
 - No (flood)
 - No (ICMP)
 - No (TTL ≥ 1?)
 - Yes
 - MAC DA / SA replacement
 - TTL decrement, recalculate IP checksum & CRC
 - No
 - Send the packet to CPU

Copyright © 林盈達@交大資訊科學系
User-Plane : Table Lookup (1/2)

- Routing table in Linux kernel
 - organized as a hash table with linked lists
User-Plane : Table Lookup (2/2)

- Routing table in phase-2 router code
 - organized as hash table with trees

- Methodology
 - Hash to each tree by IP mask
 - Binary search with IP address
 - Not Found : Search another tree via forward pointer
User-Plane : Packet Modification

Packet modification summary

<table>
<thead>
<tr>
<th></th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>TTL</th>
<th>Checksum</th>
<th>CRC (Org. Vtag)</th>
<th>CRC(Vtag Changed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same subnet</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Recalculate</td>
</tr>
<tr>
<td>L3 unicast</td>
<td>Next hop</td>
<td>Router</td>
<td>•</td>
<td>•</td>
<td>Recalculate</td>
<td>Recalculate</td>
</tr>
<tr>
<td>L3 subnet directed BC</td>
<td>•</td>
<td>Router</td>
<td>Decrement</td>
<td>Recalculate</td>
<td>Recalculate</td>
<td>Recalculate</td>
</tr>
<tr>
<td>L3 multicast</td>
<td>•</td>
<td>Router</td>
<td>Decrement</td>
<td>Recalculate</td>
<td>Recalculate</td>
<td>Recalculate</td>
</tr>
</tbody>
</table>

These two may occur at the same time if subnet directed broadcast is supported.

These two may also occur at the same time in a multi-layer switch.
New Feature: QoS

- InterServ: RSVP

Signaling Protocol

Traffic Control
QoS Modules & Daemons

User Space
- routed
- update

Kernel Space
- Routing Table
- Protocol Driver
- Traffic Control Module
- Adapter Driver

rsvpd
- update

Control packet
Data packet

Copyright © 林盈達@交大資訊科學系

20
Packet Flows - User/Control Plane

User
- OSPF
- RIP
- RSVP
- BGP

Kernel
- ICMP
- UDP
- TCP

IP
- Data Plane
- Control Plane
- Notation

MAC driver

Copyright © 林盈達@交大資訊科學系
New Control-Plane Module

- **rsvpd**
 - by Information Sciences Institute (ISI)
 - Use CBQ as traffic scheduler
 - link aggregation for CL service
 - no traffic control modules
 - patched by Alexey Kuznetsov
 - traffic control function:
 - TC_AddFlowspec()
 - TC_ModFlowspec()
 - TC_DelFlowspec()
 - TC_AddFilter()
 - TC_DelFilter()
 - TC_Advertise()
 - Needs admission control to admit
New User-Plane Modules

- **Scheduler:**
 - CBQ (Class-based Queuing)
 - CSZ (Clark-Shanker-Zhang)
 - PRIO (n-band priority queue)

- **Rate estimator**
 - a base for statistical multiplexing for CL service

- **Classifier:**
 - Routing table based
 - Firewall based
 - U32
Known Bugs

- **rsvpd compilation**
 - don’t use IPv6

- **kernel modules**
 - don’t support auto-load yet
 - sch_cbq.o
 - cls_u32.o