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ABSTRACT 
While string matching plays an important role in deep 
packet inspection applications, its software algorithms are 
insufficient to meet the demands of high-speed 
performance. Accordingly, we were motivated to propose 
fast and deterministic performance root-hashing automaton 
matching (RHAM) coprocessor for embedded network 
processor. Although automaton algorithms are robust with 
deterministic matching time, there is still plenty of room for 
improvement of their average-case performance. The 
proposed RHAM employs novel root-hashing technique to 
accelerate automaton matching. In our experiment, RHAM 
is implemented in a prevalent automaton algorithm, Aho-
Corasick (AC) which is often used in many packet 
inspection applications. Compared to the original AC, 
RHAM only requires extra vector size in 48 Kbytes for 
root-hashing, and has about 900% and 420% 
outperformance for 20,000 URLs and 10,000 virus patterns 
respectively. Implementaion of RHAM FPGA can perform 
at the rate of 12.6 Gbps with the pattern amount in 34,215 
bytes. This is superior to all previous matching hardware in 
terms of throughput and pattern set. 

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.0 [Computer-Communication 
Networks]: General—Data communications; C.2.1 [Computer-
Communication Networks]: Network Architecture and Design—
Packet-switching networks; C.2.3 [Computer-Communication 
Networks]: Network Operations—Network management; I.5.4 
[Computing Methodologies]: Pattern Recognition—Applications 

General Terms 
Algorithms, Performance, Design 

Keywords 
Coprocessor, String matching, Hashing, Finite automaton, Packet 
inspection. 

1. INTRODUCTION 
In recent years, deeper and more complicated content 
matching has been required for applications dealing with 
intrusion detection, keyword blocking, anti-virus and anti-
spam. In such applications, string matching usually 

occupies 30% to 70% of the systems’ workload [1, 2]. New 
content applications are increasingly built on home and 
office network gateways which often are implemented with 
a moderately performing embedded network processor. 
Therefore, as transmission speed increases, it is very 
important to design an appropriate matching coprocessor to 
offload the matching work from the network processors. 
 

TABLE 1. Comparison of the On-Line String Matching Algorithms 
Algorithm Dynamic 

Programming
Backward 
Filtering 

Automaton Bit Parallel 

Description Matrix 
operations to 
compute the 

similarity 
between text and 

pattern 

Discarding 
window of text 

that is not a 
substring of 
pattern in 
backward 
scanning 

Search 
through a 

Deterministic  
Finite 

Automaton 
(DFA) 

Simulate Non-
Deterministic 

Finite 
Automaton 
(NFA) by 
bitwise 

operations 
Average Time 

Complexity 
O(n) Sub-linear O(n) O(n) 

Worst Time 
Complexity 

O(n) O(nm) O(n) O(n) 

Text Length Fixed short  
length 

Variable long 
length 

Variable long 
length 

Variable long 
length 

Pattern Length Fixed short  
length 

Variable short 
length 

Variable long 
length 

Fixed short  
length 

Multiple Pattern No Yes Yes Yes 
Regular 

Expression 
No No Yes Yes 

Advantage for 
hardware 

Simple systolic 
array circuit 

Storage is 
normally smaller 
than Automaton 

Comparison is 
a lookup 

operations

Bitwise 
operation is fast

Disadvantage for 
hardware 

Not feasible to 
have a large 

systolic array

Long latency to 
compute 

discarding 
window 

Table size is 
larger than 
Bit-Parallel

Not feasible to 
have a long bit 

mask 

Typical Algorithm Edit Distance Boyer-Moore Aho-Corasick Shift-OR 

To understand the necessary requirements of string 
matching algorithms, we surveyed real patterns from open 
source software including Snort [3] for intrusion detection, 
ClamAV [4] for anti-virus, SpamAssassin [5] for anti-spam, 
and SquidGuard [6] and DansGuardian [7] for Web 
blocking. The requirements can be concluded to be those 
matching the variable-length, multiple patterns and on-line 
processing of all packet inspection systems. Complex 
patterns, such as those created by varying class, wildcard, 
regular expression and case-sensitivity may increase the 
expressive power of the patterns and has been used in some 
applications. These complex patterns can be converted to 
patterns composed of multiple simple patterns [8]; they are 
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optional for matching algorithms. 
In this survey, as in Table 1, on-line matching algorithms 

can be classified into four categories: dynamic 
programming, bit parallel, filtering, and automaton 
algorithms. The dynamic programming [9] and bit parallel 
[10] algorithms are inappropriate for variable-length and 
multiple simple patterns, and the filtering algorithms [11] 
have a poor worst-case time complexity O ( nm ), where n  
and m  are the length of text and patterns respectively. 
Only automaton based algorithms such as Aho-Corasick 
(AC) [12] that support variable-length, multiple simple 
patterns, and deterministic worst-case time complexity 
O( n ) are selected as a base to develop our new approaches. 

Although bitmap AC has good worst-case matching time 
complexity in O( n ), this is insufficient for high speed 
matching. In this paper, we present a root-hashing 
automaton matching (RHAM) that is built on an embedded 
system and applied to a network gateway to perform deep 
content filtering as shown in Fig. 1. This hashing 
acceleration is the fast matching approach to improve the 
average-case time of an automaton. The idea is to hash 
multiple bytes substring of text and to compare the result 
with the vector of the suffixes of the root state in the 
bitmap AC automaton. If a root state is visited, slow 
automaton matching is not required. 

.
.

.

.
..

. . .

. . .

. . .

. . .

If the root state 
is visited, 

RHAM hashes 
the multiple 
bytes text to 

avoid the slow 
AC matching

Text

 
Fig. 1. Packet inspection gateway with RHAM coprocessor. 
 
Since the root state usually has many next states and is 

often visited during the matching phase, root-hashing is an 
effective accelerator with low memory usage. For 
evaluating our approaches, the space and time complexities 
are formally analyzed with real patterns. Furthermore, our 
design implemented in Xilinx FPGA can achieve 12.6 
Gbps throughput with a pattern set of 34,215 bytes, which 
significantly outperforms previous matching hardware. 

 

The rest of this paper is organized as follows: Section 3 
presents the related AC, hashing matching and string 
matching hardware. Section 3 describes the architecture 
and algorithm of RHAM. The formal analysis, evaluation 
of real patterns and network traffic are demonstrated in 
Section 4, and result of FPGA implementation are shown in 
Section 5. Finally, conclusions are drawn in Section 5. 

2. BACKGROUND 
The most related works to our approaches are AC, bitmap 
AC, and hashing matching algorithms, so a brief tutorial 
for the first two is presented in subsection 2.1, and that for 
the last one is given in subsection 2.2. Finally, the related 
string matching hardware is introduced in subsection 2.3. 
2.1 AC Related Algorithms 
Before performing AC matching, there is a need to 
construct a state machine from the patterns. Adapting from 
the example in [6], Fig. 2 (a), (b) and (c) are AC’s three 
major functions for patterns “TEST”, “THE”, “HE”. 

The first Goto Function shown in Fig. 2 (a) starts with an 
empty root node and adds states to the state machine for 
each pattern. That Goto function is a tree structure that 
shares common prefixes with all of the patterns. During the 
matching the Goto function is traversed from one state to 
the other with the text byte by byte. 

 

 Current State 

Next State 

. . . ya b z 

. . .  Next State 

(d)

i    1  2  3  4  5  6  7  8
f(i)  0  0  0  0  3  4  0  1

(c)

0 1 2 7 8

5 6

3 4

T E S T

H
E

H

E

(a)

i       output(i)
8       {TEST}
6       {THE, HE}
4       {HE}

(b)

 

Fig. 2. (a) Goto function. (b) Output function. (c) Failure function. (d) AC 
table implementation. 

The second is the Output function shown in Fig. 2 (b) 
needs a table to store the matched pattern with their 
corresponding state in the Goto tree. Output function 
records a matched state for a matched pattern if that current 
state is matched during the visiting. The third is the Failure 
function as shown in Fig. 2 (c). During the construction, 
failure states are added from the state, where their longest 
prefix also leads to a valid state in the Goto tree. During the 
matching Failure function is used when a match fails after a 
partial match. After the construction of a machine, the AC 
state machine is traversed from the current node to the next 
node according to the input byte. 

Aho-Corasick is a typical deterministic finite automaton 
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(DFA) based algorithm used for string matching. However, 
there are several variations. Bitmap AC [13] uses bitmap 
compression to reduce the storage of AC states. AC_BM [1, 
14, 15] is a combination of the AC and Boyer-Moore (BM) 
algorithms, and aims to improve the conventional AC from 
O( n ) to sub-linear time complexity. AC_BDM [16] 
combines AC with backward DAWG matching (BDM) to 
improve the average-case time complexity of the 
conventional AC. Bit-split AC [17] splits the width of the 
input text into a smaller bit width to reduce the memory 
usage in selecting the next states. Since AC_BM has the 
worst-case time complexity O( nm ), AC_BDM requires 
overhead of switching between AC and BDM, and bit-split 
AC needs large match vector for each bit-split state, they 
are impractical for packet inspection hardware. Thus, a 
scalable bitmap AC with space efficiency is more suitable 
for our purpose. 

Bitmap AC is a compromise between table and link list 
approaches. It resolves the wasted memory of the AC table 
that uses 256 next pointers for each state. Bitmap AC 
maintains a 256-bit bitmap for each state to indicate 
whether a valid next state with a given character is valid or 
invalid, and it requires traversing along the failure pointer 
path. Fig. 3 shows the data structure of bitmap AC and how 
it locates the next state. 

Bitmap AC solves this problem for AC. However, in 
order to locate the next state in bitmap AC, it must count all 
1s in the 256-bit bitmap. This is known as a time-
consuming operation that is dominated by loading the state 
and performing the population count. 

 

… 256-bit bitmap 

Data structure for state i 

Matched Pointer State Info. 

Failure State Next State Pointer 

...... 

Sum all valid 1s 

Bit Offset 

Next State Table of State i

Next State Base Address 

 
Fig. 3. Data structure of bitmap AC for state i, using bitmap to locate the 
next state. 
 

2.2 Hashing Matching Related Algorithms 
Related works have mentioned the hashing technique in 
string matching, which is utilized in BFSM [18] and 
PHmem [19]. The basic idea of the hashing matching 
technique is to use hashing functions to reduce the possible 
number of matched patterns for the naive matching 
algorithm. The problems common to them are that they 
require non-deterministic verification time and that they do 
not support long and large patterns. 

Since BFSM was the first and famous approach to use 
hashing function in the string matching, we introduce 
BFSM as a representative for the hashing string matching 
works. In BFSM, the Bloom filter hashing is employed to 
perform the approximate matching and cooperates with the 
other exact matching algorithms for string matching. The 
Bloom filter is to use multiple hashing functions to 
improve the hashing performance. In the preprocessing 
phase of BFSM, each length j  of all patterns are hashed 
into the corresponding bit vectors 

jV , and each 
jV  is 

associated with k  hashing functions 
kjH ,
. For example, in 

Fig. 4 (a), the hashing functions 
1,1H , 

2,1H … 
kH ,1
 are used 

for length one of all patterns. Fig. 4 (b) shows its searching 
phase where the substring of each length in the compared 
text is hashed with k hashing functions and compared with 
the corresponding bit vector to determine whether the text 
is possibly matched or not with the AND function. 

……

All patterns

1 …001 11 …001 1 0 …111 00 …111 01 …010 11 …010 1

H1,1 H1,2
…

…

Hj,1 Hj,2
…H2,1 H2.2

…

Bit Vectors

Preprocessing
phase

Searching
phase

……Text

Bit Vectors… …

Possibly Matched?

(a)

(b)

……

.

.

.

j

j

V1 V2 Vj

H1,k H2,k Hj,k

…1 …001 11 …001 1 0 …111 00 …111 01 …010 11 …010 1

H1,1 H1,2

…

Hj,1 Hj,2
…H2,1 H2.2

…H1,k H2,k Hj,k

 
Fig. 4. (a) Bloom filter for string matching, (b) Each pattern is hashed into 
bit vectors in the preprocessing phrase, (c) Text is hashed and compared 
with the bit vectors in the searching phrase. 

 
The basic logic behind philosophy of BFSM is that it 

uses multiple hashing functions to reduce the probability of 
false positive (hit), i.e., false in the positive match, but the 
AND function reports a positive value. When BFSM 
chooses k  independent hashing functions to hash N  
patterns into a vector with size M , the probability of false 
positive 

fpP  is obtained as 
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kNk
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P ⎟

⎟
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⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=

111
,  (1) 

BFSM modeling equation (1) is consistent only when a 
given ratio of 

N
M  is very high. That indicates that 

fpP  is 

only correct for low collision in the bit vector. For these 
reasons, we do not consider using Bloom filter in our pre-
hashing approach. 

In addition, BFSM requires multiple hashing functions 
that require multiple bank memory accesses for each bit 
vector table. Therefore, BFSM makes implementing the bit 
vectors impractical by using internal either the register or 
SRAM. For these reasons, we do not consider using Bloom 
filter (multiple hashing functions) in our RHAM design. 
2.3 String Matching Hardware 
In addition, among the existing string matching hardware, 
the most prevalent hardware is finite automaton (FA) based 
hardware. This is the case because of they support 
deterministic matching time and large patterns. FA based 
hardware can be divided into deterministic FA (DFA) and 
non-deterministic FA (NFA) based hardware. For DFA 
based hardware, there are three common designs in 
recently developed string matching hardware including 
Aho-Corasick (AC) based hardware [17, 20], Regular 
Expression (RE) based hardware [21, 22] and Knuth-
Morris-Pratt (KMP) [23, 24, 25] based hardware. To save a 
greater number of states, KMP and AC are simplified from 
RE DFA by disabling their regular expression patterns. 
Each AC DFA supports multiple simple patterns, and each 
KMP DFA only supports a single simple pattern. 

 As for the NFA based hardware, there are two 
variations: comparator NFA [26, 27] which uses the 
distributed comparators, and decoder NFA [28] which uses 
the character decoder (shared decoder) to build its NFA 
circuits. The other existing non-DFA based hardware are 
parallel comparator [29, 30, 31], hashing matching [18, 19], 
systolic array [32] and parallel-and-pipeline [33]. 

3. RHAM DESIGN 
In subsection 3.1, we introduce the algorithm of RHAM to 
obtain its overall operational concept. In subsection 3.2, the 
parallel architecture of RHAM is proposed for the study of 
its feasibility. 

3.1 Algorithm 
The proposed RHAM incorporates root-hashing matching 
to avoid slow AC matching. Because root state is 
frequently visited in the AC matching and usually has the 
large number of next states, a root-hashing technique is 
applied to advance multiple bytes in one single matching. 

)(PingPreprocess  { 
)Build_AC(PS ←  

k)hash(SBuild_RootRV ,0←  
}. 

),( STSearching { 
0SSc ←  

For Ti ≤≤1  { 
      )(_ cSCheckMatched  
      If 0SSc =  { 
          )]..([ lkiiTw ++←  
          ),(_ RVwRoothashLengthSkip ←  

          If 0_ ≠LengthSkip  { 

              0SSc ←                LengthSkipii _+←  
          } 
         Else { 
              ])[,(_ 0 iTSACMatchSc ←  
              1+← ii  
         } 
      Else { 
            ])[,(_ iTSACMatchS cc ←  
            1+← ii  
      } 
} 
}                                   

),(_ 0 kSRoothashBuildRV ←  { 
For ki ≤≤1  { 
       }0{←iRV  

      For ij α≤≤1  { 
),(, jiPrefixesji ←α  

             1)]([ , ←jiii HRV α  

      } 
} 
Return RV  
}. 

)_ RV,Roothash(w LengthSkip ← { 
0_ ←LengthSkip  

For lki −≤≤1  { 
       ( )]]..1[[ iwHRVHit iii ←

 

       If 1≠iHit  { 
           iLengthSkp ←_  
       } 
       Else 
       { 
           Return LengthSkip _  
        } 
} 
Return LengthSkip _  
}. 

(a) (b) 

Fig. 5. Sequential algorithms, (a) Preprocessing and Matching functions of 
RHAM algorithm, (b) ()_ RoothashBuild  and )Roothash(  Functions of 
root-hashing. 

 
As the sequential description with C-Like pseudo-code 

in Fig. 5, the matching algorithm requires both a 
preprocessing and a searching phase. Fig. 5 (a), 

()ingPreprocess  first translates all patterns P  into the states 
S  of the AC tree using the conventional AC function 
Build_AC() . After S  is obtained, ()ingPreprocess  then builds 
the root vectors RV  by the function 

),( 0 kShashBuild_Root ,where 
0S  is the root state of AC tree, 

In the searching phase, ),( STSearching  is described at the 
bottom of Fig. 5 (a). Initially, the current state 

cS  is set to 
the root state 

0S , then the text T  is processed in each 
matching loop. In the loop, )(_ cSCheckMatched  is first 
performed to check the matching result. Also, LengthSkip _  
is initially set to zero and the substring of text )]..([ lkiiT ++  
is set to the matching window w , where i  is the current 
matching position of the text. If 

cS  is equal to 
0S , then 

),( RVwRoothash  is performed to test whether w  has the non-
hits in the root-hashing vectors RV  or not. After the root-
hashing matching, ),( RVwRoothash  reports the skip length 

LengthSkip _ . Which text can be skipped more than one 
character is shown by LengthSkipii _+← . If 

cS  is not 
0S , 

()Searching  continues the AC matching using 

])[,(_ iTSACMatch c
 to match a single character. 

In the preprocessing, ),(_ 0 kSRoothashBuild  is used to 
build multiple root vectors, which is described at the top of 
Fig. 5 (b). This function inputs the prefixes 

iα  of the 
patterns within the length k  by using the ),(

0
kSprefixes . In 

ACM SIGARCH Computer Architecture News 39 Vol. 35, No. 3, June 2007



the processing of root-hashing, all prefixes 
iα  are hashed 

into the root vectors RV . The i th root-hashing function 
iH  

hashes the corresponding prefix 
ji ,α  into the i th vectors. 

During searching, when the current state is the root state, 
the matching algorithm performs ), cVRoothash(w  to avoid 
AC matching as in the bottom of Fig. 5 (b). The main idea 
of ), cVRoothash(w  is to test non-hit status in multiple root 
vectors, then to set the maximum non-hit vector number to 

LengthSkip _ . During the non-hit testing operation, 

( )]]..1[[ iwHRVHit iii ←  performs a bit level index in 
iRV  with 

( )]..1[ iwHi
 in order to return the hit status 

iHit  for the length 

i . After testing each 
iRV , if any 

iHit  has a possible hit 
status ( 1=iHit ), the root-hashing matching will stop the 
operation and return the LengthSkip _ , in which the longest 
consecutive non-hit length is selected to be skipped. 
3.2 Architecture 
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Fig. 6. The parallel architecture of RHAM coprocessor, including the logic 
circuits and blocks of root-hashing and AC matching. 

 
A preferred parallel architecture is suggested in Fig. 6, 
where a RHAM coprocessor performs root-hashing and AC 
matching units in parallel. This architecture can 
concurrently process a one-byte text for AC matching, and 
a multiple of a lk −  bytes text for root-hashing in a single 
matching iteration, where l  is the length of the substring of 
each hashing vector.  In this example, 2=l , and k  is the 
maximum number of hashing vectors. 

For the storage, in addition to the original state and next 
state address tables, RHAM requires the bit vector tables. 
For the flexibility of the storage, these tables can be stored 
in either internal or external memories. 

4. EVALUATION 
This section intends to evaluate the space requirement and 

performance of our RHAM. In the first subsection, we 
formally derive the time and space requirement of RHAM. 
To demonstrate more realistic results, the evaluation of real 
patterns and network traffic are investigated in the last 
subsection. 
4.1 A. Formal Analysis of Space Requirement 
and Performance 
The space requirement can be determined by summing the 
original AC space 

ACSize  and the root-hashing space 
rootSize . 

The original space 
ACSize  is equal to the number of states S  

multiplied by the state size. The proposed root-hashing 
only requires extra root vector space, which is a summation 
of all root vectors and defined as: ∑

=

=
k

i
iroothash RVSize

1

, where 

iRV  stands for the bit vector size of the length i  vector. 

The probability of a non-hit is defined in [18]. 
iRV  can be 

determined from the corresponding 
nonhitp  and the number 

of prefixes 
iα  as: 

( ) inonhit

i

p
RV

α
1

1

1

−
=

. The root-hashing and 

AC matching can be performed in parallel; the computation 
of the next states in the multiple units is independent. Thus 
the average time is 

avg

ACrootrootroot
timeavg k

TPTP
T

×−+×
=

)1(
_

; where 

timeavgT _
 is the average time to process a byte, 

rootT  is the 

root-hashing time, 
rootP  is the probability of non-hit in while 

using the root-hashing, 
ACT  is the AC matching time and 

avgk  is the average skip length of each text processing 

operation. Since AC matching is the critical path, the 
worst-case time of RHAM is equal to 

ACT . 

In the theory, the probability 
rootP  can be determined 

from ∑
=

×=
k

i
iroothashroot PPP

1

, where 
rootP  is computed as 

roothashP  

multiplied by a summation series of non-hit probabilities 

inonhitP _
 from the first to k  th vectors. 

roothashP  is the probability 

of performing root-hashing, and 
iP  is the consecutive non-

hit probabilities from the first to i  th vector. 
iP  can be 

obtained from 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

>−×

=

∏

∏

=

+
=

i

j
nonhit

i

i

j
nonhit

i

ki for P

ki for PP
P

1

1
1

,

),1( , (2) 

where 
inonhitP _
 is the probabilities of i th vector. In this 

equation ∏
=

i

j
nonhitP

1

 is used to compute the consecutive non-

hit probability. For ki > , 
iP  must exclude the non-hit 
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probability of a longer skip length; thus )1( 1+− iP  is 
multiplied. The computation of 

avgk  is similar to 
rootP , 

except each 
iP  is required to be multiplied by a depth i  

value and has no 
roothashP . 

avgk  is defined as )(
1
∑
=

×=
k

i
iavg iPk . 

4.2 Real Patterns and Network Traffic 
Simulations 
In these simulations, we choose the URL blacklists and 
virus signatures from [6] and [4] respectively. Because the 
URL blacklists and virus signatures contain many patterns 
and also long patterns, these patterns are sufficient to 
evaluate the performance of the proposed RHAM 
algorithm. The analyzed URL blacklists contain 20,000 
patterns and generate 194,096 states. The virus signatures 
used contain 10,000 patterns and generate 402,173 states, 
respectively. In addition to the patterns, Google website 
data consisting of over 100 MB and Ethereal capture 
examples (http://www.ethereal.com) are selected as the text 
used to evaluate the URL patterns and ClamAV patterns 
respectively. 
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Fig. 7. Visited count for root state simulations (a) URL pattern and Google 
website text, (b) ClamAV patterns and Etheral capture text. 
 

Demonstrating the high frequency of visiting in the root 
state can confirm the usefulness of the root-hashing 
technique, thus we first simulated the number of real traffic 
visited for the root state. Fig. 7 demonstrates that the 
Google and Ethereal data have about 60% and 50% root 
visited rates respectively. This result agreed that root-
hashing has high usage in the automaton matching. 

For evaluating the effect of different bit vector sizes, we 
used a 16 bytes text window and compared it with different 
bit vector sizes ranging from 4,096 to 65,536 bits. Fig. 8 (a) 
shows that a vector size of 32,768 bits may be a suitable 
choice to achieve high performance with only moderate 
memory consumption. The proposed RHAM can use either 
single or multiple vectors, multiple vectors can increase 
performance while using more memory resources. Fig. 8 (b) 
demonstrates the average skip length for the different 
window sizes with a 32,768 bit vector size; the result 
shows that text windows sized 12 to 8 may be better 

configured for low cost and high performance. As per the 
above results, RHAM is about 900% and 420% faster than 
bitmap AC for URL and virus patterns respectively. With 
the above proper configuration,  the vector size is 32,768 
bits and the text window size ranging from 12 to 8. The 
extra memory space for the root-hashing vector only 
requires 48 Kbyte, which is acceptable in light of the low 
cost implementation. 

0

1

2

3

4

5

6

4096 8192 16384 32768 65536

Vector Size (Bit)

A
ve

ra
ge

 S
ki

p 
L

en
gt

h 
(B

yt
e)

URL

ClamAv

(a) (b)

0

2

4

6

8

10

4 5 6 7 8 9 10 11 12 13 14 15 16

Window Size (Byte)

S
ki

p 
L

en
g
th

 (
B

yt
e)

URL

ClamAv  
Fig. 8. (a) Skip lengths for 16 bytes windows with different vector sizes. 
(b) Skip lengths for multiple vectors of different window size. 
 

5. IMPLEMENTATION 
In this section, subsection 5.1 gives a description of 
hardware implementation for the RHAM hardware. 
Subsection 5.2 gives an exhausted comparison with 
previous hardware implementations. 

5.1 Hardware Implementation 

RHAM

 
Fig. 9. Development platform for the RHAM implementation. 
 

Xilinx ML310 is a FPGA based platform for RHAM 
implementation as shown in Fig. 9. This platform has 2448 
Kbits internal block RAM, 30816 LUTs and two hardwired 
IBM PPC405 processors. For the peripheral, ML310 has 
one Ethernet port, one PCI slot for additional NIC 
extension, one 256 MB DDR RAM module and one CF 
card to store the image of the file system. During the 
operation, the packets are inputted from the on board 
Ethernet port, and processed by the PPC 405 CPU. Of 
course, if the RHAM is implemented, the deep packet 
inspection of the packets is offloaded to RHAM engine. 
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For the development tools, the Xilinx EDK and 
Synplicity SynplifyPro are used in the system 
implementation. The EDK can generate the bit streams 
from the hardware/software co-design files of SRAM 
implementation. For the software design, the files include 
the mapping address define files and the drivers of all 
peripherals needed for building the complete RTOS image. 
For the hardware design, the Verilog is used to design 
string matching hardware, then ModelSim and Debussy are 
the simulator and debugger tools, respectively, to verify the 
RHAM design. 

The proposed architecture is a parallel design where all 
modules are working at the same time. The block diagram 
of the hardware implementation has the following major 
modules.  
• FSM Unit controls the working flow of the whole 

hardware system. 
• Root-Hashing Unit is used for fast matching at the root 

state. It tests the bit vector for multiple input bytes by 
hashing function and sending the hashing result to FSM. 

• Bitmap AC Unit counts all 1s for locating the next state. 
• SM Controller Unit provides the control registers 

including the length of text buffer and enable the signal 
for the software to program. 

5.2 Comparison 
 

TABLE 2. The Comparisons of String Matching Hardware 

Matching Hardware Device 

Pattern

Size 

(Byte)

Speed

(Gbps)
 1

Virtex2P 12.6 

Virtex2 1000 6.8 

Virtex2 6000 9.3 

Spartan3 400 7.1 

VirtexE 2000 2.4 

RHAM2 

Virtex  8002 

34,215

2.0 

Bit-split AC [17] Xilinx FPGA 2,048 10.0 

Parallel Bloom Filter [18] VirtexE 2000 9,800 0.6 

Perfect Hashing [19] Virtex2 1000 20,911 2.9 

DFA+counter [21] VirtextE 1000 11 3.8 

Parallel Regular DFA [22] VirtexE  2000E 420 1.2 

KMP Comparators [23] Virtex2P 32 2.4 

Comparator NFA [26]  Virtex 100 29 0.5 

Meta Comparator NFA [27] VirtexE 2000 8,003 0.4 

Approximate Decoder NFA [28] Virtex2 6000 17,537 2.0 

Offset Index Comparators [29] Spartan3 400 20,800 1.9 

Pre-decoded Comparators [30] Virtex2 6000 18,032 9.7 

CAM Comparators [31] VirtexE 1000 640 2.2 

1. Speed (Throughput) is of an average performance. Except RHAM and 

BFSM, other hardware have the same worst and average cases. 

2. Since RHAM cannot fit into Virtex 100, the similarly performing the 

Virtex 800 device is used. The Virtex 800 and VirtexE series did not 

support block RAM. The bitmap table is placed in the external 

memories with the dedicated bus, which should be acceptable in the 

evaluation. 

In Table 2, we compare 12 major types hardware analyzed 
in related works. Since matching hardware are pursuing 
higher throughput and larger pattern sizes, they are the 
major factors in this comparison. In addition, many 
experiments [19, 21, 23, 29, 32] had used on-chip circuits 
or internal memories. Thus, we implemented the proposed 
RHAM using internal memories to reach a fair evaluation. 
In the RHAM implementation with a Xilinx Virtex2P 
device, FPGA run at 315 MHz with a performance of 12.6 
Gbps. For storage, RHAM implementation can handle 
patterns of 34,215 bytes, which is composed of 1,980 
patterns; each with an average length of 14.4 bytes. 
Conclusively, our RHAM is superior to all the previous 
string matching hardware in terms of both space 
requirements and performance. 

Nevertheless, even more than 34,215 bytes can be 
achieved with the external memory version; RHAM can be 
implemented with external multiple bank memory. 
Although external memory produces overhead for memory 
access, the ASIC hardware often runs at a much higher 
speed than FPGA devices. 

6. Conclusion 
The proposed RHAM is a novel design with high 
performance, a scalable pattern set and a deterministic 
worst-case time, which can quickly verify multiple bytes 
text to avoid slow AC matching. Since the root state is a 
highly visited state during the matching, root-hashing is an 
effective approach to accelerate the automaton. Substantial 
evaluation determined that the proposed RHAM only 
requires extra vector size when used in 48 Kbytes, and can 
achieve around 900% and 420% speedup from the original 
AC for 20,000 URLs and 10,000 virus patterns respectively. 
When implemented with a Xilinx Virtex2P device, the 
result demonstrates that our RHAM surpasses all other 
existing hardware in terms of pattern size and throughput. 
Our RHAM supports the largest pattern size of 34,215 
bytes and runs at the highest throughput of 12.6 Gbps. 

There are two possible future directions for this work. 
First, in the broadening RHAM’s applications wherein our 
pre-hashing and root-indexing techniques can be applied to 
the other automaton matching algorithms such as the 
regular expression automaton and the suffix automaton. 
Second, our RHAM for the packet inspection service can 
be integrated into a network gateway for field trial 
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evaluation. 
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