
Deterministic High-Speed Root-Hashing Automaton
Matching Coprocessor for Embedded Network Processor

Kuo-Kun Tseng, Ying-Dar Lin and Tsern-Huei Lee Yuan-Cheng Lai
National Chiao Tung University, Taiwan National Taiwan University

 {kktseng@cis, ydlin@cis and thlee@atm.cm} of Science and Technology, Taiwan
.nctu.edu.tw laiyc@cs.ntust.edu.tw

ABSTRACT
While string matching plays an important role in deep
packet inspection applications, its software algorithms are
insufficient to meet the demands of high-speed
performance. Accordingly, we were motivated to propose
fast and deterministic performance root-hashing automaton
matching (RHAM) coprocessor for embedded network
processor. Although automaton algorithms are robust with
deterministic matching time, there is still plenty of room for
improvement of their average-case performance. The
proposed RHAM employs novel root-hashing technique to
accelerate automaton matching. In our experiment, RHAM
is implemented in a prevalent automaton algorithm, Aho-
Corasick (AC) which is often used in many packet
inspection applications. Compared to the original AC,
RHAM only requires extra vector size in 48 Kbytes for
root-hashing, and has about 900% and 420%
outperformance for 20,000 URLs and 10,000 virus patterns
respectively. Implementaion of RHAM FPGA can perform
at the rate of 12.6 Gbps with the pattern amount in 34,215
bytes. This is superior to all previous matching hardware in
terms of throughput and pattern set.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.0 [Computer-Communication
Networks]: General—Data communications; C.2.1 [Computer-
Communication Networks]: Network Architecture and Design—
Packet-switching networks; C.2.3 [Computer-Communication
Networks]: Network Operations—Network management; I.5.4
[Computing Methodologies]: Pattern Recognition—Applications

General Terms
Algorithms, Performance, Design

Keywords
Coprocessor, String matching, Hashing, Finite automaton, Packet
inspection.

1. INTRODUCTION
In recent years, deeper and more complicated content
matching has been required for applications dealing with
intrusion detection, keyword blocking, anti-virus and anti-
spam. In such applications, string matching usually

occupies 30% to 70% of the systems’ workload [1, 2]. New
content applications are increasingly built on home and
office network gateways which often are implemented with
a moderately performing embedded network processor.
Therefore, as transmission speed increases, it is very
important to design an appropriate matching coprocessor to
offload the matching work from the network processors.

TABLE 1. Comparison of the On-Line String Matching Algorithms
Algorithm Dynamic

Programming
Backward
Filtering

Automaton Bit Parallel

Description Matrix
operations to
compute the

similarity
between text and

pattern

Discarding
window of text

that is not a
substring of
pattern in
backward
scanning

Search
through a

Deterministic
Finite

Automaton
(DFA)

Simulate Non-
Deterministic

Finite
Automaton
(NFA) by
bitwise

operations
Average Time

Complexity
O(n) Sub-linear O(n) O(n)

Worst Time
Complexity

O(n) O(nm) O(n) O(n)

Text Length Fixed short
length

Variable long
length

Variable long
length

Variable long
length

Pattern Length Fixed short
length

Variable short
length

Variable long
length

Fixed short
length

Multiple Pattern No Yes Yes Yes
Regular

Expression
No No Yes Yes

Advantage for
hardware

Simple systolic
array circuit

Storage is
normally smaller
than Automaton

Comparison is
a lookup

operations

Bitwise
operation is fast

Disadvantage for
hardware

Not feasible to
have a large

systolic array

Long latency to
compute

discarding
window

Table size is
larger than
Bit-Parallel

Not feasible to
have a long bit

mask

Typical Algorithm Edit Distance Boyer-Moore Aho-Corasick Shift-OR

To understand the necessary requirements of string
matching algorithms, we surveyed real patterns from open
source software including Snort [3] for intrusion detection,
ClamAV [4] for anti-virus, SpamAssassin [5] for anti-spam,
and SquidGuard [6] and DansGuardian [7] for Web
blocking. The requirements can be concluded to be those
matching the variable-length, multiple patterns and on-line
processing of all packet inspection systems. Complex
patterns, such as those created by varying class, wildcard,
regular expression and case-sensitivity may increase the
expressive power of the patterns and has been used in some
applications. These complex patterns can be converted to
patterns composed of multiple simple patterns [8]; they are

ACM SIGARCH Computer Architecture News 36 Vol. 35, No. 3, June 2007

optional for matching algorithms.
In this survey, as in Table 1, on-line matching algorithms

can be classified into four categories: dynamic
programming, bit parallel, filtering, and automaton
algorithms. The dynamic programming [9] and bit parallel
[10] algorithms are inappropriate for variable-length and
multiple simple patterns, and the filtering algorithms [11]
have a poor worst-case time complexity O (nm), where n
and m are the length of text and patterns respectively.
Only automaton based algorithms such as Aho-Corasick
(AC) [12] that support variable-length, multiple simple
patterns, and deterministic worst-case time complexity
O(n) are selected as a base to develop our new approaches.

Although bitmap AC has good worst-case matching time
complexity in O(n), this is insufficient for high speed
matching. In this paper, we present a root-hashing
automaton matching (RHAM) that is built on an embedded
system and applied to a network gateway to perform deep
content filtering as shown in Fig. 1. This hashing
acceleration is the fast matching approach to improve the
average-case time of an automaton. The idea is to hash
multiple bytes substring of text and to compare the result
with the vector of the suffixes of the root state in the
bitmap AC automaton. If a root state is visited, slow
automaton matching is not required.

.
.

.

.
..

. . .

. . .

. . .

. . .

If the root state
is visited,

RHAM hashes
the multiple
bytes text to

avoid the slow
AC matching

Text

Fig. 1. Packet inspection gateway with RHAM coprocessor.

Since the root state usually has many next states and is

often visited during the matching phase, root-hashing is an
effective accelerator with low memory usage. For
evaluating our approaches, the space and time complexities
are formally analyzed with real patterns. Furthermore, our
design implemented in Xilinx FPGA can achieve 12.6
Gbps throughput with a pattern set of 34,215 bytes, which
significantly outperforms previous matching hardware.

The rest of this paper is organized as follows: Section 3
presents the related AC, hashing matching and string
matching hardware. Section 3 describes the architecture
and algorithm of RHAM. The formal analysis, evaluation
of real patterns and network traffic are demonstrated in
Section 4, and result of FPGA implementation are shown in
Section 5. Finally, conclusions are drawn in Section 5.

2. BACKGROUND
The most related works to our approaches are AC, bitmap
AC, and hashing matching algorithms, so a brief tutorial
for the first two is presented in subsection 2.1, and that for
the last one is given in subsection 2.2. Finally, the related
string matching hardware is introduced in subsection 2.3.
2.1 AC Related Algorithms
Before performing AC matching, there is a need to
construct a state machine from the patterns. Adapting from
the example in [6], Fig. 2 (a), (b) and (c) are AC’s three
major functions for patterns “TEST”, “THE”, “HE”.

The first Goto Function shown in Fig. 2 (a) starts with an
empty root node and adds states to the state machine for
each pattern. That Goto function is a tree structure that
shares common prefixes with all of the patterns. During the
matching the Goto function is traversed from one state to
the other with the text byte by byte.

 Current State

Next State

. . . ya b z

. . . Next State

(d)

i 1 2 3 4 5 6 7 8
f(i) 0 0 0 0 3 4 0 1

(c)

0 1 2 7 8

5 6

3 4

T E S T

H
E

H

E

(a)

i output(i)
8 {TEST}
6 {THE, HE}
4 {HE}

(b)

Fig. 2. (a) Goto function. (b) Output function. (c) Failure function. (d) AC
table implementation.

The second is the Output function shown in Fig. 2 (b)
needs a table to store the matched pattern with their
corresponding state in the Goto tree. Output function
records a matched state for a matched pattern if that current
state is matched during the visiting. The third is the Failure
function as shown in Fig. 2 (c). During the construction,
failure states are added from the state, where their longest
prefix also leads to a valid state in the Goto tree. During the
matching Failure function is used when a match fails after a
partial match. After the construction of a machine, the AC
state machine is traversed from the current node to the next
node according to the input byte.

Aho-Corasick is a typical deterministic finite automaton

ACM SIGARCH Computer Architecture News 37 Vol. 35, No. 3, June 2007

(DFA) based algorithm used for string matching. However,
there are several variations. Bitmap AC [13] uses bitmap
compression to reduce the storage of AC states. AC_BM [1,
14, 15] is a combination of the AC and Boyer-Moore (BM)
algorithms, and aims to improve the conventional AC from
O(n) to sub-linear time complexity. AC_BDM [16]
combines AC with backward DAWG matching (BDM) to
improve the average-case time complexity of the
conventional AC. Bit-split AC [17] splits the width of the
input text into a smaller bit width to reduce the memory
usage in selecting the next states. Since AC_BM has the
worst-case time complexity O(nm), AC_BDM requires
overhead of switching between AC and BDM, and bit-split
AC needs large match vector for each bit-split state, they
are impractical for packet inspection hardware. Thus, a
scalable bitmap AC with space efficiency is more suitable
for our purpose.

Bitmap AC is a compromise between table and link list
approaches. It resolves the wasted memory of the AC table
that uses 256 next pointers for each state. Bitmap AC
maintains a 256-bit bitmap for each state to indicate
whether a valid next state with a given character is valid or
invalid, and it requires traversing along the failure pointer
path. Fig. 3 shows the data structure of bitmap AC and how
it locates the next state.

Bitmap AC solves this problem for AC. However, in
order to locate the next state in bitmap AC, it must count all
1s in the 256-bit bitmap. This is known as a time-
consuming operation that is dominated by loading the state
and performing the population count.

… 256-bit bitmap

Data structure for state i

Matched Pointer State Info.

Failure State Next State Pointer

......

Sum all valid 1s

Bit Offset

Next State Table of State i

Next State Base Address

Fig. 3. Data structure of bitmap AC for state i, using bitmap to locate the
next state.

2.2 Hashing Matching Related Algorithms
Related works have mentioned the hashing technique in
string matching, which is utilized in BFSM [18] and
PHmem [19]. The basic idea of the hashing matching
technique is to use hashing functions to reduce the possible
number of matched patterns for the naive matching
algorithm. The problems common to them are that they
require non-deterministic verification time and that they do
not support long and large patterns.

Since BFSM was the first and famous approach to use
hashing function in the string matching, we introduce
BFSM as a representative for the hashing string matching
works. In BFSM, the Bloom filter hashing is employed to
perform the approximate matching and cooperates with the
other exact matching algorithms for string matching. The
Bloom filter is to use multiple hashing functions to
improve the hashing performance. In the preprocessing
phase of BFSM, each length j of all patterns are hashed
into the corresponding bit vectors

jV , and each
jV is

associated with k hashing functions
kjH ,
. For example, in

Fig. 4 (a), the hashing functions
1,1H ,

2,1H …
kH ,1
 are used

for length one of all patterns. Fig. 4 (b) shows its searching
phase where the substring of each length in the compared
text is hashed with k hashing functions and compared with
the corresponding bit vector to determine whether the text
is possibly matched or not with the AND function.

……

All patterns

1 …001 11 …001 1 0 …111 00 …111 01 …010 11 …010 1

H1,1 H1,2
…

…

Hj,1 Hj,2
…H2,1 H2.2

…

Bit Vectors

Preprocessing
phase

Searching
phase

……Text

Bit Vectors… …

Possibly Matched?

(a)

(b)

……

.

.

.

j

j

V1 V2 Vj

H1,k H2,k Hj,k

…1 …001 11 …001 1 0 …111 00 …111 01 …010 11 …010 1

H1,1 H1,2

…

Hj,1 Hj,2
…H2,1 H2.2

…H1,k H2,k Hj,k

Fig. 4. (a) Bloom filter for string matching, (b) Each pattern is hashed into
bit vectors in the preprocessing phrase, (c) Text is hashed and compared
with the bit vectors in the searching phrase.

The basic logic behind philosophy of BFSM is that it

uses multiple hashing functions to reduce the probability of
false positive (hit), i.e., false in the positive match, but the
AND function reports a positive value. When BFSM
chooses k independent hashing functions to hash N
patterns into a vector with size M , the probability of false
positive

fpP is obtained as

ACM SIGARCH Computer Architecture News 38 Vol. 35, No. 3, June 2007

kNk

fp M
P ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=

111
, (1)

BFSM modeling equation (1) is consistent only when a
given ratio of

N
M is very high. That indicates that

fpP is

only correct for low collision in the bit vector. For these
reasons, we do not consider using Bloom filter in our pre-
hashing approach.

In addition, BFSM requires multiple hashing functions
that require multiple bank memory accesses for each bit
vector table. Therefore, BFSM makes implementing the bit
vectors impractical by using internal either the register or
SRAM. For these reasons, we do not consider using Bloom
filter (multiple hashing functions) in our RHAM design.
2.3 String Matching Hardware
In addition, among the existing string matching hardware,
the most prevalent hardware is finite automaton (FA) based
hardware. This is the case because of they support
deterministic matching time and large patterns. FA based
hardware can be divided into deterministic FA (DFA) and
non-deterministic FA (NFA) based hardware. For DFA
based hardware, there are three common designs in
recently developed string matching hardware including
Aho-Corasick (AC) based hardware [17, 20], Regular
Expression (RE) based hardware [21, 22] and Knuth-
Morris-Pratt (KMP) [23, 24, 25] based hardware. To save a
greater number of states, KMP and AC are simplified from
RE DFA by disabling their regular expression patterns.
Each AC DFA supports multiple simple patterns, and each
KMP DFA only supports a single simple pattern.

 As for the NFA based hardware, there are two
variations: comparator NFA [26, 27] which uses the
distributed comparators, and decoder NFA [28] which uses
the character decoder (shared decoder) to build its NFA
circuits. The other existing non-DFA based hardware are
parallel comparator [29, 30, 31], hashing matching [18, 19],
systolic array [32] and parallel-and-pipeline [33].

3. RHAM DESIGN
In subsection 3.1, we introduce the algorithm of RHAM to
obtain its overall operational concept. In subsection 3.2, the
parallel architecture of RHAM is proposed for the study of
its feasibility.

3.1 Algorithm
The proposed RHAM incorporates root-hashing matching
to avoid slow AC matching. Because root state is
frequently visited in the AC matching and usually has the
large number of next states, a root-hashing technique is
applied to advance multiple bytes in one single matching.

)(PingPreprocess {
)Build_AC(PS ←

k)hash(SBuild_RootRV ,0←
}.

),(STSearching {
0SSc ←

For Ti ≤≤1 {
)(_ cSCheckMatched
 If 0SSc = {
)]..([lkiiTw ++←
),(_ RVwRoothashLengthSkip ←

 If 0_ ≠LengthSkip {

 0SSc ← LengthSkipii _+←
 }
 Else {
])[,(_ 0 iTSACMatchSc ←
 1+← ii
 }
 Else {
])[,(_ iTSACMatchS cc ←
 1+← ii
 }
}
}

),(_ 0 kSRoothashBuildRV ← {
For ki ≤≤1 {
 }0{←iRV

 For ij α≤≤1 {
),(, jiPrefixesji ←α

 1)]([, ←jiii HRV α

 }
}
Return RV
}.

)_ RV,Roothash(w LengthSkip ← {
0_ ←LengthSkip

For lki −≤≤1 {
 ()]]..1[[iwHRVHit iii ←

 If 1≠iHit {
 iLengthSkp ←_
 }
 Else
 {
 Return LengthSkip _
 }
}
Return LengthSkip _
}.

(a) (b)

Fig. 5. Sequential algorithms, (a) Preprocessing and Matching functions of
RHAM algorithm, (b) ()_ RoothashBuild and)Roothash(Functions of
root-hashing.

As the sequential description with C-Like pseudo-code

in Fig. 5, the matching algorithm requires both a
preprocessing and a searching phase. Fig. 5 (a),

()ingPreprocess first translates all patterns P into the states
S of the AC tree using the conventional AC function
Build_AC() . After S is obtained, ()ingPreprocess then builds
the root vectors RV by the function

),(0 kShashBuild_Root ,where
0S is the root state of AC tree,

In the searching phase,),(STSearching is described at the
bottom of Fig. 5 (a). Initially, the current state

cS is set to
the root state

0S , then the text T is processed in each
matching loop. In the loop,)(_ cSCheckMatched is first
performed to check the matching result. Also, LengthSkip _
is initially set to zero and the substring of text)]..([lkiiT ++
is set to the matching window w , where i is the current
matching position of the text. If

cS is equal to
0S , then

),(RVwRoothash is performed to test whether w has the non-
hits in the root-hashing vectors RV or not. After the root-
hashing matching,),(RVwRoothash reports the skip length

LengthSkip _ . Which text can be skipped more than one
character is shown by LengthSkipii _+← . If

cS is not
0S ,

()Searching continues the AC matching using

])[,(_ iTSACMatch c
 to match a single character.

In the preprocessing,),(_ 0 kSRoothashBuild is used to
build multiple root vectors, which is described at the top of
Fig. 5 (b). This function inputs the prefixes

iα of the
patterns within the length k by using the),(

0
kSprefixes . In

ACM SIGARCH Computer Architecture News 39 Vol. 35, No. 3, June 2007

the processing of root-hashing, all prefixes
iα are hashed

into the root vectors RV . The i th root-hashing function
iH

hashes the corresponding prefix
ji ,α into the i th vectors.

During searching, when the current state is the root state,
the matching algorithm performs), cVRoothash(w to avoid
AC matching as in the bottom of Fig. 5 (b). The main idea
of), cVRoothash(w is to test non-hit status in multiple root
vectors, then to set the maximum non-hit vector number to

LengthSkip _ . During the non-hit testing operation,

()]]..1[[iwHRVHit iii ← performs a bit level index in
iRV with

()]..1[iwHi
 in order to return the hit status

iHit for the length

i . After testing each
iRV , if any

iHit has a possible hit
status (1=iHit), the root-hashing matching will stop the
operation and return the LengthSkip _ , in which the longest
consecutive non-hit length is selected to be skipped.
3.2 Architecture

Bus

Text
Buffer

Processor

… …… …

Text

AC
control

.

.

.

.

.

.

RHAM
Matching
Coprocessor

……

Hk-lH1 H2
…

Root hashing
control

Main
control

.

.

.

Update text

Update
text
length

.

.

.

.

.

.
.

.

.

.
.

Enable
root hashing

Matched
control

.

.

.

.

.

.

Enable
Matched

Current
state

AC
next state

Enable AC

Text
control

Failure
table

Next table

Matched buffer

Skip length

Matched
Buffer

Pattern
Tables

Memory

……

……

l=2

Fig. 6. The parallel architecture of RHAM coprocessor, including the logic
circuits and blocks of root-hashing and AC matching.

A preferred parallel architecture is suggested in Fig. 6,
where a RHAM coprocessor performs root-hashing and AC
matching units in parallel. This architecture can
concurrently process a one-byte text for AC matching, and
a multiple of a lk − bytes text for root-hashing in a single
matching iteration, where l is the length of the substring of
each hashing vector. In this example, 2=l , and k is the
maximum number of hashing vectors.

For the storage, in addition to the original state and next
state address tables, RHAM requires the bit vector tables.
For the flexibility of the storage, these tables can be stored
in either internal or external memories.

4. EVALUATION
This section intends to evaluate the space requirement and

performance of our RHAM. In the first subsection, we
formally derive the time and space requirement of RHAM.
To demonstrate more realistic results, the evaluation of real
patterns and network traffic are investigated in the last
subsection.
4.1 A. Formal Analysis of Space Requirement
and Performance
The space requirement can be determined by summing the
original AC space

ACSize and the root-hashing space
rootSize .

The original space
ACSize is equal to the number of states S

multiplied by the state size. The proposed root-hashing
only requires extra root vector space, which is a summation
of all root vectors and defined as: ∑

=

=
k

i
iroothash RVSize

1

, where

iRV stands for the bit vector size of the length i vector.

The probability of a non-hit is defined in [18].
iRV can be

determined from the corresponding
nonhitp and the number

of prefixes
iα as:

() inonhit

i

p
RV

α
1

1

1

−
=

. The root-hashing and

AC matching can be performed in parallel; the computation
of the next states in the multiple units is independent. Thus
the average time is

avg

ACrootrootroot
timeavg k

TPTP
T

×−+×
=

)1(
_

; where

timeavgT _
 is the average time to process a byte,

rootT is the

root-hashing time,
rootP is the probability of non-hit in while

using the root-hashing,
ACT is the AC matching time and

avgk is the average skip length of each text processing

operation. Since AC matching is the critical path, the
worst-case time of RHAM is equal to

ACT .

In the theory, the probability
rootP can be determined

from ∑
=

×=
k

i
iroothashroot PPP

1

, where
rootP is computed as

roothashP

multiplied by a summation series of non-hit probabilities

inonhitP _
 from the first to k th vectors.

roothashP is the probability

of performing root-hashing, and
iP is the consecutive non-

hit probabilities from the first to i th vector.
iP can be

obtained from

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

>−×

=

∏

∏

=

+
=

i

j
nonhit

i

i

j
nonhit

i

ki for P

ki for PP
P

1

1
1

,

),1(, (2)

where
inonhitP _
 is the probabilities of i th vector. In this

equation ∏
=

i

j
nonhitP

1

 is used to compute the consecutive non-

hit probability. For ki > ,
iP must exclude the non-hit

ACM SIGARCH Computer Architecture News 40 Vol. 35, No. 3, June 2007

probability of a longer skip length; thus)1(1+− iP is
multiplied. The computation of

avgk is similar to
rootP ,

except each
iP is required to be multiplied by a depth i

value and has no
roothashP .

avgk is defined as)(
1
∑
=

×=
k

i
iavg iPk .

4.2 Real Patterns and Network Traffic
Simulations
In these simulations, we choose the URL blacklists and
virus signatures from [6] and [4] respectively. Because the
URL blacklists and virus signatures contain many patterns
and also long patterns, these patterns are sufficient to
evaluate the performance of the proposed RHAM
algorithm. The analyzed URL blacklists contain 20,000
patterns and generate 194,096 states. The virus signatures
used contain 10,000 patterns and generate 402,173 states,
respectively. In addition to the patterns, Google website
data consisting of over 100 MB and Ethereal capture
examples (http://www.ethereal.com) are selected as the text
used to evaluate the URL patterns and ClamAV patterns
respectively.

0%

20%

40%

60%

80%

100%

1E
+0

6

1E
+0

7

2E
+0

7

3E
+0

7

5E
+0

7

6E
+0

7

7E
+0

7

8E
+0

7

9E
+0

7

1E
+0

8

Visited Count

(a) (b)

0%
20%
40%

60%
80%

100%

1E
+0

6

1E
+0

7

3E
+0

7

4E
+0

7

5E
+0

7

7E
+0

7

8E
+0

7

9E
+0

7

Visited Count

St
at

e/
R

oo
t V

is
ite

d
R

at
io

State Visited Count

Root Visited Count

Fig. 7. Visited count for root state simulations (a) URL pattern and Google
website text, (b) ClamAV patterns and Etheral capture text.

Demonstrating the high frequency of visiting in the root
state can confirm the usefulness of the root-hashing
technique, thus we first simulated the number of real traffic
visited for the root state. Fig. 7 demonstrates that the
Google and Ethereal data have about 60% and 50% root
visited rates respectively. This result agreed that root-
hashing has high usage in the automaton matching.

For evaluating the effect of different bit vector sizes, we
used a 16 bytes text window and compared it with different
bit vector sizes ranging from 4,096 to 65,536 bits. Fig. 8 (a)
shows that a vector size of 32,768 bits may be a suitable
choice to achieve high performance with only moderate
memory consumption. The proposed RHAM can use either
single or multiple vectors, multiple vectors can increase
performance while using more memory resources. Fig. 8 (b)
demonstrates the average skip length for the different
window sizes with a 32,768 bit vector size; the result
shows that text windows sized 12 to 8 may be better

configured for low cost and high performance. As per the
above results, RHAM is about 900% and 420% faster than
bitmap AC for URL and virus patterns respectively. With
the above proper configuration, the vector size is 32,768
bits and the text window size ranging from 12 to 8. The
extra memory space for the root-hashing vector only
requires 48 Kbyte, which is acceptable in light of the low
cost implementation.

0

1

2

3

4

5

6

4096 8192 16384 32768 65536

Vector Size (Bit)

A
ve

ra
ge

 S
ki

p
L

en
gt

h
(B

yt
e)

URL

ClamAv

(a) (b)

0

2

4

6

8

10

4 5 6 7 8 9 10 11 12 13 14 15 16

Window Size (Byte)

S
ki

p
L

en
g
th

 (
B

yt
e)

URL

ClamAv
Fig. 8. (a) Skip lengths for 16 bytes windows with different vector sizes.
(b) Skip lengths for multiple vectors of different window size.

5. IMPLEMENTATION
In this section, subsection 5.1 gives a description of
hardware implementation for the RHAM hardware.
Subsection 5.2 gives an exhausted comparison with
previous hardware implementations.

5.1 Hardware Implementation

RHAM

Fig. 9. Development platform for the RHAM implementation.

Xilinx ML310 is a FPGA based platform for RHAM
implementation as shown in Fig. 9. This platform has 2448
Kbits internal block RAM, 30816 LUTs and two hardwired
IBM PPC405 processors. For the peripheral, ML310 has
one Ethernet port, one PCI slot for additional NIC
extension, one 256 MB DDR RAM module and one CF
card to store the image of the file system. During the
operation, the packets are inputted from the on board
Ethernet port, and processed by the PPC 405 CPU. Of
course, if the RHAM is implemented, the deep packet
inspection of the packets is offloaded to RHAM engine.

ACM SIGARCH Computer Architecture News 41 Vol. 35, No. 3, June 2007

For the development tools, the Xilinx EDK and
Synplicity SynplifyPro are used in the system
implementation. The EDK can generate the bit streams
from the hardware/software co-design files of SRAM
implementation. For the software design, the files include
the mapping address define files and the drivers of all
peripherals needed for building the complete RTOS image.
For the hardware design, the Verilog is used to design
string matching hardware, then ModelSim and Debussy are
the simulator and debugger tools, respectively, to verify the
RHAM design.

The proposed architecture is a parallel design where all
modules are working at the same time. The block diagram
of the hardware implementation has the following major
modules.
• FSM Unit controls the working flow of the whole

hardware system.
• Root-Hashing Unit is used for fast matching at the root

state. It tests the bit vector for multiple input bytes by
hashing function and sending the hashing result to FSM.

• Bitmap AC Unit counts all 1s for locating the next state.
• SM Controller Unit provides the control registers

including the length of text buffer and enable the signal
for the software to program.

5.2 Comparison

TABLE 2. The Comparisons of String Matching Hardware

Matching Hardware Device

Pattern

Size

(Byte)

Speed

(Gbps)
 1

Virtex2P 12.6

Virtex2 1000 6.8

Virtex2 6000 9.3

Spartan3 400 7.1

VirtexE 2000 2.4

RHAM2

Virtex 8002

34,215

2.0

Bit-split AC [17] Xilinx FPGA 2,048 10.0

Parallel Bloom Filter [18] VirtexE 2000 9,800 0.6

Perfect Hashing [19] Virtex2 1000 20,911 2.9

DFA+counter [21] VirtextE 1000 11 3.8

Parallel Regular DFA [22] VirtexE 2000E 420 1.2

KMP Comparators [23] Virtex2P 32 2.4

Comparator NFA [26] Virtex 100 29 0.5

Meta Comparator NFA [27] VirtexE 2000 8,003 0.4

Approximate Decoder NFA [28] Virtex2 6000 17,537 2.0

Offset Index Comparators [29] Spartan3 400 20,800 1.9

Pre-decoded Comparators [30] Virtex2 6000 18,032 9.7

CAM Comparators [31] VirtexE 1000 640 2.2

1. Speed (Throughput) is of an average performance. Except RHAM and

BFSM, other hardware have the same worst and average cases.

2. Since RHAM cannot fit into Virtex 100, the similarly performing the

Virtex 800 device is used. The Virtex 800 and VirtexE series did not

support block RAM. The bitmap table is placed in the external

memories with the dedicated bus, which should be acceptable in the

evaluation.

In Table 2, we compare 12 major types hardware analyzed
in related works. Since matching hardware are pursuing
higher throughput and larger pattern sizes, they are the
major factors in this comparison. In addition, many
experiments [19, 21, 23, 29, 32] had used on-chip circuits
or internal memories. Thus, we implemented the proposed
RHAM using internal memories to reach a fair evaluation.
In the RHAM implementation with a Xilinx Virtex2P
device, FPGA run at 315 MHz with a performance of 12.6
Gbps. For storage, RHAM implementation can handle
patterns of 34,215 bytes, which is composed of 1,980
patterns; each with an average length of 14.4 bytes.
Conclusively, our RHAM is superior to all the previous
string matching hardware in terms of both space
requirements and performance.

Nevertheless, even more than 34,215 bytes can be
achieved with the external memory version; RHAM can be
implemented with external multiple bank memory.
Although external memory produces overhead for memory
access, the ASIC hardware often runs at a much higher
speed than FPGA devices.

6. Conclusion
The proposed RHAM is a novel design with high
performance, a scalable pattern set and a deterministic
worst-case time, which can quickly verify multiple bytes
text to avoid slow AC matching. Since the root state is a
highly visited state during the matching, root-hashing is an
effective approach to accelerate the automaton. Substantial
evaluation determined that the proposed RHAM only
requires extra vector size when used in 48 Kbytes, and can
achieve around 900% and 420% speedup from the original
AC for 20,000 URLs and 10,000 virus patterns respectively.
When implemented with a Xilinx Virtex2P device, the
result demonstrates that our RHAM surpasses all other
existing hardware in terms of pattern size and throughput.
Our RHAM supports the largest pattern size of 34,215
bytes and runs at the highest throughput of 12.6 Gbps.

There are two possible future directions for this work.
First, in the broadening RHAM’s applications wherein our
pre-hashing and root-indexing techniques can be applied to
the other automaton matching algorithms such as the
regular expression automaton and the suffix automaton.
Second, our RHAM for the packet inspection service can
be integrated into a network gateway for field trial

ACM SIGARCH Computer Architecture News 42 Vol. 35, No. 3, June 2007

evaluation.

7. REFERENCES
[1] F. Mike and V. George, “Fast Content-Based. Packet

Handling for Intrusion Detection,” UCSD. Technical Report
CS2001-0670, May 2001.

[2] S. Antonatos, K. Anagnostakis and E. Markatos, Generating
Realistic Workloads for Network Intrusion Detection
Systems. ACM WOSP, 2004.

[3] M. Roesch et al, “Snort: The Open Source Network Intrusion
Detection System,” http://www.snort.org/.

[4] T. Kojm et al, “Clam Anti-virus,” http://www.clamav.net/.
[5] J. Mason et al, The Apache SpamAssassin Project.

http://spamassassin.apache.org/.
[6] T. D. Internordia et al, “SquidGuard filter,”

http://www.squidguard.org/.
[7] D. Barron et al, “DansGuardian content filter,”

http://dansguardian.org/.
[8] G. Navarro and M. Ranot, “Flexible Pattern Matching in

Strings,” Cambridge University Press, 2002.
[9] G. Navarro, “A Guided Tour to Approximate String

Matching,” ACM Computing Surveys, 33(1):31-88. 2001.
[10] S. Wu and U. Manber, “Fast Text Searching Allowing

Errors,” Communication of the ACM, 35:83-91.
[11] R. S. Boyer and J. S. Moore, “A Fast String Searching

Algorithm,” Communications of the ACM, 20, 10, 762–772.
[12] A. V. Aho and M. J. Corasick, “Efficient String Matching:

An Aid to Bibliographic Search,” Communications of the
ACM, pp.333–340.

[13] N. Tuck, T. Sherwood, B. Calder and G. Varghese,
“Deterministic memory-efficient string matching algorithms
for intrusion detection,” IEEE Infocom, Hong Kong, China,
2004.

[14] C. Coit, S. Staniford and J. Mcalerney, “Towards Faster
String Matching for Intrusion Detection,” DARPA
Information Survivability Conference and Exhibition, pp.
367-373, 2002.

[15] N. Desai, “Increasing performance in high speed NIDS,”
http://www.snort.org/.

[16] M. Raffinot, “On the Multi Backward Dawg Matching
Algorithm (MultiBDM),” Workshop on String Processing,
Carleton U. Press, 1997.

[17] L. Tan and T. Sherwood, “A High Throughput String
Matching Architecture for Intrusion Detection And
Prevention,” ISCA, 2005.

[18] S. Dharmapurikar and P. Krishnamurthy, T. S. Sproull and J.
W. Lockwood, “Deep Packet Inspection Using Parallel
Bloom Filters,” IEEE Micro, Vol. 24, No. 1, Jan. 2004.

[19] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis,
“A reconfigurable perfect-hashing scheme for packet
inspection,” International Conference on Field
Programmable Logic and Applications, Aug. 2005.

[20] M. Aldwairi, T. Conte and P. Franzon, “Configurable String
Matching Hardware for Speeding up Intrusion Detection,”
ACM CAN, 2005.

[21] J. Lockwood, “An Open Platform for Development of
Network Processing Modules in Reconfigurable Hardware,”
IEC DesignCon, Santa Clara, CA, Jan. 2001.

[22] J. Moscola, J. Lockwood, R. P. Loui and M. Pachos,
“Implementation of a Content-Scanning Module for an
Internet Firewall,” IEEE FCCM, 2003.

[23] Z. K. Baker and V. K. Prasanna, “Time And Area Efficient
Pattern Matching on FPGAs,” ACM/SIGDA FPGA,
California, USA, Feb 2004.

[24] G. Tripp, “A Finite-State-Machine Based String Matching
System for Intrusion Detection on High-Speed Network.,”
EICAR, May 2005.

[25] L. Bu and J. A. Chandy, “A Keyword Match Processor
Architecture Using Content Addressable Memory,” ACM
VLSI, April 26-28, 2004.

[26] R. Sidhu and V. Prasanna, “Fast Regular Expression
Matching using FPGAs,” IEEE FCCM, April 2001.

[27] R. Franklin, D. Carver and B. L. Hutchings, “Assisting
Network Intrusion Detection with Reconfigurable
Hardware,” IEEE FCCM, Napa, CA, Apr 2002.

[28] C. R. Clark and D. E. Schimmel, “Scalable Pattern Matching
for High Speed Networks,” IEEE FCCM, 2004.

[29] Y. H. Cho and W. H. Mangione, “A Pattern Matching
Coprocessor for Network Security,” ACM/IEEE DAC,
California, USA, Jun 2005.

[30] I. Sourdis and D. Pnevmatikatos, “Pre-Decoded CAMs for
Efficient and High-Speed NIDS Pattern Matching,” IEEE
FCCM, 2004.

[31] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole
and V. Hogsett, “Granidt: Towards Gigabit Rate Network
Intrusion Detection Technology,” LNCS, Volume 2438, Jan
2002.

[32] H. M. Blüthgen, T. Noll and R. Aachen, “A Programmable
Processor For Approximate String Matching With High
Throughput Rate,” IEEE ASAP, 2000.

[33] J. H. Park and K. M. George, “Parallel String Matching
Algorithms based on Dataflow,” HICSS, Hawaii, 1999.

ACM SIGARCH Computer Architecture News 43 Vol. 35, No. 3, June 2007

