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A B S T R A C T

Network intrusion detection systems (NIDSs) now adopt machine learning (ML) for detection of wide attack
variants. However, ML is also known vulnerable to adversarial attacks, which can degrade the accuracy of
ML. A number of defense strategies have been proposed but mostly in image classification areas. In this
work, we propose Ensemble Learning with Adversarial Training (ELAT) to combine adversarial training and
ensemble learning into a solution. We compare four approaches: single, ensemble, adversarial and ELAT. In
the experiments, several models were developed and tested using different approaches to know which method
is robust against adversarial attacks for ML-based NIDSs. The average F1 score for the single models was 0.93
within a wide range (0.82-0.99), but dropped to 0.29 when facing adversarial attacks, particularly dropped
to 0.07 caused by the strongest attack, Projected Gradient Descent (PGD). With ensemble, adversarial and
ELAT, the average scores were recovered to 0.80, 0.88 and 0.91, respectively. In addition, this work involves
prediction of the models and approach implemented behind the system using cosine similarity with an accuracy
of 99.9%.
. Introduction

Cybersecurity has become essential because of the continuous grow-
ng threat of cybersecurity attacks. As hacking techniques become more
dvanced, there are no limits for cyber threats even after applying
ecurity rules and policies [1]. To defend a network from cyber threats,
Network Intrusion Detection System (NIDS) is introduced to detect
alicious network traffic and alert the system administrator if hackers

ttempt to attack a network. A NIDS conventionally looks for known
ttack signatures in network traffic or detects outliers from normal
etwork usage. However, such approaches do not seem very promis-
ng since they may be unable to detect attack variants. Conventional
pproaches rely only on human knowledge and analysis, which may
e error-prone. Therefore, NIDS research has started to adopt machine
earning (ML) to detect variants of malicious network traffic [2]. Not
nly can ML detect most variants of malicious network traffic, but it
an also ensure the accuracy of prediction because it eliminates human
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errors when analyzing data. However, advanced hackers can see such
ML adoption as an opportunity to launch adversarial attacks, which
perturb the input features by adding noise to the input and therefore
can delude an ML-based NIDS. Adversarial attacks in a network domain
can be very powerful because after an attacker succeeds in deluding the
ML system, he/she can attack the network behind the NIDS, called a
‘double attack’ [3]. Because of the vulnerability of an ML-based NIDS to
adversarial attacks, it becomes necessary to secure both the ML models
and the network so as to have a robust NIDS.

Adversarial attacks on AI
There are two types of adversarial attacks, poison and evasion attacks.
A poison attack is where a training dataset is attacked and then used
to train the model; the trained model will then be inaccurate. An
evasion attack is an attack that perturbs the malicious input samples
and therefore causes an ML-based NIDS to misclassify them as benign
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[4]. Both types of attacks have the ability to transfer an attack in which
the adversarial examples generated from one model can be used to
successfully fool another [5]. This ability is called the transferability
property. A stronger defense approach is thus needed to defend against
an adversarial attack and its transferability property.

Adversarial defense
A variety of methods to defend against adversarial attacks have been
proposed. In essence, there are three types of adversarial defense
techniques that have been explored in ML-based NIDSs. The techniques
include model configuration, adversarial training, and ensemble learn-
ing. In model configuration, a robust model is achieved by adjusting
the hyper-parameters of a classifier. In adversarial training, the model
is trained with adversarial samples, so that it is smart enough to
detect adversarial attacks injected into a dataset [6]. Ensemble learning
gathers multiple models into a group and makes the decision from the
agreement between the models. Since there are a diversity of models
to choose, an ensemble of possible models will be more reliable than
any single model [7].

Combinations for adversarial defense
In this work, we consider combining adversarial training with the
ensemble method, which we refer to it as the Ensemble Learning with
Adversarial Training (ELAT) mechanism. Such kind of combination
has already been tested by [8] for images and by [9] for network
intrusion detection, and the performance of the defense method has
been found to be good for defending against adversarial attacks. As
a result, we want to further study the approach to find the most
effective combination of detection models with the options of ensemble
learning and adversarial training under consideration. Furthermore, the
transferability property of an adversarial attack is also evaluated. From
two methods of defending adversarial attacks noted above, ensemble
learning and adversarial training, there are three possible approaches in
the defense combination, being (1) ensemble learning, (2) adversarial
training, and (3) ensemble learning with adversarial training. The
three approaches work as their names suggest. We also consider single
models without defenses as the baseline models for comparison when
evaluating the effectiveness of the defense approaches. To evaluate the
robustness of these techniques to counter adversarial attacks, we must
first create an adversarial dataset in which the data have been attacked.
The creation needs both the models and the adversarial attacks to test
the proposal.

The research addresses the following three issues. (1) To identify
the most effective defense approach for NIDSs: The goal is to determine
which defense approach is the most effective among our evaluated ones
against adversarial attack functions. The determination is important
because many ML-based models have not incorporated any adversarial
attack prevention techniques. (2) To create the adversarial dataset for
NIDSs: Most studies evaluated ML models using a public dataset; how-
ever, there are a very limited number of public datasets that contain
adversarial samples. To provide adversarial samples to evaluate ML
models and carry out adversarial training, injecting adversarial attacks
into a dataset needs to be carried out. (3) To predict the model of an
ML-based NIDS based on the results of adversary attacks: Knowing the
approach that the model behind a system is both useful and challeng-
ing. It is useful because a better picture of attacking and defending an
ML-based NIDS can be achieved if knowledge of the ML method behind
is available. It is challenging because there are many ways to create an
ML-based NIDS with different ML algorithms.

Approaches to evaluation of adversarial defense
We select the following five classifiers to evaluate the ELAT method:
Decision Tree (DT), Extreme Gradient Boosting (XGB), Logistic Regres-
sion (LR), Support Vector Machine (SVM) and Deep Neural Network
(DNN). Note that the classifiers in an ML-based NIDS and for different
types of attacks may vary. However, these classifiers in our evaluation
are very common and fundamental. Therefore, we believe the obser-
2

vations from them can reflect the cases of ML-based NIDSs that are
based on these typical models. To carry out an attack on an ML-based
IDS, adversarial datasets need to be generated. We cover six attack
techniques, namely, Decision Tree Attack (DTA) [10], Fast Gradient
Sign Method (FGSM) [3], Projected Gradient Descent (PGD) [11], Car-
lini and Wagner (C&W) [12], Zeroth Order Optimization Attack (ZOO
Attack) [13] and Jacobian-based Saliency Map Attack (JSMA) [14] to
craft the adversarial samples in the evaluation. Readers are referred
to good tutorials such as [15] for a quick overview of these attack
techniques. We select these classifiers and attack techniques because
they are well known and quite common. Each of them also has its own
uniqueness. For example, DTA is selected because it can attack tree-
based classifier that is specific to DT. FGSM is selected because of its
speed in generating adversarial attack with a high attack success rate.
PGD is selected because it is an improvement of FGSM for its feature of
projection; however, it is slower than FGSM in terms of the adversarial
sample generation. JSMA is selected because its uniqueness of using
Jacobian maps to perturb. C&W is one of the strongest adversarial
attack techniques. ZOO is selected because its ability to attack without
knowing any gradient information.

In the threat model, we assume all the attacks are white-box
(i.e., knowing the details of the classifiers), and each adversarial attack
needs to be crafted for a specific classifier; however, only those classi-
fiers that are supported by an adversarial attack can be used. Moreover,
we assume the perturbations in the attacks are applied to the feature
space; thus, an attacker needs to know the features used in a NIDS to
craft the raw traffic that will be transformed to the features with the
desired perturbations. If the attacker does not have such knowledge
(e.g., fail to reverse engineer the NIDS), the adversarial attacks may not
work exactly as expected. This restriction is assumed because this work
is intended to study the effective models against adversarial attacks
and how to craft raw traffic to generate the perturb features with the
perturbations is beyond the scope of this work.

To create an ensemble model efficiently, we propose the use of
double fault and kappa statistics as the measurement score to filter
out those classifiers that do not meet the requirements for part of an
ensemble model. Kappa statistics gather the models that have good
agreement with each other to ensure the inter-classifier reliability,
while double fault filters those combinations of classifiers that share the
same errors to ensure the diversity among the classifiers. We select the
two measurement scores because they can be easily computed and the
parameters in the computation are ready from the testing (see Eqs. (1)
and (2) in Section 2).

The scores of all the approaches in the experiments will be collected
and stored in a database as a reference for model predictions, in which
cosine similarity will be used to compare the vectors of scores with
two metrics, F1 scores and Area Under Curve (AUC), and determine
whether the model behind the system being tested is the same as one
of the models referred to in the database [16].

This work aims to answer the following essential questions: (1)
Which is the strongest adversarial attack function that can perturb the
attacks to evade an ML-based NIDS? (2) Which ML algorithm is robust
against an adversarial attack? (3) To what extent does the transferabil-
ity property of an adversarial attack degrade the performance of an
ML-based NIDS? (4) How can an ML-based NIDS be made more robust
against any adversarial attack? (5) How can we know the ML model
that an ML-based NIDS uses?

The rest of this paper is organized as follows. In Section 2, we review
the related works. In Sections 3 and 4, the problem statement and so-
lution design are described. In Section 5, we describe our experimental
results, and conclusions and future work are given in Section 6.

2. Related work

Table 1 lists 11 papers that have explored defending adversarial
attacks to a NIDS, and each has its own way of defense. The second
column lists three adversarial defense techniques: model configuration,
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Table 1
Related work (FGSM: Fast Gradient Sign Method, BIM: Basic Iterative Method, PGD: Projected Gradient Descent, C&W: Carlini and Wagner, JSMA: Jacobian-based Saliency Map
Attack, NES: Natural Evolution Strategies, ZOO: Zeroth Order Optimization, RF: Random Forest, DT: Decision Tree, MLP: Multi-layer Perceptron, SVM: Support Vector Machine,
GAN: Generative Adversarial Network, FNN: Feedforward Neural Networks, SNN: Self-normalizing Neural Network, ANN: Artificial Neural Network, DNN: Deep Neural Network,
CNN: Convolutional Neural Network, C-LSTM: CNN with Long Short-Term Memory, LR: Logistic Regression).

Paper Defense technique Attack techniques Classifiers Diversity area Diversity
measurement

Transferability
propertyTraining Model Decision

[17] Model configuration FGSM, BIM, PGD FNN and SNN V – – – –

[18]

Adversarial training

FGSM, BIM, C&W, PGD RF and
Nearest Neighbor

V – – – –

[19] C&W, FGSM, BIM,
PGD, Deepfool

ANN and RF V – – – –

[20] JSMA RF and J48 V – – – –

[21] FGSM, BIM,
DeepFool and JSMA

DNN V – – – –

[22] GAN DNN V – – – –

[23]

Ensemble model

Alter some features RF – V – – –

[24] FGSM, JSMA, C&W,
Deepfool, BIM and PGD

SVM, DT,
DNN with voting

– V V – –

[25] Extending flow duration,
Adding junk data

RF, MLP, DT, AdaBoost
Wide and Deep

– V V – –

[26] Keyword manipulation SVM V V V – –

[9]

Adversarial training &
ensemble team

HopSkipJumpAttack
Pointwise, NES, Boundary
Opt-Attack

MLP, CNN,
C-LSTM

V V V – –

Ours DT Attack, JSMA, FGSM,
PGD, C&W, ZOO Attack

DT, SVM,
XGBoost, LR, DNN

V V V Kappa statistics &
double fault

V

adversarial training and ensemble model. These papers also explored
multiple adversarial attack techniques and classifiers to evaluate the
effectiveness of their adversarial defenses. We consider diversity an im-
portant property of defense techniques, and view the property in three
respects: training, model, and decision diversity. Training diversity
means multiple datasets are used to train the model(s), model diversity
means multiple models are used for defense, and decision diversity
means multiple decisions are made and then they are weighted for the
final decision. Although this work is not the sole one that covers the
three areas of diversity, it involves higher diversity inside the areas
than related work (e.g., generating the adversarial datasets from more
attack techniques for adversarial training). Because adversarial learning
is a trending topic in machine learning, there are numerous attack
techniques, learning models and defense methods in the literature.
Thus, it is difficult to cover the combination of them all all exhaustively
in a single study, and the issue of increasing diversity by covering
more schemes certainly deserves further study in the future. However,
we believe that this work has covered many common and well-known
combinations in the evaluation. Moreover, although we agree that
diversity is an important property, we do not imply it is the only
novelty. Our work also covers study on model selection in a systematic
way, the transferability property, and model prediction. These are the
key differences of this work from the others.

Ibitoye et al. [17] used model configuration as a defense strategy,
which works as finding the best parameter that a model can apply to
render deep learning robust against adversarial attacks. To assess their
model’s configuration, they used three adversarial attack techniques,
FGSM, BIM and PGD. However, their results are not entirely promising
because their deep learning cannot counter against the adversarial at-
tacks. The key aspect of that paper is that by feature normalization, the
performance of models against adversarial attacks could be improved.

Five papers applied adversarial training as a defense technique.
Each of them explored different types of adversarial attacks and clas-
sifiers. Pawlicki et al. [18] used adversarial training as a defense to
evaluate four attack techniques on two ML techniques, namely C&W,
FGSM, BIM, and PGD on Random Forest and Nearest Neighbor. They
found that their approach was good at defending adversarial attacks,
3

but was not very effective against the transferability property. Ad-
versarial training has been also explored with another attack such as
Deepfool, which was explained in [19]. In the exploration, ANN and
Random Forest were used as the classifiers to evaluate the performance
of each adversarial attack on the adversarial training. The result of
that approach was promising, but that work considered only training
diversity, but not model diversity because there were no combinations
of models to defend the attacks. Adversarial training was also tested
on JSMA to assess the capability to defend the attack, which was
explored further in [20], in which adversarial training can help to
defend a model from JSMA. Wang et al. [21] generated mimicked
adversarial samples for multi-class intrusions from a single Generative
Adversarial Network (GAN) model to augment the dataset, which was
then used by [21] for adversarial training. A similar approach was
explored in [22] with an improvement of a built-in Event-Condition-
Action (ECA) model, where an event refers to a specific anomaly, a
condition describes the rules, and the action is a countermeasure taken
against an anomalous event.

Ensemble learning is also a very promising defense technique for
making the model more robust against adversarial attacks. Apruzzese
et al. [23] used Random Forest as the adversarial defense technique,
which is categorized as ensemble classifiers. They tried to increase
diversity of their Random Forest algorithm, but did not extend the
diversity in training and decision-making, meaning that there were not
adversarial training or voting steps. In that way, they showed that the
model becomes more robust. Voting on the final decision is a technique
to get the final result from an ensemble model, which was explained
further in [24], where an ensemble model with voting, including SVM,
DT and DNN, was used as the defense. The authors made their final
decision based on majority voting, resulting in a diverse set of decisions
and a model that could be utilized to develop the defensive technique.
However, they did not apply any diversity measurements, which may
lead to not obtaining the optimal ensemble model that they could
have. Apruzzes et al. [25] designed an ensemble model with a layer
of application-specific detectors, followed by another layer of botnet-
specific classifiers, whose results were combined to make the final
decision. The main purpose of that work was to restrict the range of
variations that the adversarial attacks can generate (e.g., by adding
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junk data). Biggio et al. [26] presented a three-classifier ensemble
model, including a two-class classifier and two one-class classifiers.
Such a combination can reduce the chances of adversarial attacks
without significantly sacrificing accuracy in the absence of attacks. The
attack techniques and classifiers in the above two studies were not as
diverse as those in this work. They also neither apply any diversity
measurements nor study the transferability property.

Another approach is combining adversarial training and ensemble
learning into the defense. We believe that the diversity of models
can be increased by such a combination. Zhang et al. [9] adopted
this approach, and saw a significant improvement in the robustness
of the model against adversarial attacks. They augmented the training
dataset with adversarial samples and retrained the network intrusion
detection models, thereby reinforcing their capabilities against adver-
sarial samples. However, the authors did not explain how they chose
the right models to assemble or explain much on the transferability
property that an adversarial attack has. Our work presents a systematic
approach to select an effective model combination against a given set of
adversarial attacks. To ensure effectiveness of the model combination,
we use kappa statistics and double fault as the measurement score. This
approach is important because we can eliminate those combinations
that do not fit well with our objectives and thus obtain an efficient
model. To ensure that our defense technique is strong, we evaluate it
in depth using the transferability property of adversarial attacks.

An ensemble model consists of multiple models where each combi-
nation is evaluated using double fault and kappa statistics as the mea-
surement scores. Double-fault compares the results from two model’s
predictions and calculates the score as

𝐷𝐹 = 𝐹𝐹
𝑇𝑇 + 𝐹𝑇 + 𝑇𝐹 + 𝐹𝐹

. (1)

Kappa statistics determines the agreement between each model, and the
agreement score between each model is calculated as

𝐾𝑆 = 𝑇𝑇 + 𝐹𝐹
𝑇𝑇 + 𝐹𝑇 + 𝑇𝐹 + 𝐹𝐹

. (2)

TT means that both models’ predictions are correct when tested with
the testing dataset; FT and TF mean that one model’s prediction is
incorrect, and FF means that both models’ predictions are wrong. Lower
double-fault scores indicate more a successful combination because
each model does not share the same false prediction. For the kappa
statistics, a median score will be chosen to avoid having a very diverse
combination.

3. Adversarial attack and defense problem formulation

This section covers our discussion of the problems to be addressed
in two subsections: the notation table and the description of the issues.

3.1. Notations

Table 2 shows the notations used in this work, which are classified
into three categories. The first is a dataset that includes two types
of dataset, a clean feature dataset and adversarial attacked dataset.
The second, machine learning category, includes machine learning
algorithms, machine learning models, and ensemble models. This cat-
egory shows how we denote models in this paper. The last category is
adversarial attack, which includes many adversarial attack techniques.
Details of each category are listed as follows:

Dataset: A NIDS with a high F1 score is capable of distinguishing
between malicious and benign network traffic. To build such a NIDS,
a well prepared dataset is crucial. Datasets consist of data inputs xi
and their corresponding labels yi, which are then split into 3 smaller
ones, training, validation and testing datasets. An adversarial attacked
dataset D+ is derived from a clean dataset that has been attacked
by adversarial attack functions. To perform adversarial training, an
expanded dataset DE with adversarial samples is required. To obtain
4

such an expanded dataset, clean dataset D and adversarial attacked
ataset D+ need to be combined, thus

𝐷𝐸 = 𝐷 ∪𝐷+. (3)

Machine Learning: A model can be developed by training the
classifier with the prepared dataset. An F1 score is used to measure
how good the performance of a model is. Let M* be the ML model with
the highest F1 score and M+* be the adversarial trained ML model with
the highest F1 score. Ensemble models are classified into those for clean
models Ek, and those for adversarial trained models E+𝑘 .

Experimental results R are collected from the model prediction
ystem. The results are stored in a database and are compared to
he vector of results collected when attacking the model using the
dversarial attack functions. Cosine similarity is used to compare the
wo vectors of test results: a vector from the database and that from
he testing phase.
Adversarial Attack: The last section of Table 2 is adversarial attack.

here are six adversarial attack techniques fm in this work to ensure di-
versity of attack data. The attack data will then be used to evaluate the
robustness of clean and adversarial trained models. A set of adversarial
attack techniques, F, will be used to generate the adversarial attacked
dataset and evaluate the robustness of the models.

3.2. Description of the issues

There are three main issues in this work, (1) the most effective ML-
based model for a NIDS, (2) adversarial attacked dataset for a NIDS,
and (3) model prediction in a NIDS. These issues are discussed below.

3.2.1. Issue 1. Most effective ML-based model for a NIDS
The first issue is divided into three sub-issues, single and ensemble,

dversarial trained ensemble, and most effective approach. The sub-issues
re connected in a chain, and therefore the first needs to be addressed
irst to fulfill the next sub-issues.

.1. Single and ensemble. We assemble multiple baseline models by
raining multiple models using the dataset we already have. We then
reate the ensemble model by combining the models we get from the
irst step. The objective here is to obtain a model for both baseline
onfiguration and ensemble with the highest F1 score.

Given the training dataset DR, machine learning algorithm MLj and
esting dataset DT, we expect the outputs to include a single M* and an
nsemble model E* that have the highest F1 score when tested using
he testing dataset DT.

.2. Adversarial trained ensemble. Similar to the previous sub-issue,
e want to obtain an adversarial trained model and an ensemble
dversarial trained model by including the expanded data which consist
f adversarial samples as the training data generated in the next issue.
n ensemble adversarial trained model will be obtained by combining
everal adversarial trained models. The objective with this sub-issue is
o measure the performance of adversarial training and the ensemble
dversarial trained approach.

The inputs of this issue are the expanded training dataset DER, the
dversarial attacked testing dataset DT+, machine learning algorithm
Lj and single model Mj. We aim to determine the adversarial trained
odel M+* and the ensemble adversarial trained model E+* that max-

mize the difference of the sums of the F1 scores of the model without
nd with adversarial training when tested using adversarial attacked
esting dataset DT+.

.3. Most effective approach. Here we want to know which approach is
he most effective among the four models we created with the previous
ub-issues. By comparing their F1 scores, we will see which is the most
ffective.

In this case, adversarial attacked testing dataset DT+ and the four
odels, M*, E*, M+*, and E+*, are the inputs for determining the most

ffective approach A* that minimizes the degradation of F1 scores when
ested using DT+.
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Table 2
Notation.

Dataset

Dataset D D = {(xi, yi), i = 1, 2, . . . , n}; D = DR ∪ DT ; R ∪ T = {1, 2, . . . , n}
Dataset for testing DT DT = {(xi, yi), i ∈ T}
Dataset for training DR DR = {(xi, yi), i ∈ R}
Adversarial attacked dataset D+ D+ = {(x+𝑖 , y+𝑖 ), i = 1, 2, . . . , n}
Adversarial attacked data x+𝑖 x+𝑖 ∈ Rn, where n = number of features; x+𝑖 = fm(xi)
Adversarial dataset for testing DT+ DT+ = {(x+𝑖 , y

+
𝑖 ), i ∈ T}

Expanded dataset with adversarial samples DE DE = D ∪ D+
Expanded dataset for training DER DER = {(xi, yi), i ∈ R} ∪ {(x+𝑖 , y+𝑖 ), i ∈ R}
Data input xi xi ∈ Rn, where n = number of features
Label yi yi ∈ {0,1,2}, where 0, 1, 2 are normal data, network attack data,

adversarial attack data respectively

Machine learning

Number of ML algorithms NML
ML algorithm MLj 0 ≤ j ≤ NML-1
ML model Mj Mj = MLj(DR)
ML model with the highest F1 score M*

ML model with adversarial training M+
𝑗 M+

𝑗 = Mj(DER)
Adversarial trained ML model with the highest F1
score

M+*

Ensemble model Ek Ek ⊂ M, where M = ⨆

𝑗
Mj, k = 0, 1, 2, . . . , 2NML - 1

Ensemble model with the highest F1 score E*
Ensemble model with adversarial training E+𝑘 E+𝑘 ⊂ M+, where M+ = ⨆

𝑗
M+

𝑗 , k = 0, 1, 2, . . . , 2NML - 1

Adversarial trained ensemble model with the
highest F1 score

E+*

Experimental results R List of experimental results [F1, AUC] from Mj(D+) ∪ M+
𝑗 (D+)

Best approach A* Approach with the lowest F1 score difference
List of models behind the system MS Closest performance result of system’s models compared to the

experimental models

Adversarial attack

Number of attack techniques NF
Adversarial attack technique fm 0 ≤ m ≤ NF-1
Set of adversarial attack techniques F F = {f1, f2, . . . , fNF }
3.2.2. Issue 2. Adversarial dataset for a NIDS
The dataset in this sub-issue will be perturbed by applying multiple

adversarial attack functions into the dataset. We intend to see how the
performance of each model degrades by perturbing the dataset using
an adversarial attack function. The generated dataset can then be used
to test the models and become the input for our adversarial training
approach.

The inputs to this issue are the training dataset DR, adversarial
attack functions F and single models Mj, where we want to determine
which attacked datasets D+ can minimize the F1 score of the model

hen tested using adversarial attacked datasets DT+.

.2.3. Issue 3. Model prediction in a NIDS
In this last issue, we will use all the scores from the experimental

esults to predict the model. The objective is to be able to have a system
ith a high F1 score when predicting the model adopted behind the

ystem.
Given adversarial attacked testing dataset DT+, experimental results

and the system model MS as the inputs, we want to decide which
rediction algorithm to maximize the cosine similarity score when
redicting with the model MS.

. Design approaches

.1. Solution overview

In this work, we propose ELAT, which is a defense technique that
akes an ML-based NIDS resistant to adversarial attack techniques in

rder to address the issues outlined in Section 3.2.
Several single learning models are required to assess the most

ffective combination to be used in the development of an ensemble
odel. Thus, we first create these models. The clean models are trained
5

ith network traffic dataset which consists of normal and attack traffic,
and an adversarial trained model is trained with adversarial attacks.
To create clean models, we design a solution called Single and Ensemble
Model Creation based on F1 score and Measurement Score. The ensemble
technique we use is stacking ensemble, which uses a meta-learning al-
gorithm to learn how to best combine the predictions from two or more
base machine learning algorithms. An ensemble technique can harness
the capabilities of a range of well-performing models on a classification
or regression task and make predictions that have better performance
than any single model. For the final decision, we use soft majority
pooling which combines the probability of each prediction [27].

In order to obtain the adversarial attacked dataset, we need an
adversarial attack function to craft the dataset which will address the
Exhaustive Generation solution design (see Section 4.2.2). By gener-
ating an adversarial attacked dataset, we are then able to create an
adversarial trained model which forms the basis of Adversarial Trained
and Ensemble Adversarial Trained Model Creation based on F1 Score
and Measurement Score. In this solution, we also design the process
of creating an ensemble adversarial model by combining adversarial
trained models.

After getting all the models ready, we need to evaluate how each
of the them performs as an adversarial defense system in an ML-based
NIDS. To do so, we design a solution to Model Selection, in which we
use all the scores obtained from the experiment steps to help us in
predicting the model behind the tested system. To be able to predict
this model, we use a cosine similarity approach which we term Cosine
Similarity for Predicting Model, and which is explained in Section 4.2.3.

Fig. 1 illustrates the relationship between the issues on the left and
solutions on the right side in the design.
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Fig. 1. Issues (left) and solutions (right) mapping.

4.2. Solution details

4.2.1. Solution 1. ML-based NIDS models with ELAT
For an ML-based NIDS, we consider three possible solutions to

obtain the most effective defense approach for achieving a model robust
against an adversarial attack and its transferability property.

Solution 1.1. Single and ensemble model creation based on F1 score and
measurement score. There are two possible solutions here: F1 Score for
Single Model and Double Fault-Kappa Statistics Filter for ensemble model.

F1 Score for single model. Fig. 2 shows the flowchart of the F1
score for single model solution. The iteration of this solution depends
on how many ML algorithms are evaluated. Each of the ML algorithms
will be trained with a training dataset and evaluated with a testing
dataset. The score from the testing steps will allow us to ascertain which
algorithm performs the best. We then use the argmax function, which
indexes the highest F1 score within a list of possible ensemble models.

Double Fault-Kappa Statistics Filter for Ensemble model (Fig. 3).
The ensemble model creation is be determined using double fault
and kappa statistics, which will help us to obtain the most effective
model combination automatically, so that we do not have to test each
combination.

We create the model from the list of possible model combinations
gathered from the previous step. Each of the models then has to
be evaluated to obtain the most effective model to defend from an
adversarial attack. The iteration of this solution depends on the number
of combinations. We evaluate the model for each iteration using two
measurement scores, double fault and kappa statistics.

From Fig. 3, one can see that each model combination is evaluated
one by one, and we set a rule that a combination is accepted only if
the double fault score is below 50% and the kappa statistics score is
between 40% and 80%. The double fault is set below 50% because
the models that have a double fault score above 50% will generate
too many false positives and false negatives, which are undesired in
a robust NIDS. A score between 40% and 80% for the kappa statistics
is used because we want to obtain medium to high diversity for the
ensemble model. As stated in Section 2, kappa statistics measures how
6

Fig. 2. F1 score for a single model.

Fig. 3. Double fault and kappa statistics filter for ensemble model.

each of the models agree with each other on the prediction results.
Anything below 40% will make the combination too diverse, and
therefore there might still be false negatives or false positives, whereas
above 80% means that the models are not diverse and hence assembling
them into a model might not be needed.

The models that follow the rule will then be listed, and finally we
can see how frequent the models appear within the list of conformed
models. If an ensemble model appears many times, it means that the
model follows the rule in different test conditions. The model that
appears the most times will then be considered the most effective
one in the ensemble approach. This algorithm helps us to find the
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Fig. 4. Model selection.

most effective combination in an effective way; otherwise, a manual
comparison needs to be made for every possible combination.

Solution 1.2. Adversarial trained and ensemble adversarial trained model
creation based on F1 score and measurement score. This solution design
is similar to Solution 1.1, but its difference is in the input. The input in
this case is no longer a clean dataset, but an adversarial attacked dataset
produced in Solution 2, Exhaustive Generation. This solution is divided
into two parts, one for generating the adversarial training models, and
the other is for creating the ensemble model for the adversarial trained
models.

F1 Score for adversarial training. To generate an adversarial
training model, we design a solution similar to that in Fig. 2. The
difference is in the input data, where this solution uses the expanded
dataset to train the model. For evaluation, we use multiple testing
datasets which contain adversarial samples from multiple attack tech-
niques generated by applying adversarial attacks to the datasets. The
F1 scores will be collected into a list, and we take the argmax of that
list to identify the most effective model. The objective of this solution
is to have the most effective adversarial trained model which is robust
against adversarial attacks and its transferability property.

Double fault and kappa statistics filter for ensemble adversarial
model. After all the adversarial trained models are collected, we can
combine them into a model. For this solution, we create an ensemble
model with at least two models. The flow of the solution is exactly the
same from Fig. 3. The difference is that the ensemble model no longer
creates a model from clean single models but from adversarial trained
single models.

Solution 1.3. Model selection. To address the issue of selecting the most
effective model for an ML-based NIDS to defend against adversarial
attacks, we compare the performance of all the models in consideration.
To evaluate these models, we use all the adversarial attacked testing
datasets and test the approaches towards this dataset. Fig. 4 shows the
four models, M*, M+*, E* and E+*, which are collected as described
in Section 3.2. Each of the models will be tested using the adversarial
attacked testing dataset, and the score will be stored in a list. We then
take the argmax of this list for the index of the most effective model.
Finally, we can find the desired model that will be used as the defense
in an ML-based NIDS against adversarial attacks. All testing results
within the first solution will be stored in a database, and then will be
used as the input for the third solution.

4.2.2. Solution 2. Exhaustive generation
This solution aims to produce a dataset of adversarial attacks based

on multiple adversarial attack techniques. Fig. 5 shows the flowchart
of this proposed solution, which has main inputs, a dataset, adversarial
7

Fig. 5. Exhaustive generation.

Fig. 6. Cosine similarity for predicting model.

attack functions, and all the models generated by the previous solution.
We term this solution the exhaustive generation because generating
the dataset has been compiled exhaustively depending on how many
adversarial attack functions and models we have.

4.2.3. Solution 3. Cosine similarity for predicting model
The design of this model is shown in Fig. 6. This model needs

multiple inputs such as all the adversarial attacked datasets generated
in the previous model, a database which contains all the scores derived
from the various test steps, and the targeted system itself. First, we
insert the adversarial attacked dataset into the targeted system to
generate a vector of scores. This vector then will be compared to the
vectors that are already in our database by using cosine similarity.
We choose cosine similarity because Euclidean distance and cosine
similarity are two major approaches to compare two vectors, but the
latter is more suitable for comparing two high-dimensional vectors. The
dimension is the number of attack techniques for different classifiers,
which is 17 in our evaluation (see Fig. 8). The dimension will be even
higher if more attack techniques are applied in any future evaluation.
We use two metrics to compare the two vectors of scores, the F1 score
and AUC (Area Under Curve). With these two metrics, detection will
be more precise. Finally, we use argmax to see which vector in our
database is most similar to the score we obtained from testing the
targeted system. A higher cosine similarity score means the model is
more likely the one being compared in our database.

5. Experimental results

This section begins with the description of the hyper-parameter con-
figuration for all classifiers that we use. We then give the experimental
results of the issues covered in Section 1.
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Table 3
Baseline configuration.

Classifiers Hyper-parameters Values

DT

Criterion Entropy
Splitter Best
Max_depth 9
Min_sample_leaf 1
Min_sample_split 2

LR C 202010.513969

XGB

Booster Gbtree
Lambda 7.10074
Alpha 0.00102
Max_depth 9
Eta 0.67375
Gamma 6.10126
Grow_policy Lossguide

SVM C 2.70677

DNN

Input Layer 1 Layer
Hidden Layer 3 Layers
Output Layer 1 Layer
Hidden Activation ReLU
Output Activation Softmax
Dropout 0.01

5.1. Baseline configuration

We chose CICIDS-2017 as our dataset because it has the most up-
to-date common attacks and is therefore relevant to today’s network
environment. The advantage of using CICIDS-2017 is that it fulfills
the ten necessary requirements of a reliable benchmark dataset: com-
plete network configuration, complete traffic, labeled dataset, complete
interaction, complete capture, available protocols, attack diversity. het-
erogeneity, feature set and metadata [28]. Unlike most other works
which rely on public datasets, we reproduced attacks and generated
datasets for our evaluation to draw the conclusion. The public dataset
is only used for comparison purpose. Since the compared target also
used the same dataset, we chose to report the comparison results with
the same dataset. Nevertheless, we are aware that CICIDS-2017 was
pointed out to be flawed in some aspects [29], but we believe that no
dataset is perfect. Since CICIDS-2017 is still one of the most commonly
used datasets in the literature, and was still used in some recent
seminal papers such as [30] for easier comparison with many papers
using this dataset, it is still a proper choice for this work. Moreover,
several papers [31–33] reported that the F1 scores or detection rates
of ML-based intrusion detection were rather similar, if a latter version
of CICIDS-2017, CSE-CIC-IDS2018, was used. Although there are not
any comparisons of the detection performance between CICIDS-2017
and its improved version by [29] in the literature, to the best of our
knowledge, we believe that if we had used that improved version,
the numerical results of detection performance in this work might
have been slightly different, but the main observations and conclusions
would have been similar. Furthermore, although we used only one
dataset in the experiments, we have produced exhaustively the dataset
with a rich combination of attack techniques and detection models from
this dataset (see Section 4.2.2), and have carried out deep study on the
produced dataset with the rich combination. Therefore, the experiments
still cover the diversity that can reach meaningful conclusions.

Several hyper-parameter configurations have been utilized to op-
timize the performance of each of the classifiers. Table 3 lists the
hyper-parameter settings for this work. These were obtained using
Optuna [34], which is a tool to optimize the hyperparameters of a
classifier. Hyper-parameter tuning was carried out to ensure the op-
timal baseline model for the entire work. Our experiment shows that
such tuning can boost the performance of a model by 4% for Logistic
Regression.

To implement adversarial attacks, an open-source toolkit called
adversarial robustness toolbox was used. This toolkit consists of many
8

Fig. 7. Comparison of single and ensemble models.

adversarial attack techniques as well as defense, especially in the
image domain. Since most of the attacks are implemented in the image
domain, a minor adjustment for tackling network flows is needed to
use this toolbox in the network domain [35]. The perturbations in the
adversarial attacks were applied to the feature space according to our
threat model (see Section 1).

5.2. Solution results

5.2.1. Single vs. Ensemble
This section compares the performance of the single and ensemble

models with the testing dataset that we have, the original testing
dataset and the adversarial set.

Original testing dataset. Fig. 7 shows the performance of the single
models and ensemble models against network attacks without any
adversarial attacks injected into the dataset. For the original testing
dataset, the single models perform well with an average F1 score of
0.93 for the different models. XGB was the best performer with an
F1 score of almost 1 (99.81%1) compared to the other single models,
and SVM was the lowest with an F1 score of 0.83 (82.62%). From a
single model perspective, DT and XGB performed the best out of the five
classifiers because the internal nodes in the tree structures of DT and
XGB tested an attribute with ‘if else’ statements made to fit the data to
a certain threshold, which was done in the training step. Compared to
the others, however, SVM did not perform as well because it separates
the data points above and below the classified hyper-plane, and there
is thus no probabilistic explanation for the classification. When models
are combined into an ensemble model and the decision was taken by
pooling, we saw an increase in terms of the F1 scores. Fig. 7 also shows
an increase of F1 score by 0.001 (0.1%) from the highest F1 score of the
single model because the decision is not only made by one model, but
by multiple models that provide their predictions to the testing dataset.

There are two types of ensemble models in this work. The first
consists of three models, and the second consists of five models. An
odd number of models was selected because we wanted to obtain a fair
comparison where the case of 50:50 is less likely to occur with an odd
number.

After the experiment, we found that the best combination for a
three-model ensemble model is the combination of DT, XGB, and SVM
(i.e., ‘Ensemble 3’ in Fig. 7). This combination was the best because
they had a good kappa and double-fault score and therefore performed
well when combined. On the other hand, the five-model combination
gave similar performance with the former model. From this experiment,
the ensemble approach is better than the single approach when tested
on the original testing dataset.

1 To reserve the higher precision for comparisons, we present the F1 scores
in percentage and keep two decimal places in Figs. 7 and 10.
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Fig. 8. Heat map performance of single and ensemble models against adversarial attack
functions. The item names in the 𝑦-axis are concatenations of attack names and the
classifier. The ‘Ensemble 3’ model incorporates DT, XGB, and SVM, while the ‘Ensemble
5’ incorporates all the five classifiers in this work.

Adversarial testing dataset. There are a couple of things that we can
learn from the adversarial testing dataset, such as the strength of
adversarial attack techniques, the strength of classifiers compared to
adversarial attack techniques, the strength of transferability property,
and how the ensemble model performs against an adversarial attack.
The details are described below.

The Strength of adversarial attack technique
We would first want to know which adversarial attack technique is
the strongest: the strength of each adversarial attack can be seen from
Fig. 8, cell by cell. The 𝑥-axis has five classifiers and two ensemble
models, and the 𝑦-axis has all kinds of adversarial attack functions
that we want to analyze. The colors represent the performance of each
model. The lighter the color, the higher the F1 score is. The figure
shows that most of the single models are perturbed by adversarial
attacks: most cells are in a dark color, which indicates that it is possible
to attack an ML-based NIDS using adversarial attacks. From the results,
we can see that the performance of the single models drops because
of the darker color. The average score is dropped from 0.93 to 0.07
and from 0.93 to 0.61 using a PGD and a ZOO attack, respectively.
A PGD attack is the strongest because it relies on a multi-step attack
based on FGSM and therefore multiple perturbations are carried out
in PGD. A ZOO attack has the lowest average success rate, which is
defined as 1-(F1 score), since the gradient information used in the
attack is not taken from an optimization problem, and so the effect is
low-level perturbation. Therefore, the strength of an adversarial attack
depends on whether the attack mechanism uses single-step or multi-
step. Moreover, the strength of an adversarial attack also relies on the
gradient of the model, and larger gradient means stronger impact of
the adversarial attack.

The Strength of classifiers vs. adversarial attack technique
Fig. 8 also shows which classifier is more robust against adversarial
attack functions. LR with an F1 score of 0.52 is the most robust classifier
against adversarial attacks because it is a simple classifier with a small
gradient, and any perturbation against a small gradient classifier will
result in a low-level perturbation. SVM, with an F1 score of 0.31, is
not robust against an adversarial attack because it depends only on
a support hyper-plane that is very sensitive to any changes to the
dataset. The robustness of a classifier depends on its gradient, where
a high gradient makes the classifier more vulnerable to an adversarial
attack because it will add more noises to the input feature. On the
other hand, a low gradient means adding only some noises to the input
feature, which results in more robust classifiers. A high gradient is
closely related to complex classifiers, whereas a low gradient is related
to simple classifiers.

The Strength of transferability property
9

Fig. 8 also presents the strength of the transferability property on a
classifier. This property of an adversarial attack can also be observed
in an ML-based NIDS by looking at the figure horizontally, to see
whether an attack with the adversarial examples from one model can
successfully fool another. Thus, the transferability property can be
measured from the F1 scores or success rate (defined as 1- (F1 score)) in
such attack cases. If the F1 score of an attack is degraded significantly
or the success rate is high, we consider the attack has the transferability
property. A specific adversarial attack is possible to attack multiple
classifiers because data structures and number of features are similar
across models, i.e, this attack is transferable. We can see that most F1
scores decrease when various attack techniques are used against the
models. The highest average attack success rate for the transferability
property is achieved using DNN, with a success rate of 0.84. As a
complex classifier will have a higher gradient, a high gradient with
noise will create a stronger perturbation. On the other hand, CWLR has
the lowest average attack success rate at 0.38. As noted above, since LR
is a simple classifier, the gradient will be small and the perturbation on
a low gradient classifier will be also small. From these results, we can
learn that, when crafting adversarial samples using a complex classifier,
we will achieve more transferability, but when crafting using a simple
classifier, the transferability is less.

Ensemble model vs. adversarial attack
The last thing that we can see in Fig. 8 is how an ensemble model
performs against adversarial attacks. The last two columns in the
figure are the results of the ensemble models. Looking from a differ-
ent perspective, we know that an ensemble model is robust against
adversarial attacks, which is represented by an F1 score that increases
from 0.41 to 0.81, compared to the average performance of single
models. Robustness of the ensemble model is achieved by combining
the decision of multiple models. The F1 scores between the three- and
five-model combinations are slightly different. The point of this result
is that an ensemble approach can enhance the robustness of a system
against adversarial attacks. Selecting the right combination is necessary
to create the best ensemble models. Based on kappa and double fault
statistics, DT, SVM, and XGB are the best for a three-combination
ensemble model, and have been demonstrated to be better than a five-
model ensemble, with an average F1 score of 0.81 for ensemble 3 and
0.79 for ensemble 5.

5.2.2. Single vs. Adversarial
In this subsection, we want to determine whether adversarial train-

ing actually helps the system to be more robust against adversarial
attacks or not. From Fig. 9, we can see the performance of models
when trained using adversarial samples. Most of the scores in the
heat map are very high. The scores are represented by their colors,
and the average score is recovered to 0.95 if we compare Fig. 8 and
Fig. 9. The average F1 score of adversarial training is higher than that
of ensemble model by 0.08, from 0.80 to 0.88. This improvement is
expected because an adversarial approach will enable those models to
learn the adversarial techniques, and adversarial training is thus one of
the most effective ways to make the system robust against adversarial
attacks. An ensemble model performs worse because the models which
are assembled into an ensemble model have not learned the patterns
of adversarial attacks yet; therefore, combining those models will not
make the decisions better than a model that has already learned the
patterns of the adversarial samples.

There are however problems when an adversarial approach is im-
plemented in a system. Fig. 10 shows that an adversarial training
model will not be able to recover the F1 score when the transferability
property is carried out by an adversarial attack. To demonstrate this,
we first train all available models with PGDSVM, and then attack
all the models using PGDLR. The blue bars show the performance
in F1 scores of the single models tested using the original testing
dataset, which shows that the performance of these models is good.
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Fig. 9. Heat map of adversarial training model vs. adversarial attack.

Fig. 10. The effect of transferability property.

When the single models were tested using PGDLR, more than 0.80 of
their performance was degraded, as shown by the green bar. The red
bar shows the adversarial trained model that has been trained using
PGDSVM. It can be seen that even though the model had been trained
with adversarial samples, the performance still did not recover to its
original levels. Fig. 10 shows how the PGDSVM model is still vulnerable
to a PGDLR attack because the models only learned a specific type of
attack and failed to be generalized to other adversarial attacks. Thus,
when the model was attacked by other attack techniques, it still could
not recognize them. From this, we learn that adversarial training does
not solve the problem of defending adversarial attack completely, since
it still fails the transferability property tests.

5.2.3. Adversarial vs. Ensemble adversarial
In this section, we wanted to determine whether an adversarial

or ensemble adversarial approach performed better. The difference
between these two approaches is that one uses the ensemble approach
to create a model and the other does not. The last column of Fig. 11
shows that the ensemble learning with adversarial training (ELAT)
approach can increase its average F1 score from 0.69 to 0.91, and this
result is as expected. This shows that by combining multiple models
(using ‘Ensemble 3’ in this figure), we can increase the robustness of
a model by 0.22 because by combining both ensemble and adversarial
training approaches, a single model can cover more attack possibilities.
When a certain adversarial attack tries to attack a model, the ensemble
model already knows the behavior of the attack because we combined
adversarial models. ELAT performs better than adversarial training
even when the transferability property occurs with the adversarial at-
tack techniques. We can thus see that an ensemble adversarial approach
is the most preferable to be used as a defense against adversarial attacks
for an ML-based NIDS.
10
Fig. 11. Heat map of adversarial vs. ensemble adversarial approaches.

5.2.4. Predicting model adopted by system under test
This last section shows the result of predicting a model that is used

behind an ML-based NIDS. The average accuracy of the method with
cosine similarity described in Section 4.2.3 is very high, where 99.9%
of the predictions are correct. This method is capable of predicting
approach and models including the single, adversarial, trained and
ensemble model behind the system by applying adversarial attacks into
the target system and comparing the results with the one that uses the
cosine similarity algorithm.

6. Conclusion and future work

The average attack success rate for all adversarial attack tech-
niques is 0.71. PGD is the strongest adversarial attack technique, whose
success rate is 0.92. PGD is a multi-step algorithm, meaning that
perturbations are carried out many times and in addition this attack
technique uses projection that makes the effect of the attack stronger.

All the classifiers are affected by adversarial attacks with an average
of 0.45 in terms of their performance, which means that adversarial
attacks become a real threat towards an ML-based NIDS. The most
robust classifier for ML-based NIDSs against adversarial attacks is LR,
with an average F1 score of 0.52. Because of its simplicity, LR will have
a smaller gradient and is therefore not sensitive to any small changes
to the dataset. The simpler the classifier is, the more robust it is against
adversarial attacks.

There is on average a possibility of 0.61 (i.e., the average attack
success rate for DNN and CWLR) that an adversarial attack is trans-
ferable. The strongest transferability property results from crafting
the adversarial samples using DNN. Our results show that 84% of
adversarial attack techniques are transferable using DNN because DNN
is a complex model which makes the perturbation even higher and
stronger, resulting in the perturbation being sent to other classifiers,
where the effect of the perturbation can be strongly felt.

ELAT is the most effective approach to defend an ML-based NIDS
against adversarial attacks and their transferability property, where it
combines two approaches, adversarial training and ensemble model.
This approach learns from the ‘bad guys’ and combines multiple mod-
els, making this approach robust against adversarial attacks. ELAT
can also improve the F1 score from 0.07 to 0.91 when attacked by
adversarial attacks.

Adversarial learning is a trending topic in machine learning. It can
be seen that numerous attack techniques, learning models and defense
methods have been proposed and studied in the literature. Thus, it
is difficult to cover the combination of them all exhaustively in a
single study. The issue of increasing diversity by covering more schemes
certainly deserves further study in the future.
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