
0018-9162/01/$10.00 © 2001 IEEE June 2001 33

C O M P U T I N G P R A C T I C E S

Open Source Software
Development: An Overview

P roprietary software vendors operate on a
closed-source model: They develop their
own software and release that software to
the public with the intention of gaining mar-
ket penetration and earning a profit. The

open source movement, while still profitable in many
ways to profit-oriented companies, relies on a differ-
ent set of practices. In the open source movement,
everyone capable of writing code is welcome to join
in, a strategy that—according to open source advo-
cates—directly leads to more robust software and
more diverse business models.

While some challenge the general assumptions
about the benefits of open source software develop-
ment,1 the evidence of popular buy-in cannot be dis-
puted. People everywhere are adopting various open
source distributions or participating in the general
movement by contributing their own modifications.

We offer an overview of open source licensing and
development and strive to clarify some of the main
principles underlying the resulting software. Because
so much has already been written about open source,
we seek only to touch on some of its major themes and
provide pointers to essential information about the
movement and its general licensing structures.

OPEN SOURCE BACKGROUND
In 1984, Richard Stallman founded the Free

Software Foundation (http://www.fsf.org/fsf/fsf.html),
a tax-exempt charity that raises funds for work on the
GNU Project (http://www.gnu.org/gnu/thegnuproject.
html). GNU is a recursive acronym for “GNU’s Not
Unix” and a homophone for “new.” The GNU Project

seeks to develop Unix-compatible software and return
software to a state of freedom.

Stallman is both an open source evangelist and a
major open source contributor as the principal author
of the GNU C Compiler (GCC), GNU symbolic
debugger (GDB), GNU Emacs, and more. All these
packages provide essential tools for GNU/Linux. The
Red Hat 7.1 distribution, which collects some 1,016
packages altogether, contains 70 GNU packages.

The purpose of the Free Software Foundation is not
to ensure distributing software to the end user without
cost, but to ensure that the end user can use the soft-
ware freely. From the Free Software Foundation’s per-
spective, the term “free software” has nothing to do
with price: A program is free software if you have the
freedom to run the program, modify it to suit your
needs, redistribute copies either gratis or for a fee, and
distribute modified versions of the program so that the
community can benefit from your improvements.

Because free refers to freedom, not to price, it is not
contradictory to say that software can be both for sale
and free simultaneously. According to the Free
Software Foundation, the freedom to sell copies is cru-
cial: Selling collections of free software on CD-ROM
raises funds for free software development. Therefore,
according to the open source definition of the term
“free,” a program that people cannot freely include
on these collections does not qualify as free software.

The copyleft and General Public License are
designed to guarantee this freedom. Copylefts are, in
essence, copyrights with GPL regulations.

Open source software, essentially a superset of free
software, exists in almost countless varieties today,

Ming-Wei Wu
Ying-Dar Lin
National
Chiao Tung
University,
Taiwan

Although some challenge the value of
open source software development, its
popularity cannot be disputed. This
overview of open source licensing and
development models describes some of
the movement’s main principles.

34 Computer

patches. This easy-to-use mechanism cannot track a
project’s history automatically, however.

Walter Tichy’s Revision Control System improves
the capabilities of diff and patch by automatically
keeping track of change history, but his method does
not address several important issues. For example,
RCS uses the lock-modify-unlock development style
that blocks other codevelopers from modifying the
code simultaneously. Further, RCS does not support
network development, which means codevelopers
must work on the same machine.

In 1986, Dick Grune undertook an RCS overhaul
that eventually created the Concurrent Versions
System,3 which makes RCS easier to use. Brian Berliner
then rewrote CVS using C, and, finally, Jim Kingdon
added network development support to the method.
CVS uses the copy-modify-merge development style
that allows several codevelopers to copy source code
from a CVS repository and modify their own versions
simultaneously. CVS then intelligently merges all
changes together. For example, if version A and B have
no conflicts, it’s an easy merge; if version A and B have
conflicts, the newer version’s author must solve these
conflicts before merging new contributions into the
repository.

Several Web-hosting companies offer free hosting
services to support the development of open source pro-
jects. For example, SourceForge (http://sourceforge.net)
currently offers features such as bug tracking, project
management, forum services, mailing list distribution,
and more. Both Gnutella and Freenet—Napster-like
file sharing systems—use SourceForge for development.

LICENSING MODELS
Source license models fall into three general cate-

gories: free—the program can be freely modified and
redistributed; copyleft—the owner gives up intellectual
property and private licensing; and GPL-compatible—
licenses are legally linked to the GPL licensing structure.

In addition to open source licensing models, devel-
opers use hundreds of other licensing models for the
many kinds of software they market, ranging from
shareware to giftware to proprietary agreements, or
anything in between. Each of these models contributes
to the general confusion surrounding licensing arrange-
ments and the terminology that describes them, because
ordinary users seldom read software licenses in detail.
Some common open source license models include:

• General Public License. This free software licens-
ing uses the copyleft model, a self-perpetuating
spiral model that strictly ensures distribution of
any derivative work under the same license model.

• Lesser GPL. Once known as library GPL, LGPL
lets users extend the source with proprietary
modules.

Release official version in the foreseeable future

Accept patches and modifications (vote or dictatorship)

Decide a license model

Write documents and manuals

Vote for a license model

Do little document writing

CVS version control

Use mailing list for announcement and bug tracking; use OpenPGP

Initiate a project Join that project

Look for any similar projects

A personal itch

No Yes

Figure 1. The general
open source system
development cycle.
Allowing multiple
participants to
contribute to the soft-
ware development
process requires a
massive coordination
effort.

each with its own unique history.2 Linux, perhaps the
best-known open source software package, began
modestly in 1991, seven years after the founding of
the Free Software Foundation. Linus Torvalds, at the
time a graduate student at Helsinki University in
Finland, wrote a Unix-compatible operating system
and posted it on the comp.os.minix newsgroup,
single-handedly starting the Linux revolution.

Torvalds handed on the kernel maintenance to Alan
Cox in 1994 but continued monitoring each kernel
version to determine what should be left in and left
out. Since 1994, Torvalds has let others deal with user-
space issues like libraries, compilers, and the many
utilities and applications that go into every Linux dis-
tribution. By doing so, Torvalds gives users and ven-
dors the freedom to customize his work.

OPEN SOURCE DEVELOPMENT
The open source software development cycle, as

the flow chart in Figure 1 shows, allows literally any-
one to participate in the process, but having multi-
ple participants means a massive coordination effort.
Developers can use several different models to coor-
dinate these large-scale efforts, from standardizing
software—see the “Standardizing Linux” sidebar—
to offering participants T-shirts or other benefits.
eXtropia uses the open source model to continually
acquire contributions from the hundreds of partici-
pants who have helped the company produce well-
documented, feature-rich Web applications.

Given that project codevelopers may be scattered
across the globe, they must agree on a version con-
trol system to avoid development chaos. Currently,
developers can choose from three major multiple-
developer models for version control. Larry Wall’s diff
and patch for Unix offers one of the oldest standard
ways to submit contributions. The diff process dis-
covers the differences between two files to generate

• Berkeley Software Distribution. The BSD model
offers free code distributions and allows cover-
ing derivative works under different terms as long
as the necessary credit is given. Examples of BSD
licensees include Apache, BSD-related OSs, and
free versions of Sendmail.

• Mozilla Public License. MPL requires distribut-
ing derivative works under MPL, which means
that derivative work loses patent rights but still
can enjoy private licensing. However, a module
that MPL covers cannot legally be linked together
with a module that GPL covers.

• Netscape Public License. This MPL extension
permits Netscape to use your added code even in
its proprietary versions of the program.

• Qt Public License. A noncopyleft free software
license, QPL requires distributing any modified
source distributions only as patches.

• Artistic License. Nearly identical to the GPL
model, AL doesn’t require distributing derivative
works under the same terms when a company
uses them internally.

We’ve listed several of these licensing models in
Table 1 for easy cross-reference. For a more complete
list of the main open source licensing models with

links to their complete information, visit http://www.
opensource.org/licenses/.

Among open source licensing structures, although
the GPL license calls for the strictest regulation, com-
plaints and public scorn currently provide the main
methods for opposing GPL violations. Despite the
absence of harsher sanctions, most companies are will-
ing to correct licensing problems and release the mod-
ified version of their software to avoid a damaged
reputation.

For example, nVidia modified the XFree86 driver
for use in its graphics drivers, but did not release the
code. Because part of the drivers’ code falls under the
GPL model, nVidia had to remove all GPL code, then
re-release the drivers. In a similar case with a differ-
ent outcome, Microsoft bought Softway Systems,
makers of GPL-regulated software, and repackaged
its products as Microsoft Interix to provide a Unix
environment within Windows. By doing so, Microsoft
could claim Interix as its own work, thereby skirting
the GPL regulation.

Many commercial companies have begun using
multilicensing models to avoid GPL violations. For
example, Sun’s StarOffice adapts three licensing mod-
els: GPL, LGPL, and SISSL. Ordinary users who can
fulfill GPL regulations can use StarOffice under GPL.

June 2001 35

The Linux Standard Base seeks to assure cross-distribution and
backward compatibility of Linux applications without impeding
innovation. Shared libraries are at the root of many application
compatibility issues, especially when developers do not subject
libraries to strict version control or when application writers don’t
know which version of a library to use.

Most OSs rely on shared libraries to provide applications with
a set of standard functions and utilities that do not waste storage
space. Linux, for example, usually includes essential and com-
monly used libraries such as glibc, pthreads, libm, Xt, and ncurses,
among many others.

Applications compiled with a given version of a shared library will
expect to find precisely the version they need at runtime. While it is
possible for these applications to run with a later version of a library,
developers cannot always guarantee this backward compatibility.

One way around this problem is to include multiple versions
of libraries within a Linux distribution and allow applications
to select the version they were built to use. While this sometimes
works, it isn’t always practical because adding library versions
can use excessive space, undoing the value of having shared
libraries. As a result, a system can appear to have several ver-
sions of a library, when in reality it only has several links that
point to a single file.

While this situation commonly occurs because multiple appli-

cations require different minor versions of a given library, it is an
impractical strategy for solving library compatibility. First, this
approach simply isn’t reliable enough. It also does nothing to pre-
vent an installation from overwriting libraries with newer versions
that may break backward compatibility. Fortunately, Linux’s open
source nature makes it nearly impossible for any single provider to
make standards a moving target. Users can obtain the latest ver-
sions of core Linux libraries, regardless of the Linux distribution
they use.

LSB adds one more level of insurance. Regardless of how
updates to an LSB-compliant Linux offering occur, they will not
break LSB-compliant applications because the LSB libraries will
remain untouched.

Adopting LSB standards offers many potential benefits. Well-
defined standards provide guidelines that both noncommercial
and commercial developers can use to produce good code. Broad
LSB compliance means applications will run on every Linux box
instead of being limited to a smaller segment of the Linux market.
LSB gives every Linux provider access to a larger market because
it encourages more suppliers, resellers, developers, and indepen-
dent software vendors to support Linux. There is still a strong
incentive for everyone to innovate without posing a threat to the
open source nature of Linux itself.

For more information about LSB, see http://www.linuxbase.org.

Standardizing Linux

36 Computer

Proprietary developers and companies can use LGPL
or SISSL, which both state that the source should be
available only when needed to make certain modifi-
cations that address issues like incompatibility. Sun’s
decision to use a multiple licensing model means that
software developers and users can make their own
choices between freedom and ownership.

BUSINESS MODELS
Although Linux is gaining market share rapidly—

see the “Linux Distributions” sidebar for a brief
overview of the major packages—most desktop users
remain with Microsoft. Those who seek alternatives,
however, find a huge library of open source software.
These offerings fall into three major categories: oper-

ating environments that provide consoles and GUI
interfaces, daemons that provide various services, and
programming toolkits and libraries that offer develop-
ment functionality.

Although more proprietary packages are available,
there are so many open source packages that most
users can find an application that exactly meets their
needs. Table 2 lists some of the most popular open
source packages, showing their broad availability.
Alternative solutions are available for users seeking a
shift from, say, Windows to Linux.

Open source software does not cost much even when
users purchase it from a third party such as Red Hat.
Far more flexible than closed systems, open source soft-
ware frees both software developers and hardware man-

Every open source distribution vendor builds its version
around the same evolving kernel. The vendors who publish the
various Linux distributions test, integrate, and assemble these
packages on top of the kernel. The following list describes a brief
sampling of the most popular Linux distributions. For a more
complete directory, see http://www.linux.org/dist/index.html.

• Slackware (http://www.slackware.com), widely used, some-
what commercial, very stable, and easy to manage, has a
long history. You use pkgtool to control its TarBall pack-
ages. The rmp2targz tool can convert Red Hat packages
for installation in Slackware.

• Debian (http://www.debian.org), a distribution that nearly 500
volunteers have formed and maintain, is not designed to turn
a profit, but instead to promote frequent interaction between
contributors and users. The Debian community gives credit to
the appropriate developers in clear detail. Many advanced users
find a great deal of flexibility in the Debian distributions.

• Red Hat (http://www.redhat.com), perhaps the largest dis-
tribution vendor in terms of both sales volume and mar-
ket share, makes a package that’s easy to install, uninstall,
and upgrade. It also makes software dependency trans-
parent. Red Hat gives feedback to the open source com-
munity and actively recruits open source project de-
velopers.

• SuSE (http://www.SuSE.com) leads the market in Europe
with nearly 30 percent penetration. Known for excellent
documentation and abundant package resources, SuSE is
a good choice for newbies.

• Linux-Mandrake (http://www.linux-mandrake.com), an
up-and-coming distribution vendor, began by simply com-
bining a Red Hat distribution with the K Desktop
Environment and many other unique, feature-rich tools.
This combination proved so popular that its distributors
founded MandrakeSoft, which soon became the second
most successful Linux vendor.

Linux Distributions

Table 1. Open source licensing models.

Licensing model Free software Open source Copyleft GPL-compatible Examples
GPL Yes Yes Yes Yes CVS
LGPL Yes Yes Partial Yes GNU C library
X11 Yes Yes No Yes XFree86
Python Yes Yes No Yes Python
BSD Yes Yes No No Apache, Sendmail
MPL/NPL Yes Yes No No Mozilla
QPL Yes Yes No No Qt
Sun Industry Standard Yes Yes No No Commercial-version
Source License (SISSL) StarOffice

Artistic License (AL) No Yes No No Perl
Apple Public Source No Yes No No Darwin
License (APSL)

ufacturers from following a closed-software vendor’s
specifications. Perhaps best of all, open source software
is reliable. Perl, sendmail, and Apache have shown sig-
nificantly more stability than their proprietary counter-
parts. Because a diverse community of enthusiasts
contributes continually to open source development,
users capable of programming can quickly solve most
problems that afflict the software, such as system bugs,
security holes, and even performance tuning.

Private licensing usually takes place when a propri-
etary software company cannot fulfill GPL regulations.
Thus, a private license lets a company keep its code
secret. If you are the only owner of a piece of work,
you can decide what you want to do about licensing.
If, however, you share the work with several contrib-
utors, you must re-create the work of each dissenting
contributor if you want to sell a private license.

Most Linux vendors do more than simply sell the
software. Red Hat, for example, leverages its value-
added services, relying not on profits that the software
generates but on the revenue from charges for the ser-
vices the company provides to its vast number of users.
For example, Red Hat charges for setting up an
Apache Web server, developer training, or 24-hour
unlimited tech support for one year.

A company can also gain many related benefits
from open source development and distribution, such
as enhancing its reputation. For example, GNU has a
reputation for releasing well-known coding packages,
which makes it much easier for the organization to
convince people to use its tools and services. In 1998,
Netscape released its source code and rapidly gained
market share, becoming the first-choice browser in
most Linux distributions. This market position in turn
helps the company sell its server products.

W hile free software does give its users unprece-
dented flexibility, stability, and freedom of
choice, various distributions tend to compete

and imitate one another. As the “Standardizing Linux”

sidebar describes, the Linux Standard Base organiza-
tion promotes solutions to these fragmentation prob-
lems by facilitating the standardization of the various
Linux platforms. The issue of fragmentation will likely

June 2001 37

Table 2. Popular open source packages.

Application Popular packages
Editors Vim (VIsual editor iMproved), vi, Pico, Joe,

Emacs, XEmacs
Word processing WordPerfect, Kword, Papyrus, Tex/LaTex, LyX, xfig
Office suites StarOffice, KOffice, iOffice2000
Image manipulation tools GIMP, XV
Image browsing Imanager for ImLib, QtVu, Quick Image Viewer,

KuickShow
Multimedia XAnim, XMovie, MPEG TV
MP3 XMMS, X11AMP
ICQ Licq, Kicq, GnomeICU
Browsers Netscape Communicator, Opera, Mozilla
E-mail Fetchmail, mailx, Pine, elm, Balsa, AlphaMail,

TWIG, WebMail
Newsgroup clients Pan, News Peruser, KRN, Tin
FTP gFTP, nFTP, SkateFTP, IglooFTP PRO, ncftp
File management Kruiser, Xfm, llnlxdir
Theme Enlightment, Window Maker, Blackbox, sawfish,

Afterstep
Peer-to-peer file sharing Gnutella, Gnapster, Freenet, Publius
E-mail server EMUmail, Epop, teapop, Qmail, Sendmail
Newsgroup server Leafnode, MetaNews
FTP server BeroFTPD, WuFTPD, ProFTPD
Database MySQL, PostgreSQL, DBMaker
Web server Apache, iPlanet Web Server, NetMAX WebServer,

Understudy
Development toolkit GNUPro Toolkit, BXPro, GCC, Code Crusader,

Code Fusion
Debugger DDD, GDB, KGDB
Development platform Gnome, GNUstep, KDE
Interpreters Java, Perl, Python, CINT
Palm programming GCC, prc-tools, PilRC, PocketC

• Definition of Free Software According to GNU Model,
http://www.gnu.org/philosophy/free-sw.html.

• K. Hafner and M. Lyon, Where Wizards Stay Up Late: The
Origins of the Internet, Simon & Schuster, New York, 1996.

• N. Newman, “The Origins and Future of Open Source
Software,” http://www.netaction.org/opensrc/future/.

• Open Development Issues, http://www.opendeveloper.org.
• Open Source Developer Network, http://osdn.com.
• Open Source General Directory, http://www.openresources.com.
• Open Source Web Development Resource, http://www.

devshed.com.

• E.S. Raymond, “The Cathedral and the Bazaar,” http://
www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar/.

• E.S. Raymond, “The Halloween Documents,” http://www.
opensource.org/halloween/.

• R. Stallman, “The GNU Project,” http://www.gnu.org/gnu/
thegnuproject.html.

• M. Stoltz, “The Case for Government Promotion of Open
Source Software,” http://www.netaction.org/opensrc/oss-
report.html.

Additional Resources

be the most prominent hurdle that open source soft-
ware encounters in the years ahead.

Meanwhile, Microsoft prepares for patent war-
fare—seeking and securing patents that threaten open
source. Indeed, last year, Microsoft applied for 25 per-
cent more software patents than it did the year before.
The company has hinted at adopting the open source
model, but we won’t know for certain whether the
announcement Steve Ballmer made a few months ago
is legitimate until the company releases its source code.

Given the momentum the open source movement
enjoys today, it will be interesting to see the extent to
which traditional commercial developers will evolve
to keep pace with it. Several surprising waves of
growth and innovation have swept over the computer
industry during the past 30 years, such as the first
microcomputers in the 1970s, mass-produced com-
modity PCs from the mid-1980s through the present,
and the rise of the Internet, and it may soon face a del-
uge of commercial software based upon open source
development models. ✸

References
1. N. Bezroukov, “Open Source Software Development as a

Special Kind of Academic Research (Critique of Vulgar
Raymondism),” http://firstmonday.org/issues/issue4_10/
bezroukov/index.html.

2. G. Drummond, “Open Source Software and Documents:
A Literature and Online Resource Review,” http://www.
omar.org/opensource/litreview/.

3. K. Fogel, Open Source Development with CVS, The
Coriolis Group, Scottsdale, Ariz., 1999, pp. 5-7, 81-99,
http://cvsbook.red-bean.com/cvsbook.html.

Ming-Wei Wu is a graduate-student researcher in the
Department of Computer and Information Science at
National Chiao Tung University in Taiwan. His
research interests include peer-to-peer resource-shar-
ing networks and VoIP integration in PSTN, Internet,
and 3G wireless networks. He received a BS in com-
puter science from Soochow University, Taiwan. Con-
tact him at benson@cis.nctu.edu.tw.

Ying-Dar Lin is a professor of the Department of
Computer and Information Science at National Chiao
Tung University in Taiwan. His research interests
include design, analysis, and implementation of net-
work protocols and algorithms, wire-speed switching
and routing, quality of service, and intranet servers.
He received a PhD in computer science from the Uni-
versity of California, Los Angeles. He is a member of
the IEEE and the ACM. Contact him at ydlin@cis.
nctu.edu.tw.

c o m p u t e r . o r g / d s o n l i n e

Distributed Systems Online
IEEE

cluster computing

distributed agents

distributed databases

distributed multimedia
grid computing

middleware
mobile & wireless systems

operating systems
real-time systems

security

dependable systems
collaborative computing

