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Abstract—Service Function Chaining (SFC) provides a method 

of forwarding traffic flows through one or more service functions 
(SFs). For service providers, chaining SFs across multiple 
datacenters to deliver end-to-end services not only provides better 
utilization of computing resources of datacenters, but also achieves 
scalability and fault tolerance. However, most telecommunication 
applications are sensitive to latency, which tends to degrade due to 
both virtualization and the long distances among datacenters. In 
this paper, we extend the network service header (NSH) protocol 
and propose a multipath chaining with the partially-ordered NSH 
(MCPON) mechanism to achieve low-latency, partially-ordered 
service function chaining. MCPON adopts a proactive multipath 
installation for commonly-used service function paths (SFP, a 
sequence of requisite SFs) to eliminate reactive path decision 
delays and to reduce end-to-end service latency. To increase 
multipath diversity for better load balancing, we modify the 
original NSH encapsulation design so that the multiple paths 
selected for an SFP are not limited to having the same execution 
orders of some non-order-constrained SFs. MCPON also utilizes 
an entry-saving forwarding table design which enables forwarding 
entries to be shared among different SFC requests. Our 
evaluations show that proactive k-path computation for an SFC of 
length l at a scale of n SFFs saves time complexity of O(kl3n3), and 
multipath service chaining reduces latency by 33–68% compared 
to single-path service chaining in our simulation scenarios.  
 

Index Terms—Multipath, Network Service Header, Service 
function chaining 
 

I. INTRODUCTION 
ERVICE function chaining (SFC) [1], [2] provides a 
method of forwarding traffic flows through one or more 

service functions (SFs) in some specific order for the delivery 
of end-to-end services. To increase the flexibility and reduce 
capital expenditure (CAPEX) and operational expenditure 
(OPEX) of service deployments, network function 
virtualization (NFV) [3] was developed to transform much 
hardware network equipment (e.g., routers, firewalls, and load 
balancers) into virtual network functions (VNFs), which can be 
consolidated onto commodity servers and switches in 
datacenters. Since NFV creates a very dynamic network 
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environment driven by customers requesting on-demand 
services and operators aiming to efficiently manage the 
performance of services, Software Defined Networking (SDN) 
[4], [5] plays an important role in the orchestration of NFV 
infrastructure resources (e.g., physical and virtual switching) by 
offering comprehensive network monitoring and dynamic 
provisioning of network connectivity, bandwidth, and security 
policy. Several studies [6], [7] highlight the benefits of SDN 
and NFV on providing efficient network resource allocation 
and QoS improvement in different types of networks. A good 
example is the Central Office Re-architected as a Datacenter 
(CORD) [8], [9] platform which integrates NFV, SDN and 
cloud-native architecture design to transform telco central 
offices into agile edge datacenters, for network operators to 
deliver innovative services with great user experience. Service 
providers like AT&T and Verizon are already supporting 
CORD.  

For service providers, chaining VNFs or SFs across multiple 
datacenters (CORDs, core datacenters, or clouds) [10], [11] to 
deliver end-to-end services not only provides better utilization 
of the computing resources of datacenters but also achieves 
scalability and fault tolerance. However, most 
telecommunication applications are sensitive to service latency, 
which tends to degrade due to both virtualization and the long 
distances among datacenters [11]. In this paper, we focus on 
delivering low-latency service function chaining in a software-
defined multi-datacenter environment and propose an MCPON 
(multipath chaining with partially-ordered NSH) mechanism, 
which adopts proactive multipath installation for SFC requests 
with consideration of the order of SFs, the network latencies, 
and the processing latencies of SFs. 

A. Service Function Chaining with SDN and Network Service 
Header 

To serve an incoming service chain request in service 
function chaining (SFC) architecture [1], a classifier (or service 
classification function) selects a suitable service function path 
(SFP, a sequence of SFs) that traverses all requisite SFs in a 
specific order (fixed-ordered SFP), and then encapsulates the 
request flow with network service header (NSH) [12] which 
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carries the information of the SFP, and finally sends the 
encapsulated flow to service function forwarders (SFFs) for 
service delivery. An NSH is mainly composed of a Service Path 
Header, which contains a Service Path Identifier (SPI), and a 
Service Index (SI). The SPI uniquely identifies an SFP, and the 
SI provides a location within the SFP. An SFF can determine 
the next hop for the requisite SF according to the SPI/SI values. 
In addition, the SI will be decremented by 1 by the serving SF 
after performing the required service. Table I lists some 
common acronyms defined in SFC architecture [1] and NSH 
[12]. 

With SDN, the network intelligence is decoupled from the 
forwarding plane and centralized in SDN controllers that 
control several devices with a global view of a network. 
OpenFlow [13], [14] is the premier standardized interface 
between SDN controllers and switches. By setting the default 
policy of SDN (or OpenFlow) switches, the first packet of a 
new fixed-ordered or partially-ordered (some SFs can be 
executed in a flexible order) service chain request can be 
directed to an SDN controller, which reactively decides a 
suitable SFP and installs the best single forwarding path, and 
then redirects the packet to a classifier (i.e., an edge SDN switch 
which executes packet encapsulation), for starting the end-to-
end service delivery. In view of this, our proposal aims to 
reduce forwarding path decision delays (including computation 
and configuration) and end-to-end service latency. 

B. The Proposed Method: MCPON 
In order to achieve low-latency service function chaining, we 

present an MCPON (multipath chaining with partially-ordered 
NSH) mechanism, which reduces forwarding path decision 
delays and end-to-end service latency for each new 
fixed/partially-ordered SFC request.  

To reduce a forwarding path decision delay, MCPON 
proactively computes forwarding paths and installs 
corresponding forwarding entries in SFFs for commonly-used 
SFPs. The commonly-used SFPs are some predefined popular 
lists of SFs, e.g., Firewall, IDS, and DPI. To serve a new 
incoming service chain request, an SDN controller only needs 
to install an entry in the classifier (for matching characteristics 
of the request flow) once the requisite SFs (SFP) of the new 
request has been decided so that the classifier can encapsulate 
packets according to the entry, and forward the encapsulated 

packets to the starting SFF for the delivery along a predefined 
forwarding path. If an SFC request arrives and it does not 
belong to any of these commonly-used SFPs, then MCA will 
add the new SFP to commonly-used SFPs and reactively 
compute forwarding paths. In this case, path decision delay is 
inevitable for the first time. 

To further reduce end-to-end service latency, MCPON uses 
multipath routing. In addition, multipath routing provides 
network load balancing and fault tolerance in the presence of 
network link failures, which may affect service availability and 
user Service Level Agreement (SLA) [15]. With this approach, 
SFC requests, which have the same requisite SFs and the same 
starting SFF, will be matched by the same forwarding entries 
but may be forwarded to different paths.  

In addition, to increase multipath diversity (i.e., options for 
path selection) for better load balancing, the multiple paths we 
selected for an SFP may have different execution orders of 
some non-order-constrained SFs. For a partially-ordered SFC 
request, the actual execution order of SFs may depend on the 
path to be traversed; however, a partially-ordered SFP is not 
supported by the original NSH design. In light of this, MCPON 
adopts a modified NSH which allows the SFC encapsulation to 
have different execution orders of SFs from the order defined 
by the service path identifier (SPI).  

Our proposal considers partially-ordered SFC for the 
following reasons. First, partially-ordered SFC is explicitly 
defined as one of the SFCs to be supported in RFC 7498. It is 
also very common in real-world applications. For example, the 
order of executing 'URL Filtering' and 'Email Spam Filtering' 
in a security service chain does not affect the results. Second, 
fixed-ordered SFC is a special case of partially-ordered SFC, 
which means MCPON can also handle fixed-ordered SFC 
requests. MCPON specifically provides the following features: 

 
1) Elimination of path decision delay with proactive path 
installation and modified NSH  

The packets of a partially-ordered SFC request are 
encapsulated with modified NSH (or partially-ordered NSH) 
and forwarded along one of the predefined multiple paths. To 
support partially-ordered SFP (flexible execution order of SFs 
in SFP), we modify the usage of the 24 bits SPI and 8 bits SI in 
NSH.  

 
2) Low end-to-end service latency with weighted multipath 

We propose a multipath chaining algorithm (MCA) to 
compute weights of multiple forwarding paths with 
consideration of the order of SFs, the network latencies and the 
processing latencies of SFs. The path weight is regarded as the 
probability of selecting the path. 

 
3) Entry-saving forwarding table design 

To forward packets encapsulated with the proposed partially-
ordered NSH, we design a forwarding table in SDN-enabled 
SFF, termed the multipath chaining table (MCT), to consult the 
modified SPI/SI values in order to determine the next hops. 
Since SDN switches rely on limited Ternary Content-
Addressable Memory (TCAM) [16] to store forwarding entries, 

TABLE I 
ACRONYMS IN SFC ARCHITECTURE AND NSH 

Acronyms Terms Defined in 

SFC Service Function Chain 

RFC 7665 
SF Service Function 

SFF Service Function Forwarder 

SFP Service Function Path 

NSH Network Service Header 

RFC 8300 SPI Service Path Identifier 

SI Service Index 
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scalability is a major concern for service providers. To reduce 
forwarding entry consumption, MCT also enables forwarding 
entries to be shared among different SFC requests. The 
reduction of TCAM requirement may also help to reduce 
network CAPEX. 

 
In the evaluation of MCPON, we prepare a set of SFCs of 

different lengths and measure the reactive path computation 
times (which can be saved by proactive path installation) for the 
set of SFCs at different scales of an inter-datacenter network. 
We also measure the consumption of forwarding entries that are 
proactively installed to SFFs by MCPON for the set of SFCs (in 
the cases of using different numbers of multiple paths), and then 
we estimate the corresponding latency performance of these 
SFCs with random traffic injection in a simulation environment. 
We further compare the forwarding entry consumption with 
per-request forwarding (no share of forwarding entries between 
SFCs). 

In summary, we propose a proactive multipath chaining 
mechanism with partially-ordered NSH that achieves low-
latency partially-ordered SFC, by reducing forwarding path 
decision delay and end-to-end service latency. We also design 
an entry-saving forwarding table that enables forwarding 
entries to be shared among different SFC requests. The main 
contribution of this work is that we designed a partially-ordered 
NSH along with MCT that can forward the SFC encapsulations 
along multiple paths which may have different execution order 
of SFs. 

The remainder of this paper is organized as follows: Section 
II discusses related works; Section III describes the problem; 
Section IV illustrates solution details; Section V shows the 
experimental results and related observations, and Section VI 
contains the conclusions and future work. 

II. RELATED WORK 
Service function placement ([11], [17], [18], [19]), service 

chaining ([10], [20], [21], [22], [23], [24]) and dynamic scaling 
([25], [26]) are key challenges [27] of providing service 
function chaining. The placement problem aims to determine 
the optimal SF locations to meet service requirements while 

optimizing resource utilization. The chaining problem aims to 
find the optimal SFC path according to different service 
requirements, such as end-to-end latency, generated cost, and 
energy consumption. And the scaling problem investigates 
ways to flexibly deploy SF instances in order to cope with the 
changing network workloads while improving energy 
efficiency.  

In this work, we focus on the service chaining problem and 
propose a comprehensive solution, including path decision and 
packet forwarding, to achieve low-latency service function 
chaining.  

Table II gives a summary of related works. For path decision, 
several path-finding solutions [10], [20], [21], [22] focus on 
finding the best path for each request flow. Vertex-centric 
distributed resource orchestration [10] finds all feasible 
mappings of an SFC (which can be further pruned to obtain the 
best SFC to satisfy the constraint) in multi-domain networks 
without replication of global state information, via message 
exchange between vertices (physical nodes capable of invoking 
a subset of SFs). A heuristic algorithm, QoS-Guaranteed SFC 
Outsourcing algorithm (QGSO) has been developed [20] to find 
the cost-efficient path based on Hidden Markov Model (HMM), 
with consideration of the order of VNFs in SFC, the QoS 
requirements, and the diverse pricing schemes of VNFs of 
different cloud providers. Adaptive Service Routing (ASR) 
algorithm [21] is a novel method that transforms the network 
representation to a layered graph that considers processing steps 
and allows the use of conventional shortest path algorithms 
(Dijkstra’s algorithm) to determine the best path for an SFC. 
Energy-aware routing (EAR) [22] uses the breadth-first search 
(BFS) algorithm to find the best path that jointly optimizes the 
server energy and bandwidth costs for dynamic SFC 
deployment. As noted above, MCPON proactively installs 
forwarding paths to eliminate path decision delays. To avoid 
traffic congestion caused by mapping all SFC requests that have 
the same requisite SFs to a single path, MCPON adopts 
weighted multipath routing for network load balancing. 

For packet encapsulation and forwarding table design, the 
NSH offers a common and standards-based header for service 
chaining to all network and service nodes. NSH/RFC 8300 [12] 
gives an example to illustrate weighing SFs (for load 

TABLE II 
RELATED WORKS 

 Category Order of SFs in SFC request Path decision Encapsulation and Forwarding 

Vertex-centric distributed 
resource orchestration [10] 

Path-finding algorithm 

Partially-ordered Single path 

N/A 
QGSO [20] Fixed-ordered Single path 

ASR [21] Partially-ordered Single path 

EAR [22] Fixed-ordered Single path 

NSH [12] 

Encapsulation and 
forwarding table design N/A N/A 

Fixed-ordered SFP, multipath 

CRT-Chain [23] Fixed-ordered SFP, single path 

KeySFC [24] Fixed-ordered SFP, single path 

MCPON Comprehensive solution Partially-ordered Weighted multiple paths Partially-ordered SFP, multipath 
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distribution or redundancy); in this case, the table lookup 
(occurring on an SFF) may return more than one possible next 
hop within an SFP for a given SF. MCPON adopts NSH-Based 
service chaining and further extends the idea of weighing SFs 
to weighed multipath, enabling SFC requests that have the same 
requisite SFs to have the same header and to traverse multiple 
possible paths (which may have different execution order of 
some flexible-ordered SFs). To do so, MCPON has to modify 
the original NSH and forwarding table design for supporting 
multipath forwarding with partially-ordered SFP. CRT-Chain 
[23] is a service chain forwarding protocol that leverages the 
Chinese Remainder Theorem (CRT) to compress the 
forwarding information into small labels (which can replace the 
32-bit service path header of the legacy NSH). With CRT-
Chain, an SFF only needs to conduct simple modular arithmetic 
to extract the forwarding rules directly from CRT-Chain’s 
labels attached in the header and requires only constant 
forwarding entries, regardless of the number of SFC requests. 
Similarly, KeySFC [24] also performs efficient forwarding 
using the residue numeral system (RNS). However, CRT-Chain 
and KeySFC are unable to support multipath forwarding since 
the table lookup with the modular arithmetic can return only 
one next hop.  

Compared with existing approaches, our proposal involves 
the design of path decision, packet encapsulation, and a 
forwarding table to support multipath service chaining to 
reduce end-to-end service latency. A comparison of latency 
performance with single-path service chaining will be evaluated 
in Section V.  

III. PROBLEM STATEMENT 
A scenario of service function chaining across multiple 

datacenters is shown in Fig. 1, and the notations used in the 
problem description are given in Table III. We assume that a 
service provider owns a set of NFV-enabled datacenters (C), 
which are interconnected via a set of overlay links (L) between 
a set of SFFs (S) to provide SFC in a single SFC-enabled 
domain [1]. Each datacenter ci (ci ∈ C) has a border SFF si (si ∈ 
S), and a pair of SFFs (si, sj) is connected by an overlay link 

linkij (linkij ∈ L).  
The service provider provides a set of SFs (F), and each kind 

of SF fi (fi ∈ F) may have multiple instances (fij) which are 
allocated in multiple datacenters. The location of fij (i.e., the 
datacenter in which fij is located) is denoted by l(fij). We assume 
that each datacenter has at most one instance of fi.  

Each SFC request rn from the user will be directed to the SFF 
of the nearest edge datacenter (by a classifier) for service and 
can be served by more than one datacenter. The edge datacenter 
can handle the received SFC request on its own or make use of 
the SF resources in other datacenters (i.e., chaining SFs in a 
single datacenter or across multiple datacenters), depending on 
its capabilities. We assume that the forwarding path of an SFC 
request starts and terminates (be decapsulated) at the same SFF 
(i.e., the SFF of the nearest edge datacenter).  

The SFC request is denoted by rn = (si, (rf1, rf2, . . . , rfk)), 

 
Fig. 1. A scenario of service function chaining across multiple datacenters. 
  

TABLE III 
NOTATIONS 

Categories Notations Descriptions 

Topology G=(S, L) The network topology with 
SFFs S and overlay links L. 

DC C The set of datacenters. 

ci The i-th datacenters, ci ∈ C. 

SFF si The SFF of ci, si ∈ S. Each 
datacenter has a border SFF. 

Link linkij The overlay link from si to 
sj. si, sj ∈ S; linkij ∈ L; i ≠ j. 

t_linkij The measured network 
latency of linkij. 

SF F The set of SFs. 

fi The i-th SF, fi ∈ F. 

fij The j-th instance of fi. Each 
datacenter has at most one 
instance of fi. 

t_fij The measured processing 
latency of fij, which consists 
of the roundtrip network 
latency between fij and local 
SFF and the processing 
latency at fij. 

l(fij) The location of fij (i.e., the 
datacenter in which fij is 
located). 

F* The set of non-order-
constrained SFs, F* ⊆ F. 

fi* fi = fi* if fi ∈ F*. The 
execution order of cascading 
non-order-constrained SFs 
in a request can be 
interchanged. 

Request rn = (si, (rf1, rf2, . . . , rfk)) si: The SFF of the nearest 
edge datacenter. 
(rf1, rf2, . . . , rfk): The SFP, 
i.e., an ordered sequence of 
k requisite SFs. 

Multipath pathni The i-th path for request rn. 

t_pathni The latency of pathni. 

wni The weight (probability of 
selection) of pathni. 

avg_t_pathn The weighted average path 
latency for request rn. 
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which contains the information of the nearest SFF si and an SFP, 
i.e., an ordered sequence of k requisite SFs (rf1, rf2, . . . , rfk), 
rfi=1~k ∈ F. We assume that some SFs are not order-constrained, 
which means that the execution order of cascading non-order-
constrained SFs could be interchanged. The set of non-order-
constrained SFs is denoted by F* (F* ⊆ F, fi = fi

* if fi ∈ F*). For 
example, for an SFC request which has an SFP (f1, f2

*, f3
*, f4, f5

*, 
f6

*, f7), the execution order of f2
*, f3

* can be swapped, and so do 
f5

*, f6
*. 

Our proposal aims to reduce the forwarding path decision 
delay and minimize the end-to-end service latency, so as to 
deliver low-latency service function chaining in a multi-
datacenter environment. As noted above, the path decision 
delay could be eliminated by the proactive installation of 
forwarding paths. Thus, the objective of MCPON is to 
determine the forwarding plane design along with the 
forwarding entries to be proactively installed for each 
commonly-used SFP, which minimizes the average service 
latency of SFC requests that have the same starting SFF and the 
same SFP.  

The service latency of an SFC request includes network 
latencies of overlay links and processing latencies of SFs. The 
network latency of link linkij is denoted by t_linkij, and the 
processing latency of SF fij is denoted by t_fij, which represents 
the roundtrip latency between fij and local SFF (i.e., the SFF of 
the datacenter in which fij is located). 

More precisely, the objective of MCPON can be described as 
follows:  

given  
1. the network topology G = (S, L) of a set of datacenters 

C, 
2. the measured latencies of all network links, i.e., t_linkij 

for all linkij in L, 
3. the set of all SFs and non-order-constrained SFs, i.e., F 

and F*, 
4. the locations and the measured processing latencies of 

all SFs, i.e., l(fij) and t_fij for all fij, 
5. a commonly-used SFP, i.e., (rf1, rf2, . . . , rfk), rfi=1~k ∈ F, 
6. a starting SFF si, si ∈ S, 
 
the goal is to 
1. determine the weighted multipath to distribute the traffic 

load of SFC requests that start at SFF si and have SFP 
(rf1, rf2, . . . , rfk), so as to minimize the weighted average 
path latency for these SFC requests. Supposing that the 
latency of the i-th path pathni for SFC rn, is denoted by 
t_pathni, and the weight (probability of selection) of 
pathni is denoted by wni, then the weighted average 
latency of k paths, avg_t_pathn, can be expressed as  

 
𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑛𝑛 = ∑ (𝑤𝑤𝑛𝑛𝑛𝑛 × 𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑛𝑛𝑛𝑛)𝑘𝑘

𝑖𝑖=1  / ∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘
𝑖𝑖=1 . 

 
2. transform the weighted multipath to forwarding entries 

to be proactively installed in SFFs. This objective 
involves the design of SFC encapsulation protocol and 
forwarding table of SFF. 

IV. SOLUTION DESIGN 
The proposed MCPON solution is aimed at achieving low-

latency service function chaining across multiple datacenters. 
To eliminate forwarding path decision delays and to provide 
low end-to-end service latency, MCPON proactively computes 
and installs multiple forwarding paths for each given 
commonly-used SFP, by applying a multipath chaining 
algorithm (MCA), which determines weighted multipath based 
on a global view of the inter-datacenter network. In practice, the 
path weights have to be continuously updated according to the 
network status. 

MCPON adopts NSH-Based service chaining. Each SFC 
request from a user will be encapsulated with an SFP and 
directed to the SFF of the nearest edge datacenter (by a 
classifier), for service delivery along one of the predefined 
multiple paths. Since we assume that some SFs are not order-
constrained, the possible forwarding paths of a commonly-used 
SFP are allowed to have different execution orders for 
cascading non-order-constrained SFs, so as to increase path 
diversity and to achieve better load balancing. Thus, SFC 
requests that have the same SFP and the same starting SFF will 
be matched by the same forwarding entries but may be 
forwarded along different paths, and the actual execution order 
of SFs depends on the path to be traversed.  

Fig. 2 shows the architecture of the proposed MCPON, 
which involves management plane design (MCA for multipath 
decision) and data plane design (partially-ordered NSH and 
MCT for SFC encapsulation forwarding). In Fig. 2, we assume 
all network links have the same bandwidth, and all SF instances 
have the same processing capacities. For an SFC r1 = (s1, (f1, 
f2

*, f3
*)), we can choose to use two paths path_A ([s1, f1, s1, s2, 

f2, s2, f3, s2, s1]) and path_B ([s1, s3, f1, s3, f3, s3, s1, f2, s1]) with 
equal probability to balance the incoming request flows. Note 
that path_A and path_B have different execution orders of f2

* 
and f3

*, and even traverse totally different network links and SF 

 
Fig. 2. The architecture of the proposed MCPON. 
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instances. Suppose network link latency and SF processing 
latency increase as the traffic load increase. Then compared 
with single-path chaining (i.e., using only path_A or path_B), 
two-path chaining can reduce average path latency after 
injection of request traffic flows.  

However, a partially-ordered SFP (flexible execution order 
of some SFs in an SFP) will not be supported by the original 
NSH. To support such a partially-ordered SFP, MCPON 
devises a partially-ordered NSH by modifying the usage of 
SPI/SI in the original NSH design, so that the SFC 
encapsulation supports different execution order of SFs for a 
SPI.  

To forward packets encapsulated with the partially-ordered 
NSH, we also design a multipath chaining table (MCT) in SFF 
which consults modified SPI/SI values to determine possible 
next hops. Furthermore, MCT enables forwarding entries to be 
shared among different SFC requests, reducing forwarding 
entry consumption.  

Below we elaborate the proposed partially-ordered NSH, and 
then illustrate the design of the multipath chaining table (MCT). 
Finally, we explain the multipath chaining algorithm (MCA). 

A. Partially-ordered NSH 
In SFC architecture, an NSH is inserted by the initial 

classifier at the start of an SFP, and removed at the end of an 
SFP by the last SFF. The NSH is composed of a 4-byte Base 
Header (information about the service header and the payload 
protocol), a 4-byte Service Path Header (path identification and 
location within a service path), and optional Context Headers 
(metadata carried along a service path). 

To support partially-ordered SFP, MCPON modifies the 
usage of the Service Path Header in the original NSH design. 

 
1) Modifications on Service Path Header  

The Service Path Header contains a 3-byte Service Path 
Identifier (SPI) and a 1-byte Service Index (SI). SPI uniquely 
identifies an SFP, and SI provides the location within the SFP. 
The initial classifier sets the appropriate SPI (a path ID for a 
given classification result) and the initial value of SI to 255 (or 
the length of the given SFP), and sends the packet to the first 
SFF (in the identified SFP) for forwarding along a service path. 
SFFs can determine the next SF or SFF in the service path 
according to the SPI/SI values. The SI will be decremented by 
1 by the serving SF after performing the required service. In the 
original NSH design, the combination of SPI and SI provides 
the identification of an SF and its order within the service plane. 

To support partially-ordered SFP, MCPON adopts the 
proposed partially-ordered NSH, in which the SPI and SI are 
respectively replaced by a set of SF descriptions and a mask. 
Each bit in SI is mapped to an SF in the SPI and records the 
execution status of the corresponding SF. For execution status, 
1 signifies executed, and 0 unexecuted. We assign each bit in 
SI a position number ranging from 0 (for the most significant 
bit) to 7 (for the least significant bit). Fig. 3 illustrates the 
updates to the SI mask by SFs. For a classifier to encapsulate 
an SFP of length 5 (f2, f7, f3

*, f5
*, f6), five of the most significant 

bits (position number 0 to 4) of the SI are mapped to the five 

SFs and are initially set to 0, and the remaining three least 
significant bits (position numbers 5 to 7) are set to 1. Each zero 
bit in SI will be set to 1 by the corresponding SF after service 
execution, as shown in Fig. 3. 

To map each bit in the 8-bit SI to an SF description in the 24-
bit SPI, we assign 3 bits to each SF description by default, 
which means the system can support 8 SF types in total. The 
mapping of a bit in SI to an SF description in SPI is shown in 
Fig. 4. For updating the SI mask, an SF can obtain a position 
number by searching its assigned description in the SPI with a 
sliding window of size 3, which moves right by three positions 
each time from the most significant bits to the least significant 
bits. Then the SF will set value 1 to the bit located at the 
obtained position in SI after service execution. For example, in 
Figs. 3 and 4, SF f3

* can obtain position 2 after searching for its 
assigned description 010 in the SPI, so as to set value 1 to the 
bit located at position 2 in SI after service execution. 

In partially-ordered NSH, the combination of SPI and SI 
provides an unexecuted-SF list, which is consulted by the 
proposed MCT in SFF in order to determine the next SF or SFF.  

The modification on NSH may affect the packet matching 
efficiency of an SFF, because an SFF needs to compute the 
unexecuted-SF list according to the modified NSH for MCT 
matching. But this issue involves hardware logic design and is 
beyond the scope of this paper.  

 
2) Reclassification for scalability with Context Header 

By default, the system supports 8 SF types in total because 
of the 3-bit SF description. To support more than 8 SF types in 
the system, we can assign more than 3 bits to each SF 
description. However, expansion of SF description will result 
in a shrinkage of the number of SFs that an SPI can 
accommodate. For example, to support 64 SF types in the 
system, we need a 6-bit SF description, and there will be at most 
4 (24 divided by 6) SF descriptions in an SPI. To serve an SFC 
request which has SFP length larger than what an SPI can 

 
 
Fig. 3. The updates to SI mask by SFs. 
  

 
 
Fig. 4. The mapping of a bit in SI to an SF description in SPI by default. 
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support, we make use of the reclassification feature for 
scalability with metadata design in variable-length Context 
Header. 

The SFC architecture [1] supports reclassification as well, 
typically performed by a classification function co-resident 
with an SF (or a reclassification SF). As packets traverse an 
SFP, reclassification may occur, which results in a change of 
SFP (a replacement of SPI/SI) or an update of the associated 
metadata. The metadata in the Context Headers provide the 
ability to exchange context information between classifiers and 
SFs, and among SFs. 

In our design, if the length of a given SFP exceeds the 
number of SFs that an SPI can accommodate, we first cut the 
SFP into segments and insert a reclassification SF between 
every two connected SFP segments to generate a new SFP. We 
assume that if an SPI can accommodate n SFs, the SFP segment 
length would be equal to n - 1. The initial classifier then puts 
the first n SFs in the new SFP to SPI and puts the remaining SFs 
(in the new SFP) to metadata. Further, n of the least significant 
bits of the SI are set to 0, and the remaining bits are set to 1. As 
for each reclassification SF, it always retrieves a new SFP from 
the metadata of the received NSH packet and updates the NSH 
likewise based on the new SFP. 

Fig. 5 illustrates the replacement of NSH resulting from 
reclassification in a system with a 6-bit SF description. As noted 
above, an SPI can accommodate 4 SFs with a 6-bit SF 
description, with the SFP segment length equal to 3. For a given 
SFP of length 9 (f1, f2

*, f3
*, f4, f5, f6

*, f7
*, f8, f9), it will be divided 

into 3 segments, and 2 reclassification SF fc will be inserted 
between SFP segments. Since the new SFP will be (f1, f2

*, f3
*, 

fc, f4, f5, f6
*, fc, f7

*, f8, f9), the initial classifier then allocates the 
first 4 SFs (i.e., f1, f2

*, f3
*, fc) to SPI and the remainder of SFs 

(i.e., f4, f5, f6
*, fc, f7

*, f8, f9) to metadata, and finally sends the 
packet to an SFF for forwarding, as shown in Fig. 5(a). Once 
the first reclassification SF fc receives NSH packets (which 
means f1, f2

*, f3
* has been executed), fc will fetch the new SFP 

from the metadata (i.e., f4, f5, f6
*, fc, f7

*, f8, f9), and then likewise 
update the NSH, as shown in Fig. 5(b), by allocating the next 4 
SFs (i.e., f4, f5, f6

*, fc) to SPI and the rest of SFs (i.e., f7
*, f8, f9) to 

metadata, and also resetting the SI.  

 
3) Modifications on Base Header 

As set out above, the Base Header provides information 
about the service header. A Version field can be used to indicate 
whether an NSH is a partially-ordered version or not. To carry 
variable-length metadata along a service path for 
reclassification, the Metadata (MD) Type should be set to 0x2, 
which means zero or more Variable-Length Context Headers 
may be added immediately following the Service Path Header. 
We also use the 5 unassigned bits to identify the datacenter ID 
(CID), which will be discussed below. 

B. Multipath Chaining Table (MCT)  
Fig. 6 shows the layout of a multipath chaining table (MCT). 

MCT determines possible next hops (i.e., SF or SFF) for 
partially-ordered NSH packets, based on an unexecuted-SF list 
and a starting edge datacenter ID (CID, and can be regarded as 
the index of SFF). The unexecuted-SF list can be obtained by 
applying an SI mask to the SPI, and the CID is encapsulated in 
the Base Header by an initial classifier. The table lookup may 
return more than one possible next hop - essentially a series of 
weighted paths to be used for load distribution. With MCT, 
different SFC requests that have the same unexecuted-SF list 
(may be indicated by different combinations of SPI and SI) and 
the same starting SFF (CID) can be served by the same shared 
forwarding entries but may be forwarded to different paths, so 
as to reduce the forwarding entry consumption.  

Furthermore, once the unexecuted-SF list of an encapsulated 
packet is empty (i.e., all bits of SI are 1), the packet will be 
forwarded to the final SFF (which is the same as the starting 
SFF) based on the CID, and be decapsulated by the final SFF. 

C. Multipath Chaining Algorithm (MCA) 
To provide low end-to-end service latency for each given 

commonly-used SFP, a multipath chaining algorithm (MCA) 
takes network latencies and SF processing latencies into 
consideration, computing weights for multipath routing and 
determining forwarding entries (in SFFs) for load distribution, 
based on a global view of the inter-datacenter network. Fig. 7 

 
 
Fig. 5. The replacement of NSH caused by reclassification in a system with a 
6-bit SF description. 
  

 
 
Fig. 6. The layout of the multipath chaining table (MCT). 
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shows the flowchart of MCA. With given parameters as set out 
in Section III, the MCA first makes use of an ASR algorithm 
[21] to transform the network graph to a layered graph, so that 
conventional path algorithms can be used to find paths that 
traverse all requisite SFs in the correct order. In a network graph 
transformation, for a given SFP (rf1, rf2, . . . , rfk), k layers will 
be added to the original graph (i.e., k + 1 layers in total). Each 
layer is an exact copy of the original graph, and every node 
(SFF) in the ith layer has a layer qualifier i. The first layer is the 
base layer of the network topology, G. The (i + 1)th layer (i ≥ 1) 
is connected vertically to the ith layer only through SFFs l(fij) 
that provide rfi. The cost of each link within a layer is defined 
by the corresponding network latency (e.g., t_linkij), and the 
cost of each vertical (cross-layer) edge is defined by the 
corresponding processing latency (e.g., t_fij). If there are 
cascading non-order-constrained SFs in the given SFP, the 
MCA will find all feasible orders and construct the layered 
graph as per the specified order or just a layered graph with 
branches. For more details, the reader is referred to [21]. 

The MCA then greedily finds k-least-latency paths on the 
layered graph by Yen's algorithm [28], from the starting SFF si 
in the first layer (source node) to the si in the last layer 
(destination node). Note that the cross-layer paths may not be 
edge-disjoint (i.e., they may share some edges). After this, the 
MCA maps each cross-layer path to a path in the original graph, 
by folding nodes with layer qualifiers back into their base 
nodes, according to [21]. A feasible forwarding path in the 
original graph is a list of SFFs and SFs, e.g., [si, f1, si, sj, f2, sj, 
…, si]. Different paths may have different execution orders of 
cascading non-order-constrained SFs.  

The next step is to determine the weights for all paths in the 
multipath routing in the original graph. Since we proactively 
compute and install multiple paths for the given commonly-
used SFP without bandwidth demand, MCA only needs to 
calculate path weights based on current network status, i.e., the 
path latency derived along with each path by Yen's algorithm. 
Similar to [29] and [30], the idea of latency-aware traffic load 
distribution in MCA is to have the path weight inversely 
proportional to the path latency to achieve load balancing. To 
be specific, for an SFC request rn, we denote the least common 

multiple (LCM) of all path latencies by t_lcmn, and denote the 
latency of the i-th path pathni by t_pathni. Then the weight of 
pathni (denoted by wni) can be expressed as  

 
𝑤𝑤𝑛𝑛𝑛𝑛 = 𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 / 𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑛𝑛𝑛𝑛. 

 
In practice, to maintain the efficiency of multipath, the path 
weights should be periodically recalculated according to the 
measured path latencies. 

Finally, MCA constructs the MCTs in SFFs, by transforming 
the multiple weighted paths to forwarding entries to be installed 
in several SFFs. As mentioned in Section IV B, a packet is 
matched against the starting CID and the unexecuted-SF list, 
and will be forwarded to one of the possible next hops (i.e., SF 
or SFF) by the matching entry, based on weights of the next 
hops.  

Fig. 8 shows the flowchart of MCT construction, and 
Algorithm 1 presents the pseudocode version of Fig. 8. In 
Algorithm 1, to generate forwarding entries for the given SFP 
and starting SFF (CID), MCA sequentially adds or updates 
forwarding entries for each feasible weighted path. For each 
path iteration (line 1), the variable, unexecuted-SFP (which is 
an unexecuted-SF list) is initialized to the given SFP (line 2), 
and the path will first be transformed into edges (line 3). For 
example, a forwarding path [s1, f1, s1, s2, f2, s2, s1] for a request 
r1 = (s1, (f1, f2)) will be converted into 6 edges [s1, f1], [f1, s1], 

 
Fig. 7. The flowchart of the multipath chaining algorithm (MCA). 
  

 
 
Fig. 8. The flowchart of MCT construction. 
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[s1, s2], [s2, f2], [f2, s2] and [s2, s1]. An edge is considered as a 
link from a node to its next-hop (e.g., for an edge [s1, f1], s1 is 
the node and f1 is the next-hop). After that, MCA iterates 
through these edges, taking appropriate action for different 
types of edges.  

For each edge iteration (line 4), if the source node of an edge 
is an SFF (e.g., edges [s1, f1], [s1, s2], [s2, f2] and [s2, s1]), then 
MCA first checks whether the CID and unexecuted-SFP match 
an existing entry in the MCT of the source node (line 8). If not, 
MCA adds a new entry for the unexecuted-SFP, and adds the 
next-hop of the edge (an SF or an SFF) to the next-hop list (or 
output list) of the new entry along with the path weight (line 
10); otherwise MCA further checks whether the next-hop exists 
in the next-hop list of the matched entry (line 12). If not, MCA 
adds the next-hop to the next-hop list of the matched entry along 
with the path weight (line 17); otherwise, MCA updates the 
weight of the next-hop in the next-hop list of the matched entry 
by adding the path weight (line 14) (i.e., the accumulated 
weight for the shared edges among paths). Note that a new entry 
will be added to an MCT only if the CID and unexecuted-SFP 
do not match any existing entry in the MCT. At the end of edge 
iteration, MCA checks whether the next-hop is an SF (line 18). 
If yes (e.g., edges [s1, f1] and [s2, f2]), the unexecuted-SFP will 
be updated by removing the SF (line 20), and then the process 
proceeds to the next edge iteration, otherwise it proceeds to the 
next edge iteration without updating the unexecuted-SFP. After 
MCA has iterated through all feasible weighted paths, the 
forwarding entries for the given SFP and starting SFF (CID) are 
generated. 

Since MCT matches the partially-ordered NSH against the 
starting CID and the unexecuted-SF list, a forwarding entry of 
an SFP may be reused by some shorter SFPs started with the 
same CID. Consequently, the forwarding entry consumption 
can be reduced significantly. 

V. EVALUATION AND DISCUSSION 
In our evaluation, we build a full-mesh inter-datacenter 

network topology with 20 SFFs in a simulation environment 
(which is the same as the simulation topology used by QGSO 
[20]). Each SFF is connected directly to each of the others. We 
assume that each SFF has a local NFV-enabled datacenter, and 
we randomly place instances of 8 kinds of SFs (f1 to f8) to 
several SFFs. The probability of placing a kind of SF to an SFF 
is 50%, and it is ensured that every kind of SF (fi) has at least 
one instance (fij) allocated in our topology. The network 
bandwidth of each link is 10 Gbps, and the processing capacity 
of each SF instance is also 10 Gbps. In our simulation, we 
assume that packet arrival to a network link or to an SF follows 
a Poisson process, and the service time (for both 
communication and processing) is exponentially distributed. 
We also assume that the propagation delay is negligible in 
respect to the queueing delay of the link. Then we can use 
M/M/1 queuing model [31] to derive latency for both 
communication and processing (i.e., t_linkij and t_fij), which is 
given by:  

 
𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 = 1 / (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), 
𝑡𝑡_𝑓𝑓𝑖𝑖𝑖𝑖 = 1 / (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). 

 
We set a background traffic load with uniform distribution in 

the range of 100 Mbps to 1 Gbps to each link and each SF 
instance.  

To evaluate MCPON, 7 commonly-used SFPs of length 2 to 
8 are prepared:  

1. SFC 1: (f1, f2
*, f3

*, f4, f5
*, f6

*, f7, f8) 
2. SFC 2: (f2

*, f3
*, f4, f5

*, f6
*, f7, f8) 

3. SFC 3: (f2
*, f3

*, f4, f5
*, f6

*, f7) 
4. SFC 4: (f1, f2

*, f3
*, f4, f5) 

5. SFC 5: (f1, f2
*, f3

*, f4) 
6. SFC 6: (f2

*, f3
*, f4) 

7. SFC 7: (f3, f4) 
Note that f1, f4, f7, f8 are order-constrained, and f2

*, f3
*, f5

*, f6
*

 

are not order-constrained (the execution order of cascading 
non-order-constrained SFs could be interchanged). A starting 
(and ending) SFF is also selected randomly. MCPON then 
proactively computes forwarding paths and constructs MCTs 
for the 7 SFCs (the given 7 SFPs starting at the selected SFF), 
to be evaluated in terms of the saved path computation time, the 

TABLE IV 
EXPERIMENT CONFIGURATIONS 

Configuration Value   

Network topology and scale Full-mesh network, 20 SFFs   

Network bandwidth of each link 10 Gbps   

The number of types of SFs 8   

Processing capacity of each SF 
instance 10 Gbps   

Background traffic load on each 
link and each SF instance 

Uniform distribution in the range of 
100 Mbps to 1 Gbps 

  

SFC requests 7 SFPs of length 2 to 8   

 

Algorithm 1: Generate forwarding entries for the given SFP 

Input: SFP, weighted_paths 
1 for weight, path in weighted_paths: 
2     unexecuted_SFP = SFP  # initialization 
3     edges = path_to_edges(path)  # transform path to edges 
4     for edge in edges: 
5         node = edge.src() 
6         next_hop = edge.dst() 
7         if node is an SFF: 
8             if unexecuted_SFP not match in the MCT of the node: 
9                 # add an entry to the node for matching unexecuted-SFP 
10                 add_entry(node, unexecuted_SFP, next_hop, weight) 
11             else: 
12                 if next_hop in the output_list of the matched entry: 
13                     # update the weight of the next-hop in the output_list 

14                     update_entry_weight(node, unexecuted_SFP,  
next_hop, weight) 

15                 else: 
16                     # add the next-hop to the output_list with weight 

17                     update_entry_output(node, unexecuted_SFP,  
next_hop, weight) 

18             if next_hop is an SF: 
19                 # update unexecuted-SFP 
20                 unexecuted_SFP.remove(next_hop) 

 

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore.  Restrictions apply. 



TNSM-2021-04427.R1 10 

latency performance and the consumption of forwarding 
entries. Table IV gives a summary of default experiment 
configurations. 

A. Proactive k-path computation for an SFC of length l at 
scale of n SFFs saves time complexity of O(kl3n3). 

We assign 8G RAM, 4 CPUs to the MCA program, and 
measure the reactive path computation time (which can be 
saved by proactive path computation), at different scales of 
inter-datacenter network. Fig. 9 shows the average k-path 
computation time of the 7 SFCs (k = 1 to 5), at different full-
mesh network scales from 20 SFFs (datacenters) to 70 SFFs. 
The path computation time grows polynomially as a network 
scale increases. For k = 5, it takes about 8 seconds per SFC at a 
scale of 70 SFFs. 

Recall that MCA finds k-least-latency paths on the layered 
graph for each SFC by applying Yen's algorithm, which 
requires O(kN3) operations. Note that N is the number of nodes 
in the layered graph. If we denote the SFC length and the 
number of SFFs in the original network topology by l and n, 
then N equals (l + 1)*n. In other words, by proactive k-path 
computation, the proposed MCA avoids the on-demand 
execution of Yen’s algorithm, thus saves the time complexity 
of O(kl3n3) for an SFC of length l at scale of n SFFs.  

B. Multipath service chaining reduces latency by 33–68% 
compared to single-path service chaining.  

In this experiment, we measure the latency performance of 
the 7 SFCs and compare the results with single-path chaining to 
see how much performance multipath can improve. To evaluate 
latency performance of the 7 SFCs after MCT construction (at 
scale of 20 SFFs), we inject each of the 7 SFC flows into the 
simulation network with random traffic rates in the range of 800 
Mbps to 1.2 Gbps (5.6 to 8.4 Gbps SFC traffic is generated in 
total), and then estimate latency performance of each SFC by 
computing weighted average latency of k paths of the SFC (i.e., 
avg_t_pathn for an SFC rn, as noted in Section III).  

Fig. 10 shows the latency performance of 7 SFCs when using 
different k (number of paths), and Fig. 11 shows the latency 
reductions of 7 SFCs compared with single-path service 
chaining. In Figs. 10 to 13 the length of SFC 1 to SFC 7 is 8 to 
2, respectively. These results indicate that when k = 6, the 
latencies decreased by 33–68% (46% on the average) compared 
to k = 1 (single path). On the other hand, the latencies of k = 5 
is competitive to k = 6 which suggests that k can be set to 5. 

We also investigate the influence of inter-datacenter network 
topology on the latency performance. We build a partial-mesh 
topology by randomly removing half of the links in the full-
mesh topology (at scale of 20 SFFs), and execute MCPON 
again to construct MCTs for the 7 SFCs. Fig. 12 and Fig. 13 
respectively show the latency performance and the latency 
reductions of 7 SFCs, under the same traffic injection. The 
results indicate that the latencies increased by 36% on the 
average in comparison with the full-mesh topology when k = 6, 
owing to the decrease in path diversity. In addition, k = 4 is 
competitive to k = 6 for most of the SFCs (except for SFC 1), 
because there is a high overlap of links between multiple paths 

when k > 4. In summary, the latencies still decreased by 30–
60% (41% on the average) when k = 6 compared to single path. 

Fig. 11 and Fig. 13 also show that the ratio of latency 
reduction increases with the length of SFC in most cases, since 
there are more feasible paths cloud be selected as k candidate 
paths for load distribution for longer SFC. 

C. MCT reduces forwarding entry consumption by about 
36% compared to per-request forwarding. 

We also measure the consumption of forwarding entries in 
MCTs for the 7 SFCs (for the case of full-mesh inter-datacenter 
network topology), and compare the results with per-request 
forwarding (no share of forwarding entries between the 7 SFCs) 
by adjusting the MCT design which matches packets based on 
the separate SPI and SI values instead of the unexecuted-SF list 

 
Fig. 9. The average k-path computation time at different network scales. 
  

 
Fig. 10. The latency performance of 7 SFCs when using different number of paths 
(full-mesh inter-datacenter network). 
  

 
Fig. 11. The latency reductions of 7 SFCs compared with single-path service 
chaining (full-mesh inter-datacenter network). 
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(i.e., every SPI has his own set of forwarding entries). Fig. 14(a) 
to Fig. 14(c) shows the total system forwarding entry 
consumption of 7 SFCs when using 1, 3 and 5 paths, 
respectively. MCPON computes forwarding entries for SFCs 
from long SFC to short SFC in our experiment, and the 
accumulated forwarding entry consumption are recorded for 
each increment of the number of SFCs, as shown in Fig. 14(a) 
to Fig. 14(c). The horizontal axis in Fig. 14 is the number of 
SFCs whose forwarding entries are completely installed. The 
results show that, compared to per-request forwarding, the 
design of MCT reduces forwarding entry consumption by about 
36% on average by sharing forwarding entries among (f1, f2

*, 
f3

*, f4, f5
*, f6

*, f7, f8), (f2
*, f3

*, f4, f5
*, f6

*, f7, f8), and among (f1, f2
*, 

f3
*, f4), (f2

*, f3
*, f4), (f3, f4). Note that the actual reduction of 

forwarding entry consumption depends on the similarity 
between SFCs, i.e., forwarding entries may be shared among 
SFCs if they start (and terminate) at the same SFF and have the 
same unexecuted-SF list during service delivery.  

D. Partially-ordered SFP reduces latency by 8-27% 
compared to fixed-ordered SFP due to the proposed 
partially-ordered NSH in partial-mesh topology. 

Recall that the proposed partially-ordered NSH enables 
partially-ordered SFP to increase multipath diversity for better 
load balancing. In this experiment we investigate the influence 
of enabling partially-ordered SFP on the latency performance.  

To implement fixed-ordered SFP version, we modify the 
MCA program to use paths that have the same execution order 

of SFs as the shortest path, for each SFC.  
We execute MCPON (fixed-ordered SFP version) to 

construct MCTs for the 7 SFCs in full-mesh topology and 
partial-mesh topology respectively (at scale of 20 SFFs). Note 
that we build a partial-mesh topology by randomly removing 
half of the links in the full-mesh topology, and we estimate 
latency performance of each SFC under the same traffic 
injection as in our experiment 2. Compared with partially-
ordered SFP version (Fig. 10 and Fig. 12), the results indicate 
that for the fully meshed topology, there is no significant 
latency difference between using partially-ordered SFP and 
fixed-ordered SFP, since full-mesh topology still provides 
enough multipath diversity. As for a general partial-mesh 
topology, using partially-ordered SFP reduces latencies of SFC 

 
Fig. 13. The latency reductions of 7 SFCs compared with single-path service 
chaining (partial-mesh inter-datacenter network). 
  

 
Fig. 12. The latency performance of 7 SFCs when using different number of paths 
(partial-mesh inter-datacenter network). 
  

 
Fig. 14. The forwarding entry consumption of 7 SFCs when using different 
number of paths. 
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1 to SFC 6 by about 8-27% (13% on average) compared to using 
fixed-ordered SFP when k = 6, as shown in Fig. 15. In addition, 
there is no latency difference for SFC 7 because SFC 7 has no 
cascading non-order-constrained SFs.  

VI. CONCLUSION AND FUTURE WORK 
In this paper we propose an MCPON mechanism, which 

proactively computes and installs multiple forwarding paths for 
the commonly-used SFPs, to achieve low-latency service 
function chaining across inter-datacenter network. 

MCPON deploys weighted multipath with the proposed 
MCA, and adopts a modified NSH which allows the SFC 
encapsulation to have different execution orders of SFs from 
the order defined by SPI to support partially-ordered service 
chaining. We also design an MCT to forward packets which are 
encapsulated with the proposed partially-ordered NSH. 
Moreover, MCT reduces the forwarding entry consumption, by 
enabling forwarding entries to be shared among different SFC 
requests. 

Our evaluations show that proactive k-path computation for 
an SFC of length l at scale of n SFFs saves time complexity of 
O(kl3n3) as compared to on-demand computation, and multipath 
service chaining reduces latency by 33–68% compared to 
single-path service chaining in our simulation scenarios. The 
evaluation also indicates that MCT reduces forwarding entry 
consumption by about 36% as compared to per-request 
forwarding in our simulation environment. Note that the actual 
reduction of forwarding entry consumption depends on the 
similarity between SFCs. In addition, the proposed partially-
ordered NSH enables partially-ordered SFP to increase 
multipath diversity for better load balancing, which reduces 
latency by 8-27% compared to fixed-ordered SFP in partial-
mesh inter-datacenter network. 

In future work we plan to deploy dynamic path adjustment 
[32], [33] to adapt to the fast-changing traffic in an inter-
datacenter network. Path updating in real-time service delivery 
is still a key challenge for SFC path selection [27]. Furthermore, 
if the traffic demands of SFCs are predictable, then proportional 
routing solutions [34], [35] could also be applied to optimize 
the network performance. In addition, we also plan to perform 
a rigorous theoretical analysis on performance of MCPON in 

our future work. 
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