
TNSM-2021-04427.R1 1

Abstract—Service Function Chaining (SFC) provides a method

of forwarding traffic flows through one or more service functions
(SFs). For service providers, chaining SFs across multiple
datacenters to deliver end-to-end services not only provides better
utilization of computing resources of datacenters, but also achieves
scalability and fault tolerance. However, most telecommunication
applications are sensitive to latency, which tends to degrade due to
both virtualization and the long distances among datacenters. In
this paper, we extend the network service header (NSH) protocol
and propose a multipath chaining with the partially-ordered NSH
(MCPON) mechanism to achieve low-latency, partially-ordered
service function chaining. MCPON adopts a proactive multipath
installation for commonly-used service function paths (SFP, a
sequence of requisite SFs) to eliminate reactive path decision
delays and to reduce end-to-end service latency. To increase
multipath diversity for better load balancing, we modify the
original NSH encapsulation design so that the multiple paths
selected for an SFP are not limited to having the same execution
orders of some non-order-constrained SFs. MCPON also utilizes
an entry-saving forwarding table design which enables forwarding
entries to be shared among different SFC requests. Our
evaluations show that proactive k-path computation for an SFC of
length l at a scale of n SFFs saves time complexity of O(kl3n3), and
multipath service chaining reduces latency by 33–68% compared
to single-path service chaining in our simulation scenarios.

Index Terms—Multipath, Network Service Header, Service
function chaining

I. INTRODUCTION
ERVICE function chaining (SFC) [1], [2] provides a
method of forwarding traffic flows through one or more

service functions (SFs) in some specific order for the delivery
of end-to-end services. To increase the flexibility and reduce
capital expenditure (CAPEX) and operational expenditure
(OPEX) of service deployments, network function
virtualization (NFV) [3] was developed to transform much
hardware network equipment (e.g., routers, firewalls, and load
balancers) into virtual network functions (VNFs), which can be
consolidated onto commodity servers and switches in
datacenters. Since NFV creates a very dynamic network

Manuscript received Sep 11, 2021; revised Mar 12, 2022; accepted Jul 15,

2022.
Y. C. Wang is with the Department of Computer Science, National Chiao

Tung University, Hsinchu, Taiwan (e-mail: scott0612@cht.com.tw).

environment driven by customers requesting on-demand
services and operators aiming to efficiently manage the
performance of services, Software Defined Networking (SDN)
[4], [5] plays an important role in the orchestration of NFV
infrastructure resources (e.g., physical and virtual switching) by
offering comprehensive network monitoring and dynamic
provisioning of network connectivity, bandwidth, and security
policy. Several studies [6], [7] highlight the benefits of SDN
and NFV on providing efficient network resource allocation
and QoS improvement in different types of networks. A good
example is the Central Office Re-architected as a Datacenter
(CORD) [8], [9] platform which integrates NFV, SDN and
cloud-native architecture design to transform telco central
offices into agile edge datacenters, for network operators to
deliver innovative services with great user experience. Service
providers like AT&T and Verizon are already supporting
CORD.

For service providers, chaining VNFs or SFs across multiple
datacenters (CORDs, core datacenters, or clouds) [10], [11] to
deliver end-to-end services not only provides better utilization
of the computing resources of datacenters but also achieves
scalability and fault tolerance. However, most
telecommunication applications are sensitive to service latency,
which tends to degrade due to both virtualization and the long
distances among datacenters [11]. In this paper, we focus on
delivering low-latency service function chaining in a software-
defined multi-datacenter environment and propose an MCPON
(multipath chaining with partially-ordered NSH) mechanism,
which adopts proactive multipath installation for SFC requests
with consideration of the order of SFs, the network latencies,
and the processing latencies of SFs.

A. Service Function Chaining with SDN and Network Service
Header

To serve an incoming service chain request in service
function chaining (SFC) architecture [1], a classifier (or service
classification function) selects a suitable service function path
(SFP, a sequence of SFs) that traverses all requisite SFs in a
specific order (fixed-ordered SFP), and then encapsulates the
request flow with network service header (NSH) [12] which

R. H. Hwang is with the College of Artificial Intelligence, National Yang
Ming Chiao Tung University, Hsinchu, Taiwan (e-mail:
rhhwang@cs.ccu.edu.tw).

Y. D. Lin is with the Department of Computer Science, National Chiao Tung
University, Hsinchu, Taiwan (e-mail: ydlin@cs.nctu.edu.tw).

Low-latency Service Chaining with Predefined
NSH-based Multipath across Multiple

Datacenters
Yao-Chun Wang, Ren-Hung Hwang, Senior Member, IEEE, and Ying-Dar Lin, Fellow, IEEE

S

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 2

carries the information of the SFP, and finally sends the
encapsulated flow to service function forwarders (SFFs) for
service delivery. An NSH is mainly composed of a Service Path
Header, which contains a Service Path Identifier (SPI), and a
Service Index (SI). The SPI uniquely identifies an SFP, and the
SI provides a location within the SFP. An SFF can determine
the next hop for the requisite SF according to the SPI/SI values.
In addition, the SI will be decremented by 1 by the serving SF
after performing the required service. Table I lists some
common acronyms defined in SFC architecture [1] and NSH
[12].

With SDN, the network intelligence is decoupled from the
forwarding plane and centralized in SDN controllers that
control several devices with a global view of a network.
OpenFlow [13], [14] is the premier standardized interface
between SDN controllers and switches. By setting the default
policy of SDN (or OpenFlow) switches, the first packet of a
new fixed-ordered or partially-ordered (some SFs can be
executed in a flexible order) service chain request can be
directed to an SDN controller, which reactively decides a
suitable SFP and installs the best single forwarding path, and
then redirects the packet to a classifier (i.e., an edge SDN switch
which executes packet encapsulation), for starting the end-to-
end service delivery. In view of this, our proposal aims to
reduce forwarding path decision delays (including computation
and configuration) and end-to-end service latency.

B. The Proposed Method: MCPON
In order to achieve low-latency service function chaining, we

present an MCPON (multipath chaining with partially-ordered
NSH) mechanism, which reduces forwarding path decision
delays and end-to-end service latency for each new
fixed/partially-ordered SFC request.

To reduce a forwarding path decision delay, MCPON
proactively computes forwarding paths and installs
corresponding forwarding entries in SFFs for commonly-used
SFPs. The commonly-used SFPs are some predefined popular
lists of SFs, e.g., Firewall, IDS, and DPI. To serve a new
incoming service chain request, an SDN controller only needs
to install an entry in the classifier (for matching characteristics
of the request flow) once the requisite SFs (SFP) of the new
request has been decided so that the classifier can encapsulate
packets according to the entry, and forward the encapsulated

packets to the starting SFF for the delivery along a predefined
forwarding path. If an SFC request arrives and it does not
belong to any of these commonly-used SFPs, then MCA will
add the new SFP to commonly-used SFPs and reactively
compute forwarding paths. In this case, path decision delay is
inevitable for the first time.

To further reduce end-to-end service latency, MCPON uses
multipath routing. In addition, multipath routing provides
network load balancing and fault tolerance in the presence of
network link failures, which may affect service availability and
user Service Level Agreement (SLA) [15]. With this approach,
SFC requests, which have the same requisite SFs and the same
starting SFF, will be matched by the same forwarding entries
but may be forwarded to different paths.

In addition, to increase multipath diversity (i.e., options for
path selection) for better load balancing, the multiple paths we
selected for an SFP may have different execution orders of
some non-order-constrained SFs. For a partially-ordered SFC
request, the actual execution order of SFs may depend on the
path to be traversed; however, a partially-ordered SFP is not
supported by the original NSH design. In light of this, MCPON
adopts a modified NSH which allows the SFC encapsulation to
have different execution orders of SFs from the order defined
by the service path identifier (SPI).

Our proposal considers partially-ordered SFC for the
following reasons. First, partially-ordered SFC is explicitly
defined as one of the SFCs to be supported in RFC 7498. It is
also very common in real-world applications. For example, the
order of executing 'URL Filtering' and 'Email Spam Filtering'
in a security service chain does not affect the results. Second,
fixed-ordered SFC is a special case of partially-ordered SFC,
which means MCPON can also handle fixed-ordered SFC
requests. MCPON specifically provides the following features:

1) Elimination of path decision delay with proactive path
installation and modified NSH

The packets of a partially-ordered SFC request are
encapsulated with modified NSH (or partially-ordered NSH)
and forwarded along one of the predefined multiple paths. To
support partially-ordered SFP (flexible execution order of SFs
in SFP), we modify the usage of the 24 bits SPI and 8 bits SI in
NSH.

2) Low end-to-end service latency with weighted multipath

We propose a multipath chaining algorithm (MCA) to
compute weights of multiple forwarding paths with
consideration of the order of SFs, the network latencies and the
processing latencies of SFs. The path weight is regarded as the
probability of selecting the path.

3) Entry-saving forwarding table design

To forward packets encapsulated with the proposed partially-
ordered NSH, we design a forwarding table in SDN-enabled
SFF, termed the multipath chaining table (MCT), to consult the
modified SPI/SI values in order to determine the next hops.
Since SDN switches rely on limited Ternary Content-
Addressable Memory (TCAM) [16] to store forwarding entries,

TABLE I
ACRONYMS IN SFC ARCHITECTURE AND NSH

Acronyms Terms Defined in

SFC Service Function Chain

RFC 7665
SF Service Function

SFF Service Function Forwarder

SFP Service Function Path

NSH Network Service Header

RFC 8300 SPI Service Path Identifier

SI Service Index

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 3

scalability is a major concern for service providers. To reduce
forwarding entry consumption, MCT also enables forwarding
entries to be shared among different SFC requests. The
reduction of TCAM requirement may also help to reduce
network CAPEX.

In the evaluation of MCPON, we prepare a set of SFCs of

different lengths and measure the reactive path computation
times (which can be saved by proactive path installation) for the
set of SFCs at different scales of an inter-datacenter network.
We also measure the consumption of forwarding entries that are
proactively installed to SFFs by MCPON for the set of SFCs (in
the cases of using different numbers of multiple paths), and then
we estimate the corresponding latency performance of these
SFCs with random traffic injection in a simulation environment.
We further compare the forwarding entry consumption with
per-request forwarding (no share of forwarding entries between
SFCs).

In summary, we propose a proactive multipath chaining
mechanism with partially-ordered NSH that achieves low-
latency partially-ordered SFC, by reducing forwarding path
decision delay and end-to-end service latency. We also design
an entry-saving forwarding table that enables forwarding
entries to be shared among different SFC requests. The main
contribution of this work is that we designed a partially-ordered
NSH along with MCT that can forward the SFC encapsulations
along multiple paths which may have different execution order
of SFs.

The remainder of this paper is organized as follows: Section
II discusses related works; Section III describes the problem;
Section IV illustrates solution details; Section V shows the
experimental results and related observations, and Section VI
contains the conclusions and future work.

II. RELATED WORK
Service function placement ([11], [17], [18], [19]), service

chaining ([10], [20], [21], [22], [23], [24]) and dynamic scaling
([25], [26]) are key challenges [27] of providing service
function chaining. The placement problem aims to determine
the optimal SF locations to meet service requirements while

optimizing resource utilization. The chaining problem aims to
find the optimal SFC path according to different service
requirements, such as end-to-end latency, generated cost, and
energy consumption. And the scaling problem investigates
ways to flexibly deploy SF instances in order to cope with the
changing network workloads while improving energy
efficiency.

In this work, we focus on the service chaining problem and
propose a comprehensive solution, including path decision and
packet forwarding, to achieve low-latency service function
chaining.

Table II gives a summary of related works. For path decision,
several path-finding solutions [10], [20], [21], [22] focus on
finding the best path for each request flow. Vertex-centric
distributed resource orchestration [10] finds all feasible
mappings of an SFC (which can be further pruned to obtain the
best SFC to satisfy the constraint) in multi-domain networks
without replication of global state information, via message
exchange between vertices (physical nodes capable of invoking
a subset of SFs). A heuristic algorithm, QoS-Guaranteed SFC
Outsourcing algorithm (QGSO) has been developed [20] to find
the cost-efficient path based on Hidden Markov Model (HMM),
with consideration of the order of VNFs in SFC, the QoS
requirements, and the diverse pricing schemes of VNFs of
different cloud providers. Adaptive Service Routing (ASR)
algorithm [21] is a novel method that transforms the network
representation to a layered graph that considers processing steps
and allows the use of conventional shortest path algorithms
(Dijkstra’s algorithm) to determine the best path for an SFC.
Energy-aware routing (EAR) [22] uses the breadth-first search
(BFS) algorithm to find the best path that jointly optimizes the
server energy and bandwidth costs for dynamic SFC
deployment. As noted above, MCPON proactively installs
forwarding paths to eliminate path decision delays. To avoid
traffic congestion caused by mapping all SFC requests that have
the same requisite SFs to a single path, MCPON adopts
weighted multipath routing for network load balancing.

For packet encapsulation and forwarding table design, the
NSH offers a common and standards-based header for service
chaining to all network and service nodes. NSH/RFC 8300 [12]
gives an example to illustrate weighing SFs (for load

TABLE II
RELATED WORKS

 Category Order of SFs in SFC request Path decision Encapsulation and Forwarding

Vertex-centric distributed
resource orchestration [10]

Path-finding algorithm

Partially-ordered Single path

N/A
QGSO [20] Fixed-ordered Single path

ASR [21] Partially-ordered Single path

EAR [22] Fixed-ordered Single path

NSH [12]

Encapsulation and
forwarding table design N/A N/A

Fixed-ordered SFP, multipath

CRT-Chain [23] Fixed-ordered SFP, single path

KeySFC [24] Fixed-ordered SFP, single path

MCPON Comprehensive solution Partially-ordered Weighted multiple paths Partially-ordered SFP, multipath

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 4

distribution or redundancy); in this case, the table lookup
(occurring on an SFF) may return more than one possible next
hop within an SFP for a given SF. MCPON adopts NSH-Based
service chaining and further extends the idea of weighing SFs
to weighed multipath, enabling SFC requests that have the same
requisite SFs to have the same header and to traverse multiple
possible paths (which may have different execution order of
some flexible-ordered SFs). To do so, MCPON has to modify
the original NSH and forwarding table design for supporting
multipath forwarding with partially-ordered SFP. CRT-Chain
[23] is a service chain forwarding protocol that leverages the
Chinese Remainder Theorem (CRT) to compress the
forwarding information into small labels (which can replace the
32-bit service path header of the legacy NSH). With CRT-
Chain, an SFF only needs to conduct simple modular arithmetic
to extract the forwarding rules directly from CRT-Chain’s
labels attached in the header and requires only constant
forwarding entries, regardless of the number of SFC requests.
Similarly, KeySFC [24] also performs efficient forwarding
using the residue numeral system (RNS). However, CRT-Chain
and KeySFC are unable to support multipath forwarding since
the table lookup with the modular arithmetic can return only
one next hop.

Compared with existing approaches, our proposal involves
the design of path decision, packet encapsulation, and a
forwarding table to support multipath service chaining to
reduce end-to-end service latency. A comparison of latency
performance with single-path service chaining will be evaluated
in Section V.

III. PROBLEM STATEMENT
A scenario of service function chaining across multiple

datacenters is shown in Fig. 1, and the notations used in the
problem description are given in Table III. We assume that a
service provider owns a set of NFV-enabled datacenters (C),
which are interconnected via a set of overlay links (L) between
a set of SFFs (S) to provide SFC in a single SFC-enabled
domain [1]. Each datacenter ci (ci ∈ C) has a border SFF si (si ∈
S), and a pair of SFFs (si, sj) is connected by an overlay link

linkij (linkij ∈ L).
The service provider provides a set of SFs (F), and each kind

of SF fi (fi ∈ F) may have multiple instances (fij) which are
allocated in multiple datacenters. The location of fij (i.e., the
datacenter in which fij is located) is denoted by l(fij). We assume
that each datacenter has at most one instance of fi.

Each SFC request rn from the user will be directed to the SFF
of the nearest edge datacenter (by a classifier) for service and
can be served by more than one datacenter. The edge datacenter
can handle the received SFC request on its own or make use of
the SF resources in other datacenters (i.e., chaining SFs in a
single datacenter or across multiple datacenters), depending on
its capabilities. We assume that the forwarding path of an SFC
request starts and terminates (be decapsulated) at the same SFF
(i.e., the SFF of the nearest edge datacenter).

The SFC request is denoted by rn = (si, (rf1, rf2, . . . , rfk)),

Fig. 1. A scenario of service function chaining across multiple datacenters.

TABLE III
NOTATIONS

Categories Notations Descriptions

Topology G=(S, L) The network topology with
SFFs S and overlay links L.

DC C The set of datacenters.

ci The i-th datacenters, ci ∈ C.

SFF si The SFF of ci, si ∈ S. Each
datacenter has a border SFF.

Link linkij The overlay link from si to
sj. si, sj ∈ S; linkij ∈ L; i ≠ j.

t_linkij The measured network
latency of linkij.

SF F The set of SFs.

fi The i-th SF, fi ∈ F.

fij The j-th instance of fi. Each
datacenter has at most one
instance of fi.

t_fij The measured processing
latency of fij, which consists
of the roundtrip network
latency between fij and local
SFF and the processing
latency at fij.

l(fij) The location of fij (i.e., the
datacenter in which fij is
located).

F* The set of non-order-
constrained SFs, F* ⊆ F.

fi* fi = fi* if fi ∈ F*. The
execution order of cascading
non-order-constrained SFs
in a request can be
interchanged.

Request rn = (si, (rf1, rf2, . . . , rfk)) si: The SFF of the nearest
edge datacenter.
(rf1, rf2, . . . , rfk): The SFP,
i.e., an ordered sequence of
k requisite SFs.

Multipath pathni The i-th path for request rn.

t_pathni The latency of pathni.

wni The weight (probability of
selection) of pathni.

avg_t_pathn The weighted average path
latency for request rn.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 5

which contains the information of the nearest SFF si and an SFP,
i.e., an ordered sequence of k requisite SFs (rf1, rf2, . . . , rfk),
rfi=1~k ∈ F. We assume that some SFs are not order-constrained,
which means that the execution order of cascading non-order-
constrained SFs could be interchanged. The set of non-order-
constrained SFs is denoted by F* (F* ⊆ F, fi = fi

* if fi ∈ F*). For
example, for an SFC request which has an SFP (f1, f2

*, f3
*, f4, f5

*,
f6

*, f7), the execution order of f2
*, f3

* can be swapped, and so do
f5

*, f6
*.

Our proposal aims to reduce the forwarding path decision
delay and minimize the end-to-end service latency, so as to
deliver low-latency service function chaining in a multi-
datacenter environment. As noted above, the path decision
delay could be eliminated by the proactive installation of
forwarding paths. Thus, the objective of MCPON is to
determine the forwarding plane design along with the
forwarding entries to be proactively installed for each
commonly-used SFP, which minimizes the average service
latency of SFC requests that have the same starting SFF and the
same SFP.

The service latency of an SFC request includes network
latencies of overlay links and processing latencies of SFs. The
network latency of link linkij is denoted by t_linkij, and the
processing latency of SF fij is denoted by t_fij, which represents
the roundtrip latency between fij and local SFF (i.e., the SFF of
the datacenter in which fij is located).

More precisely, the objective of MCPON can be described as
follows:

given
1. the network topology G = (S, L) of a set of datacenters

C,
2. the measured latencies of all network links, i.e., t_linkij

for all linkij in L,
3. the set of all SFs and non-order-constrained SFs, i.e., F

and F*,
4. the locations and the measured processing latencies of

all SFs, i.e., l(fij) and t_fij for all fij,
5. a commonly-used SFP, i.e., (rf1, rf2, . . . , rfk), rfi=1~k ∈ F,
6. a starting SFF si, si ∈ S,

the goal is to
1. determine the weighted multipath to distribute the traffic

load of SFC requests that start at SFF si and have SFP
(rf1, rf2, . . . , rfk), so as to minimize the weighted average
path latency for these SFC requests. Supposing that the
latency of the i-th path pathni for SFC rn, is denoted by
t_pathni, and the weight (probability of selection) of
pathni is denoted by wni, then the weighted average
latency of k paths, avg_t_pathn, can be expressed as

𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑛𝑛 = ∑ (𝑤𝑤𝑛𝑛𝑛𝑛 × 𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑛𝑛𝑛𝑛)𝑘𝑘

𝑖𝑖=1 / ∑ 𝑤𝑤𝑛𝑛𝑛𝑛𝑘𝑘
𝑖𝑖=1 .

2. transform the weighted multipath to forwarding entries

to be proactively installed in SFFs. This objective
involves the design of SFC encapsulation protocol and
forwarding table of SFF.

IV. SOLUTION DESIGN
The proposed MCPON solution is aimed at achieving low-

latency service function chaining across multiple datacenters.
To eliminate forwarding path decision delays and to provide
low end-to-end service latency, MCPON proactively computes
and installs multiple forwarding paths for each given
commonly-used SFP, by applying a multipath chaining
algorithm (MCA), which determines weighted multipath based
on a global view of the inter-datacenter network. In practice, the
path weights have to be continuously updated according to the
network status.

MCPON adopts NSH-Based service chaining. Each SFC
request from a user will be encapsulated with an SFP and
directed to the SFF of the nearest edge datacenter (by a
classifier), for service delivery along one of the predefined
multiple paths. Since we assume that some SFs are not order-
constrained, the possible forwarding paths of a commonly-used
SFP are allowed to have different execution orders for
cascading non-order-constrained SFs, so as to increase path
diversity and to achieve better load balancing. Thus, SFC
requests that have the same SFP and the same starting SFF will
be matched by the same forwarding entries but may be
forwarded along different paths, and the actual execution order
of SFs depends on the path to be traversed.

Fig. 2 shows the architecture of the proposed MCPON,
which involves management plane design (MCA for multipath
decision) and data plane design (partially-ordered NSH and
MCT for SFC encapsulation forwarding). In Fig. 2, we assume
all network links have the same bandwidth, and all SF instances
have the same processing capacities. For an SFC r1 = (s1, (f1,
f2

*, f3
*)), we can choose to use two paths path_A ([s1, f1, s1, s2,

f2, s2, f3, s2, s1]) and path_B ([s1, s3, f1, s3, f3, s3, s1, f2, s1]) with
equal probability to balance the incoming request flows. Note
that path_A and path_B have different execution orders of f2

*
and f3

*, and even traverse totally different network links and SF

Fig. 2. The architecture of the proposed MCPON.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 6

instances. Suppose network link latency and SF processing
latency increase as the traffic load increase. Then compared
with single-path chaining (i.e., using only path_A or path_B),
two-path chaining can reduce average path latency after
injection of request traffic flows.

However, a partially-ordered SFP (flexible execution order
of some SFs in an SFP) will not be supported by the original
NSH. To support such a partially-ordered SFP, MCPON
devises a partially-ordered NSH by modifying the usage of
SPI/SI in the original NSH design, so that the SFC
encapsulation supports different execution order of SFs for a
SPI.

To forward packets encapsulated with the partially-ordered
NSH, we also design a multipath chaining table (MCT) in SFF
which consults modified SPI/SI values to determine possible
next hops. Furthermore, MCT enables forwarding entries to be
shared among different SFC requests, reducing forwarding
entry consumption.

Below we elaborate the proposed partially-ordered NSH, and
then illustrate the design of the multipath chaining table (MCT).
Finally, we explain the multipath chaining algorithm (MCA).

A. Partially-ordered NSH
In SFC architecture, an NSH is inserted by the initial

classifier at the start of an SFP, and removed at the end of an
SFP by the last SFF. The NSH is composed of a 4-byte Base
Header (information about the service header and the payload
protocol), a 4-byte Service Path Header (path identification and
location within a service path), and optional Context Headers
(metadata carried along a service path).

To support partially-ordered SFP, MCPON modifies the
usage of the Service Path Header in the original NSH design.

1) Modifications on Service Path Header

The Service Path Header contains a 3-byte Service Path
Identifier (SPI) and a 1-byte Service Index (SI). SPI uniquely
identifies an SFP, and SI provides the location within the SFP.
The initial classifier sets the appropriate SPI (a path ID for a
given classification result) and the initial value of SI to 255 (or
the length of the given SFP), and sends the packet to the first
SFF (in the identified SFP) for forwarding along a service path.
SFFs can determine the next SF or SFF in the service path
according to the SPI/SI values. The SI will be decremented by
1 by the serving SF after performing the required service. In the
original NSH design, the combination of SPI and SI provides
the identification of an SF and its order within the service plane.

To support partially-ordered SFP, MCPON adopts the
proposed partially-ordered NSH, in which the SPI and SI are
respectively replaced by a set of SF descriptions and a mask.
Each bit in SI is mapped to an SF in the SPI and records the
execution status of the corresponding SF. For execution status,
1 signifies executed, and 0 unexecuted. We assign each bit in
SI a position number ranging from 0 (for the most significant
bit) to 7 (for the least significant bit). Fig. 3 illustrates the
updates to the SI mask by SFs. For a classifier to encapsulate
an SFP of length 5 (f2, f7, f3

*, f5
*, f6), five of the most significant

bits (position number 0 to 4) of the SI are mapped to the five

SFs and are initially set to 0, and the remaining three least
significant bits (position numbers 5 to 7) are set to 1. Each zero
bit in SI will be set to 1 by the corresponding SF after service
execution, as shown in Fig. 3.

To map each bit in the 8-bit SI to an SF description in the 24-
bit SPI, we assign 3 bits to each SF description by default,
which means the system can support 8 SF types in total. The
mapping of a bit in SI to an SF description in SPI is shown in
Fig. 4. For updating the SI mask, an SF can obtain a position
number by searching its assigned description in the SPI with a
sliding window of size 3, which moves right by three positions
each time from the most significant bits to the least significant
bits. Then the SF will set value 1 to the bit located at the
obtained position in SI after service execution. For example, in
Figs. 3 and 4, SF f3

* can obtain position 2 after searching for its
assigned description 010 in the SPI, so as to set value 1 to the
bit located at position 2 in SI after service execution.

In partially-ordered NSH, the combination of SPI and SI
provides an unexecuted-SF list, which is consulted by the
proposed MCT in SFF in order to determine the next SF or SFF.

The modification on NSH may affect the packet matching
efficiency of an SFF, because an SFF needs to compute the
unexecuted-SF list according to the modified NSH for MCT
matching. But this issue involves hardware logic design and is
beyond the scope of this paper.

2) Reclassification for scalability with Context Header

By default, the system supports 8 SF types in total because
of the 3-bit SF description. To support more than 8 SF types in
the system, we can assign more than 3 bits to each SF
description. However, expansion of SF description will result
in a shrinkage of the number of SFs that an SPI can
accommodate. For example, to support 64 SF types in the
system, we need a 6-bit SF description, and there will be at most
4 (24 divided by 6) SF descriptions in an SPI. To serve an SFC
request which has SFP length larger than what an SPI can

Fig. 3. The updates to SI mask by SFs.

Fig. 4. The mapping of a bit in SI to an SF description in SPI by default.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 7

support, we make use of the reclassification feature for
scalability with metadata design in variable-length Context
Header.

The SFC architecture [1] supports reclassification as well,
typically performed by a classification function co-resident
with an SF (or a reclassification SF). As packets traverse an
SFP, reclassification may occur, which results in a change of
SFP (a replacement of SPI/SI) or an update of the associated
metadata. The metadata in the Context Headers provide the
ability to exchange context information between classifiers and
SFs, and among SFs.

In our design, if the length of a given SFP exceeds the
number of SFs that an SPI can accommodate, we first cut the
SFP into segments and insert a reclassification SF between
every two connected SFP segments to generate a new SFP. We
assume that if an SPI can accommodate n SFs, the SFP segment
length would be equal to n - 1. The initial classifier then puts
the first n SFs in the new SFP to SPI and puts the remaining SFs
(in the new SFP) to metadata. Further, n of the least significant
bits of the SI are set to 0, and the remaining bits are set to 1. As
for each reclassification SF, it always retrieves a new SFP from
the metadata of the received NSH packet and updates the NSH
likewise based on the new SFP.

Fig. 5 illustrates the replacement of NSH resulting from
reclassification in a system with a 6-bit SF description. As noted
above, an SPI can accommodate 4 SFs with a 6-bit SF
description, with the SFP segment length equal to 3. For a given
SFP of length 9 (f1, f2

*, f3
*, f4, f5, f6

*, f7
*, f8, f9), it will be divided

into 3 segments, and 2 reclassification SF fc will be inserted
between SFP segments. Since the new SFP will be (f1, f2

*, f3
*,

fc, f4, f5, f6
*, fc, f7

*, f8, f9), the initial classifier then allocates the
first 4 SFs (i.e., f1, f2

*, f3
*, fc) to SPI and the remainder of SFs

(i.e., f4, f5, f6
*, fc, f7

*, f8, f9) to metadata, and finally sends the
packet to an SFF for forwarding, as shown in Fig. 5(a). Once
the first reclassification SF fc receives NSH packets (which
means f1, f2

*, f3
* has been executed), fc will fetch the new SFP

from the metadata (i.e., f4, f5, f6
*, fc, f7

*, f8, f9), and then likewise
update the NSH, as shown in Fig. 5(b), by allocating the next 4
SFs (i.e., f4, f5, f6

*, fc) to SPI and the rest of SFs (i.e., f7
*, f8, f9) to

metadata, and also resetting the SI.

3) Modifications on Base Header

As set out above, the Base Header provides information
about the service header. A Version field can be used to indicate
whether an NSH is a partially-ordered version or not. To carry
variable-length metadata along a service path for
reclassification, the Metadata (MD) Type should be set to 0x2,
which means zero or more Variable-Length Context Headers
may be added immediately following the Service Path Header.
We also use the 5 unassigned bits to identify the datacenter ID
(CID), which will be discussed below.

B. Multipath Chaining Table (MCT)
Fig. 6 shows the layout of a multipath chaining table (MCT).

MCT determines possible next hops (i.e., SF or SFF) for
partially-ordered NSH packets, based on an unexecuted-SF list
and a starting edge datacenter ID (CID, and can be regarded as
the index of SFF). The unexecuted-SF list can be obtained by
applying an SI mask to the SPI, and the CID is encapsulated in
the Base Header by an initial classifier. The table lookup may
return more than one possible next hop - essentially a series of
weighted paths to be used for load distribution. With MCT,
different SFC requests that have the same unexecuted-SF list
(may be indicated by different combinations of SPI and SI) and
the same starting SFF (CID) can be served by the same shared
forwarding entries but may be forwarded to different paths, so
as to reduce the forwarding entry consumption.

Furthermore, once the unexecuted-SF list of an encapsulated
packet is empty (i.e., all bits of SI are 1), the packet will be
forwarded to the final SFF (which is the same as the starting
SFF) based on the CID, and be decapsulated by the final SFF.

C. Multipath Chaining Algorithm (MCA)
To provide low end-to-end service latency for each given

commonly-used SFP, a multipath chaining algorithm (MCA)
takes network latencies and SF processing latencies into
consideration, computing weights for multipath routing and
determining forwarding entries (in SFFs) for load distribution,
based on a global view of the inter-datacenter network. Fig. 7

Fig. 5. The replacement of NSH caused by reclassification in a system with a
6-bit SF description.

Fig. 6. The layout of the multipath chaining table (MCT).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 8

shows the flowchart of MCA. With given parameters as set out
in Section III, the MCA first makes use of an ASR algorithm
[21] to transform the network graph to a layered graph, so that
conventional path algorithms can be used to find paths that
traverse all requisite SFs in the correct order. In a network graph
transformation, for a given SFP (rf1, rf2, . . . , rfk), k layers will
be added to the original graph (i.e., k + 1 layers in total). Each
layer is an exact copy of the original graph, and every node
(SFF) in the ith layer has a layer qualifier i. The first layer is the
base layer of the network topology, G. The (i + 1)th layer (i ≥ 1)
is connected vertically to the ith layer only through SFFs l(fij)
that provide rfi. The cost of each link within a layer is defined
by the corresponding network latency (e.g., t_linkij), and the
cost of each vertical (cross-layer) edge is defined by the
corresponding processing latency (e.g., t_fij). If there are
cascading non-order-constrained SFs in the given SFP, the
MCA will find all feasible orders and construct the layered
graph as per the specified order or just a layered graph with
branches. For more details, the reader is referred to [21].

The MCA then greedily finds k-least-latency paths on the
layered graph by Yen's algorithm [28], from the starting SFF si
in the first layer (source node) to the si in the last layer
(destination node). Note that the cross-layer paths may not be
edge-disjoint (i.e., they may share some edges). After this, the
MCA maps each cross-layer path to a path in the original graph,
by folding nodes with layer qualifiers back into their base
nodes, according to [21]. A feasible forwarding path in the
original graph is a list of SFFs and SFs, e.g., [si, f1, si, sj, f2, sj,
…, si]. Different paths may have different execution orders of
cascading non-order-constrained SFs.

The next step is to determine the weights for all paths in the
multipath routing in the original graph. Since we proactively
compute and install multiple paths for the given commonly-
used SFP without bandwidth demand, MCA only needs to
calculate path weights based on current network status, i.e., the
path latency derived along with each path by Yen's algorithm.
Similar to [29] and [30], the idea of latency-aware traffic load
distribution in MCA is to have the path weight inversely
proportional to the path latency to achieve load balancing. To
be specific, for an SFC request rn, we denote the least common

multiple (LCM) of all path latencies by t_lcmn, and denote the
latency of the i-th path pathni by t_pathni. Then the weight of
pathni (denoted by wni) can be expressed as

𝑤𝑤𝑛𝑛𝑛𝑛 = 𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 / 𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑛𝑛𝑛𝑛.

In practice, to maintain the efficiency of multipath, the path
weights should be periodically recalculated according to the
measured path latencies.

Finally, MCA constructs the MCTs in SFFs, by transforming
the multiple weighted paths to forwarding entries to be installed
in several SFFs. As mentioned in Section IV B, a packet is
matched against the starting CID and the unexecuted-SF list,
and will be forwarded to one of the possible next hops (i.e., SF
or SFF) by the matching entry, based on weights of the next
hops.

Fig. 8 shows the flowchart of MCT construction, and
Algorithm 1 presents the pseudocode version of Fig. 8. In
Algorithm 1, to generate forwarding entries for the given SFP
and starting SFF (CID), MCA sequentially adds or updates
forwarding entries for each feasible weighted path. For each
path iteration (line 1), the variable, unexecuted-SFP (which is
an unexecuted-SF list) is initialized to the given SFP (line 2),
and the path will first be transformed into edges (line 3). For
example, a forwarding path [s1, f1, s1, s2, f2, s2, s1] for a request
r1 = (s1, (f1, f2)) will be converted into 6 edges [s1, f1], [f1, s1],

Fig. 7. The flowchart of the multipath chaining algorithm (MCA).

Fig. 8. The flowchart of MCT construction.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 9

[s1, s2], [s2, f2], [f2, s2] and [s2, s1]. An edge is considered as a
link from a node to its next-hop (e.g., for an edge [s1, f1], s1 is
the node and f1 is the next-hop). After that, MCA iterates
through these edges, taking appropriate action for different
types of edges.

For each edge iteration (line 4), if the source node of an edge
is an SFF (e.g., edges [s1, f1], [s1, s2], [s2, f2] and [s2, s1]), then
MCA first checks whether the CID and unexecuted-SFP match
an existing entry in the MCT of the source node (line 8). If not,
MCA adds a new entry for the unexecuted-SFP, and adds the
next-hop of the edge (an SF or an SFF) to the next-hop list (or
output list) of the new entry along with the path weight (line
10); otherwise MCA further checks whether the next-hop exists
in the next-hop list of the matched entry (line 12). If not, MCA
adds the next-hop to the next-hop list of the matched entry along
with the path weight (line 17); otherwise, MCA updates the
weight of the next-hop in the next-hop list of the matched entry
by adding the path weight (line 14) (i.e., the accumulated
weight for the shared edges among paths). Note that a new entry
will be added to an MCT only if the CID and unexecuted-SFP
do not match any existing entry in the MCT. At the end of edge
iteration, MCA checks whether the next-hop is an SF (line 18).
If yes (e.g., edges [s1, f1] and [s2, f2]), the unexecuted-SFP will
be updated by removing the SF (line 20), and then the process
proceeds to the next edge iteration, otherwise it proceeds to the
next edge iteration without updating the unexecuted-SFP. After
MCA has iterated through all feasible weighted paths, the
forwarding entries for the given SFP and starting SFF (CID) are
generated.

Since MCT matches the partially-ordered NSH against the
starting CID and the unexecuted-SF list, a forwarding entry of
an SFP may be reused by some shorter SFPs started with the
same CID. Consequently, the forwarding entry consumption
can be reduced significantly.

V. EVALUATION AND DISCUSSION
In our evaluation, we build a full-mesh inter-datacenter

network topology with 20 SFFs in a simulation environment
(which is the same as the simulation topology used by QGSO
[20]). Each SFF is connected directly to each of the others. We
assume that each SFF has a local NFV-enabled datacenter, and
we randomly place instances of 8 kinds of SFs (f1 to f8) to
several SFFs. The probability of placing a kind of SF to an SFF
is 50%, and it is ensured that every kind of SF (fi) has at least
one instance (fij) allocated in our topology. The network
bandwidth of each link is 10 Gbps, and the processing capacity
of each SF instance is also 10 Gbps. In our simulation, we
assume that packet arrival to a network link or to an SF follows
a Poisson process, and the service time (for both
communication and processing) is exponentially distributed.
We also assume that the propagation delay is negligible in
respect to the queueing delay of the link. Then we can use
M/M/1 queuing model [31] to derive latency for both
communication and processing (i.e., t_linkij and t_fij), which is
given by:

𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 = 1 / (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),
𝑡𝑡_𝑓𝑓𝑖𝑖𝑖𝑖 = 1 / (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙).

We set a background traffic load with uniform distribution in

the range of 100 Mbps to 1 Gbps to each link and each SF
instance.

To evaluate MCPON, 7 commonly-used SFPs of length 2 to
8 are prepared:

1. SFC 1: (f1, f2
*, f3

*, f4, f5
*, f6

*, f7, f8)
2. SFC 2: (f2

*, f3
*, f4, f5

*, f6
*, f7, f8)

3. SFC 3: (f2
*, f3

*, f4, f5
*, f6

*, f7)
4. SFC 4: (f1, f2

*, f3
*, f4, f5)

5. SFC 5: (f1, f2
*, f3

*, f4)
6. SFC 6: (f2

*, f3
*, f4)

7. SFC 7: (f3, f4)
Note that f1, f4, f7, f8 are order-constrained, and f2

*, f3
*, f5

*, f6
*

are not order-constrained (the execution order of cascading
non-order-constrained SFs could be interchanged). A starting
(and ending) SFF is also selected randomly. MCPON then
proactively computes forwarding paths and constructs MCTs
for the 7 SFCs (the given 7 SFPs starting at the selected SFF),
to be evaluated in terms of the saved path computation time, the

TABLE IV
EXPERIMENT CONFIGURATIONS

Configuration Value

Network topology and scale Full-mesh network, 20 SFFs

Network bandwidth of each link 10 Gbps

The number of types of SFs 8

Processing capacity of each SF
instance 10 Gbps

Background traffic load on each
link and each SF instance

Uniform distribution in the range of
100 Mbps to 1 Gbps

SFC requests 7 SFPs of length 2 to 8

Algorithm 1: Generate forwarding entries for the given SFP

Input: SFP, weighted_paths
1 for weight, path in weighted_paths:
2 unexecuted_SFP = SFP # initialization
3 edges = path_to_edges(path) # transform path to edges
4 for edge in edges:
5 node = edge.src()
6 next_hop = edge.dst()
7 if node is an SFF:
8 if unexecuted_SFP not match in the MCT of the node:
9 # add an entry to the node for matching unexecuted-SFP
10 add_entry(node, unexecuted_SFP, next_hop, weight)
11 else:
12 if next_hop in the output_list of the matched entry:
13 # update the weight of the next-hop in the output_list

14 update_entry_weight(node, unexecuted_SFP,
next_hop, weight)

15 else:
16 # add the next-hop to the output_list with weight

17 update_entry_output(node, unexecuted_SFP,
next_hop, weight)

18 if next_hop is an SF:
19 # update unexecuted-SFP
20 unexecuted_SFP.remove(next_hop)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 10

latency performance and the consumption of forwarding
entries. Table IV gives a summary of default experiment
configurations.

A. Proactive k-path computation for an SFC of length l at
scale of n SFFs saves time complexity of O(kl3n3).

We assign 8G RAM, 4 CPUs to the MCA program, and
measure the reactive path computation time (which can be
saved by proactive path computation), at different scales of
inter-datacenter network. Fig. 9 shows the average k-path
computation time of the 7 SFCs (k = 1 to 5), at different full-
mesh network scales from 20 SFFs (datacenters) to 70 SFFs.
The path computation time grows polynomially as a network
scale increases. For k = 5, it takes about 8 seconds per SFC at a
scale of 70 SFFs.

Recall that MCA finds k-least-latency paths on the layered
graph for each SFC by applying Yen's algorithm, which
requires O(kN3) operations. Note that N is the number of nodes
in the layered graph. If we denote the SFC length and the
number of SFFs in the original network topology by l and n,
then N equals (l + 1)*n. In other words, by proactive k-path
computation, the proposed MCA avoids the on-demand
execution of Yen’s algorithm, thus saves the time complexity
of O(kl3n3) for an SFC of length l at scale of n SFFs.

B. Multipath service chaining reduces latency by 33–68%
compared to single-path service chaining.

In this experiment, we measure the latency performance of
the 7 SFCs and compare the results with single-path chaining to
see how much performance multipath can improve. To evaluate
latency performance of the 7 SFCs after MCT construction (at
scale of 20 SFFs), we inject each of the 7 SFC flows into the
simulation network with random traffic rates in the range of 800
Mbps to 1.2 Gbps (5.6 to 8.4 Gbps SFC traffic is generated in
total), and then estimate latency performance of each SFC by
computing weighted average latency of k paths of the SFC (i.e.,
avg_t_pathn for an SFC rn, as noted in Section III).

Fig. 10 shows the latency performance of 7 SFCs when using
different k (number of paths), and Fig. 11 shows the latency
reductions of 7 SFCs compared with single-path service
chaining. In Figs. 10 to 13 the length of SFC 1 to SFC 7 is 8 to
2, respectively. These results indicate that when k = 6, the
latencies decreased by 33–68% (46% on the average) compared
to k = 1 (single path). On the other hand, the latencies of k = 5
is competitive to k = 6 which suggests that k can be set to 5.

We also investigate the influence of inter-datacenter network
topology on the latency performance. We build a partial-mesh
topology by randomly removing half of the links in the full-
mesh topology (at scale of 20 SFFs), and execute MCPON
again to construct MCTs for the 7 SFCs. Fig. 12 and Fig. 13
respectively show the latency performance and the latency
reductions of 7 SFCs, under the same traffic injection. The
results indicate that the latencies increased by 36% on the
average in comparison with the full-mesh topology when k = 6,
owing to the decrease in path diversity. In addition, k = 4 is
competitive to k = 6 for most of the SFCs (except for SFC 1),
because there is a high overlap of links between multiple paths

when k > 4. In summary, the latencies still decreased by 30–
60% (41% on the average) when k = 6 compared to single path.

Fig. 11 and Fig. 13 also show that the ratio of latency
reduction increases with the length of SFC in most cases, since
there are more feasible paths cloud be selected as k candidate
paths for load distribution for longer SFC.

C. MCT reduces forwarding entry consumption by about
36% compared to per-request forwarding.

We also measure the consumption of forwarding entries in
MCTs for the 7 SFCs (for the case of full-mesh inter-datacenter
network topology), and compare the results with per-request
forwarding (no share of forwarding entries between the 7 SFCs)
by adjusting the MCT design which matches packets based on
the separate SPI and SI values instead of the unexecuted-SF list

Fig. 9. The average k-path computation time at different network scales.

Fig. 10. The latency performance of 7 SFCs when using different number of paths
(full-mesh inter-datacenter network).

Fig. 11. The latency reductions of 7 SFCs compared with single-path service
chaining (full-mesh inter-datacenter network).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 11

(i.e., every SPI has his own set of forwarding entries). Fig. 14(a)
to Fig. 14(c) shows the total system forwarding entry
consumption of 7 SFCs when using 1, 3 and 5 paths,
respectively. MCPON computes forwarding entries for SFCs
from long SFC to short SFC in our experiment, and the
accumulated forwarding entry consumption are recorded for
each increment of the number of SFCs, as shown in Fig. 14(a)
to Fig. 14(c). The horizontal axis in Fig. 14 is the number of
SFCs whose forwarding entries are completely installed. The
results show that, compared to per-request forwarding, the
design of MCT reduces forwarding entry consumption by about
36% on average by sharing forwarding entries among (f1, f2

*,
f3

*, f4, f5
*, f6

*, f7, f8), (f2
*, f3

*, f4, f5
*, f6

*, f7, f8), and among (f1, f2
*,

f3
*, f4), (f2

*, f3
*, f4), (f3, f4). Note that the actual reduction of

forwarding entry consumption depends on the similarity
between SFCs, i.e., forwarding entries may be shared among
SFCs if they start (and terminate) at the same SFF and have the
same unexecuted-SF list during service delivery.

D. Partially-ordered SFP reduces latency by 8-27%
compared to fixed-ordered SFP due to the proposed
partially-ordered NSH in partial-mesh topology.

Recall that the proposed partially-ordered NSH enables
partially-ordered SFP to increase multipath diversity for better
load balancing. In this experiment we investigate the influence
of enabling partially-ordered SFP on the latency performance.

To implement fixed-ordered SFP version, we modify the
MCA program to use paths that have the same execution order

of SFs as the shortest path, for each SFC.
We execute MCPON (fixed-ordered SFP version) to

construct MCTs for the 7 SFCs in full-mesh topology and
partial-mesh topology respectively (at scale of 20 SFFs). Note
that we build a partial-mesh topology by randomly removing
half of the links in the full-mesh topology, and we estimate
latency performance of each SFC under the same traffic
injection as in our experiment 2. Compared with partially-
ordered SFP version (Fig. 10 and Fig. 12), the results indicate
that for the fully meshed topology, there is no significant
latency difference between using partially-ordered SFP and
fixed-ordered SFP, since full-mesh topology still provides
enough multipath diversity. As for a general partial-mesh
topology, using partially-ordered SFP reduces latencies of SFC

Fig. 13. The latency reductions of 7 SFCs compared with single-path service
chaining (partial-mesh inter-datacenter network).

Fig. 12. The latency performance of 7 SFCs when using different number of paths
(partial-mesh inter-datacenter network).

Fig. 14. The forwarding entry consumption of 7 SFCs when using different
number of paths.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 12

1 to SFC 6 by about 8-27% (13% on average) compared to using
fixed-ordered SFP when k = 6, as shown in Fig. 15. In addition,
there is no latency difference for SFC 7 because SFC 7 has no
cascading non-order-constrained SFs.

VI. CONCLUSION AND FUTURE WORK
In this paper we propose an MCPON mechanism, which

proactively computes and installs multiple forwarding paths for
the commonly-used SFPs, to achieve low-latency service
function chaining across inter-datacenter network.

MCPON deploys weighted multipath with the proposed
MCA, and adopts a modified NSH which allows the SFC
encapsulation to have different execution orders of SFs from
the order defined by SPI to support partially-ordered service
chaining. We also design an MCT to forward packets which are
encapsulated with the proposed partially-ordered NSH.
Moreover, MCT reduces the forwarding entry consumption, by
enabling forwarding entries to be shared among different SFC
requests.

Our evaluations show that proactive k-path computation for
an SFC of length l at scale of n SFFs saves time complexity of
O(kl3n3) as compared to on-demand computation, and multipath
service chaining reduces latency by 33–68% compared to
single-path service chaining in our simulation scenarios. The
evaluation also indicates that MCT reduces forwarding entry
consumption by about 36% as compared to per-request
forwarding in our simulation environment. Note that the actual
reduction of forwarding entry consumption depends on the
similarity between SFCs. In addition, the proposed partially-
ordered NSH enables partially-ordered SFP to increase
multipath diversity for better load balancing, which reduces
latency by 8-27% compared to fixed-ordered SFP in partial-
mesh inter-datacenter network.

In future work we plan to deploy dynamic path adjustment
[32], [33] to adapt to the fast-changing traffic in an inter-
datacenter network. Path updating in real-time service delivery
is still a key challenge for SFC path selection [27]. Furthermore,
if the traffic demands of SFCs are predictable, then proportional
routing solutions [34], [35] could also be applied to optimize
the network performance. In addition, we also plan to perform
a rigorous theoretical analysis on performance of MCPON in

our future work.

REFERENCES
[1] C. Pignataro and J. Halpern, Service Function Chaining (SFC)

Architecture, document RFC 7665, Internet Engineering Task Force,
Oct. 2015.

[2] P. Quinn and T. Nadeau, “Problem Statement for Service Function
Chaining,” IETF RFC 7498, April 2015.

[3] ETSI, “Network Functions Virtualisation – Introductory White Paper,”
SDN and OpenFlow World Congress,
https://portal.etsi.org/NFV/NFV_White_Paper.pdf, Oct. 2012.

[4] SDN. [Online]. Available: https://www.opennetworking.org/sdn-
definition/, Accessed on: March 8, 2020.

[5] M. S. Bonfim, K. L. Dias, and S. F. L. Fernandes, “Integrated NFV/SDN
architectures: A systematic literature review,” ACM Comput. Surveys,
vol. 51, no. 6, pp. 1–39, Feb. 2019.

[6] Rotsos, Charalampos & Marnerides, Angelos & Magzoub, Abubakr &
Jindal, Anish & McCherry, Paul & Bor, Martin & Vidler, John &
Hutchison, David. (2020). Ukko: Resilient DRES management for
Ancillary Services using 5G service orchestration. 1-6.
10.1109/SmartGridComm47815.2020.9302980.

[7] Jindal, Anish & Aujla, Gagangeet & Kumar, Neeraj & Chaudhary, Rajat
& Obaidat, Mohammad & You, Ilsun. (2018). SeDaTiVe: SDN-
Enabled Deep Learning Architecture for Network Traffic Control in
Vehicular Cyber-Physical Systems. IEEE Network. 32. 66-73.
10.1109/MNET.2018.1800101.

[8] CORD. [Online]. Available: https://www.opennetworking.org/cord/,
Accessed on: March 8, 2020.

[9] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J.
Hart, G. Palukar and W. Snow, “Central Office Re-architected as
Datacenter,” IEEE Communications Magazine, vol. 54, issue 10, pp.
96–101, Oct. 2016.

[10] Zhang Q, Wang X, Kim I, et al. Service Function Chaining in Multi-
Domain Networks[C]//Optical Fiber Communication Conference.
Optical Society of America, 2016: Th1A. 6.

[11] L. Gupta, M. Samaka, R. Jain, A. Erbad, D. Bhamare, C. Metz,
"COLAP: A Predictive Framework for Service Function Chain
Placement in a Multi-cloud Environment", IEEE CCWC, 2017.

[12] P. Quinn, U. Elzur, C. Pignataro, "Network Service Header (NSH)",
document RFC 8300, Internet Engineering Task Force, January 2018.

[13] OpenFlow. [Online]. Available: http://www.opennetworking.org/wp-
content/uploads/2013/05/TR-535_ONF_SDN_Evolution.pdf/,
Accessed on: March 8, 2020.

[14] OpenFlow Switch Specification. [Online]. Available:
https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf/, Accessed on:
March 8, 2020.

[15] H. Jeong, S. M. Raza, D. Tien Nguyen, S. Kim, M. Kim and H. Choo,
"Control Plane Design for Failure Protection in Software Defined
Service Function Chains," 2020 14th International Conference on
Ubiquitous Information Management and Communication (IMCOM),
Taichung, Taiwan, 2020, pp. 1-6.

[16] K. Kannan and S. Banerjee, “Compact tcam: Flow entry compaction in
tcam for power aware sdn,” in Distributed Computing and Networking,
pp. 439–444, Springer, 2013.

[17] Wang, C.-C.; Lin, Y.-D.; Wu, J.-J.; Lin, P.-C.; Hwang, R.-H. Towards
Optimal Resource Allocation of Virtualized Network Functions for
Hierarchical Datacenters. IEEE Trans. Netw. Serv. Manag. 2018, 15,
1532–1544.

[18] Y. Chen and J. Wu, “NFV middlebox placement with balanced set-up
cost and bandwidth consumption,” in Proc. of ICPP 2018.

[19] C. Pham, N. H. Tran, S. Ren, W. Saad and C. S. Hong, "Traffic-Aware
and Energy-Efficient vNF Placement for Service Chaining: Joint
Sampling and Matching Approach," in IEEE Transactions on Services
Computing, vol. 13, no. 1, pp. 172-185, 1 Jan.-Feb. 2020.

[20] H. Chen et al., ‘‘Towards optimal outsourcing of service function chain
across multiple clouds,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May
2016, pp. 1–7.

[21] A. Dwaraki, T. Wolf, "Adaptive service-chain routing for virtual
network functions in software-defined networks", Workshop on Hot
topics in Middleboxes and Network Function Virtualization
(HotMIddlebox), pp. 32-37, 2016.

Fig. 15. The latency reductions of 6 SFCs compared with fixed-ordered SFP in
partial-mesh inter-datacenter network when using 6 paths.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

TNSM-2021-04427.R1 13

[22] G. Sun, R. Zhou, J. Sun, H. Yu and A. V. Vasilakos, "Energy-Efficient
Provisioning for Service Function Chains to Support Delay-Sensitive
Applications in Network Function Virtualization," in IEEE Internet of
Things Journal, February 3, 2020.

[23] Y. Ren et al. 2018. On Scalable Service Function Chaining with O(1)
Flowtable Entries. In IEEE INFOCOM. IEEE, 702–710.

[24] Dominicini, C.K., Vassoler, G.L., Valentim, R., Villaça, R., Ribeiro,
M., Martinello, M., & Zambon, E. (2019). KeySFC: Agile Traffic
Steering using Strict Source Routing. Proceedings of the 2019 ACM
Symposium on SDN Research.

[25] X. Fei, F. Liu, H. Jin and B. Li, "FlexNFV: Flexible Network Service
Chaining with Dynamic Scaling," in IEEE Network, February 11, 2020.

[26] S. Woo et al., “Elastic Scaling of Stateful Network Functions,” Proc.
15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), Renton, WA: USENIX Association, 2018,
pp. 299–312.

[27] H. Hantouti, N. Benamar and T. Taleb, "Service Function Chaining in
5G and Beyond Networks: Challenges and Open Research Issues," in
IEEE Network, February 19, 2020.

[28] Jin Y. Yen, “Finding the K shortest loopless paths in a network”,
Management Science, Vol. 17, No. 11, Theory Series (Jul., 1971), pp.
712-716.

[29] S. Fang, Y. Yu, C.H. Foh, K.M.M. Aung, A loss-free multipathing
solution for data center network using software-defined networking
approach, in: APMRC, 2012 Digest, IEEE, 2012, pp. 1–8.

[30] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
WAN. In Proc. ACM SIGCOMM, 2013.

[31] Kleinrock, Leonard, Queueing Systems, Volume I: Theory, New York,
Wiley, 1975.

[32] Y.-C. Wang, Y.-D. Lin, and G.-Y. Chang, “SDN-based dynamic
multipath forwarding for inter-data center networking,” International
Journal of Communication Systems, Oct 25, 2018.

[33] Mostafaei, Habib & Shojafar, Mohammad & Conti, Mauro. (2020).
TEL: Low-Latency Failover Traffic Engineering in Data Plane.

[34] J. Zhang, K. Xi, L. Zhang, and H. Chao, “Optimizing network
performance using weighted multipath routing,” in Computer
Communications and Networks (ICCCN), 2012 21st International
Conference on, pp. 1–7, 30 2012-aug. 2 2012.

[35] S. Nelakuditi, Z. Zhang, D. Du, "On selection of candidate paths for
proportional routing", Computer Netw., vol. 44, pp. 79-102, 2004.

Yao-Chun Wang received his Ph.D.
degree in computer science from National
Chiao Tung University (NCTU), Hsinchu,
Taiwan, in 2021. He is currently a
Researcher with Chunghwa Telecom
Laboratories (CHTTL), Taoyuan, Taiwan.

Ren-Hung Hwang received his Ph.D.
degree in computer science from the
University of Massachusetts, Amherst,
Massachusetts, USA, in 1993. During
1993~2022, he joined the Department of
Computer Science and Information
Engineering, National Chung Cheng
University, Chia-Yi, Taiwan, where he
was a distinguished professor of the
Department of Computer Science and

Information Engineering. He served as the Dean of the College
of Engineering during 2014~2017 and the Dean of the
Information Technology Office during 2020~2022. In 2022, he
joined the College of Artificial Intelligence, National Yang
Ming Chiao Tung University, where he is now a professor and
the Dean of the AI College. He is also jointly appointed with

Research Center for Information Technology Innovation,
Academia Sinica. He is currently on the editorial boards of
IEEE Communications Surveys and Tutorials and IEICE
Transactions on Communications. Prof. Hwang published more
than 270 international journal and conference papers. He
received the IEEE Best Paper Award from the International
Conference on Internet of Vehicles 2019, IEEE Ubi-Media
2018, IEEE SC2 2017, IEEE IUCC 2014 and the IEEE
Outstanding Paper Award from IEEE IC/ATC/ICA3PP 2012.
Recently, he also served as the general chair of several
international conferences on computer networks, including
IEEE DataCom 2019, IEEE ISPAN 2018, IEEE SC2 2017, and
ICS 2016. His research interests include deep learning, network
security, wireless communications, Internet of Things, cloud
and edge computing.

Ying-Dar Lin is a Chair Professor of
computer science at National Chiao Tung
University (NCTU), Taiwan. He received
his Ph.D. in computer science from the
University of California at Los Angeles
(UCLA) in 1993. He was a visiting scholar
at Cisco Systems in San Jose during 2007–
2008, CEO at Telecom Technology

Center, Taiwan, during 2010-2011, and Vice President of
National Applied Research Labs (NARLabs), Taiwan, during
2017-2018. He cofounded L7 Networks Inc. in 2002, later
acquired by D-Link Corp. He also founded and directed
Network Benchmarking Lab (NBL) from 2002, which
reviewed network products with real traffic and automated
tools, also an approved test lab of the Open Networking
Foundation (ONF), and spun off O'Prueba Inc. in 2018. His
research interests include machine learning for network
security, wireless communications, network softwarization, and
mobile edge computing. His work on multi-hop cellular was the
first along this line, and has been cited over 1000 times and
standardized into IEEE 802.11s, IEEE 802.15.5, IEEE 802.16j,
and 3GPP LTE-Advanced. He is an IEEE Fellow (class of
2013), IEEE Distinguished Lecturer (2014–2017), ONF
Research Associate (2014-2018), and received K. T. Li
Breakthrough Award in 2017 and Research Excellence Award
in 2017 and 2020. He has served or is serving on the editorial
boards of several IEEE journals and magazines, including
Editor-in-Chief of IEEE Communications Surveys and
Tutorials (COMST) with impact factor increased from 9.22 to
25.249 during his term in 2017-2020. He published a textbook,
Computer Networks: An Open Source Approach, with Ren-
Hung Hwang and Fred Baker (McGraw-Hill, 2011).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3192434

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on December 29,2022 at 04:05:10 UTC from IEEE Xplore. Restrictions apply.

	I. Introduction
	A. Service Function Chaining with SDN and Network Service Header
	B. The Proposed Method: MCPON
	1) Elimination of path decision delay with proactive path installation and modified NSH
	2) Low end-to-end service latency with weighted multipath
	3) Entry-saving forwarding table design

	II. Related Work
	III. Problem Statement
	IV. Solution Design
	A. Partially-ordered NSH
	1) Modifications on Service Path Header
	2) Reclassification for scalability with Context Header
	3) Modifications on Base Header

	B. Multipath Chaining Table (MCT)
	C. Multipath Chaining Algorithm (MCA)

	V. Evaluation and Discussion
	A. Proactive k-path computation for an SFC of length l at scale of n SFFs saves time complexity of O(kl3n3).
	B. Multipath service chaining reduces latency by 33–68% compared to single-path service chaining.
	C. MCT reduces forwarding entry consumption by about 36% compared to per-request forwarding.
	D. Partially-ordered SFP reduces latency by 8-27% compared to fixed-ordered SFP due to the proposed partially-ordered NSH in partial-mesh topology.

	VI. Conclusion and Future Work
	References

