藉由 GPRS 整合 GSM 與 Internet

陳尊明 林盈逵
投稿領域：無線與衛星通訊
國立交通大學資訊科學系
新竹市大學路 1001 號
TEL: (03)5712121 EXT. 56667
FAX:(03)5712121 EXT. 59263
EMAIL: gis88544@cis.nctu.edu.tw, ydlin@cis.nctu.edu.tw

主要聯絡人：陳尊明

摘要
近年來 Internet 的快速發展與其所蘊含的應用潛力，使各方投入大量的人力物力，想積極的開發這一片極具市場潛力的領域。而 GSM 系統的廠商當然也想利用他們所生產的手機與系統來存取 Internet 上豐富的資源與服務，進而提升其產品的附加價值。利用手機的可移動性加上 Internet 上有價值的資訊與服務，試圖由人們對於不受地理限制的取得資訊的蓬勃需求上獲取利益。

本文將分成三個部分來討論此一主題，首先介紹 General Packet Radio Service(GPRS)的需求動機，目前 GSM 市場中存取 Internet 資源的方式與缺點及 GPRS 優點、應用。接著比較 GPRS 與 GSM 上數據資料技術的差異與討論 GPRS 的架構與技術，包括如何正確傳送封包與其使用 radio 資源的方式。最後調查目前世界上採用 GPRS 的現況。希望藉由此一文章的討論，能對 GPRS 此一技術與其可能應用層面深入瞭解。

Keywords:GPRS(General Packet Radio Service),HSCSD(High-speed circuit-switched data, GSM, EDGE(Enhanced data for GSM Evolution), Internet

一、 GPRS（General Packet Radio Service）的定位

需求動機
現在生活方式的改變與科技的發展，使得現代人一生的活動範圍不像以前只侷限在一小區域，而可能是跨越整個地球，從地球的一洲到另一洲，雖然運輸工具也日趨進步，因紮塞車或者是距離太遠等因素，使花在旅程中的時間可能跟過去比起來有增無減，生活方式的改變也帶來了人們需求的改變，人們開始希望在他不在家或辦公室的時候，他仍可藉由某種方式可以獲得所需的資訊，不會因正在旅途中而有所差別，以期能儘可能地善用時間。
行動電話與網際網路(Internet)這兩項科技便深深影響了人類的生活。行動電話使得人與人之間的溝通再也不受某些特定溝通器材其地理位置的影響，讓每個人在任何地方都可以使用行動電話來跟其他人溝通，而網際網路(Internet)提供了一個方便、有效率且便宜的方式去存取與分享在網際網路上有價值的資料、訊息，只要能連上網際網路(Internet)就可以取得豐富的網路資源。所以要是能夠將這兩種科技整合在一起，不論所需的資訊是在世界上的何處，你將可以在不受地理位置的限制去取得。

目前 GSM 系統中存取網際網路上資源的方式

![圖一 目前 GSM 連接 Internet 的方式](圖)

目前 Global System for Mobile Communication(GSM)網路連結到 LAN 的方式，在硬體方面如圖一所示。GSM 系統中的 MSC(Mobile Switching Center)藉由數據機或 ISDN 連接到 Internet。

在傳輸資料的技術上，基本上是使用 Short Message Service(SMS)，這是一種能夠傳送簡短訊息到手機的資料服務，SMS 所能傳送的最大訊息長度為 160 個字元，使用者能夠利用手機傳送或接收一些簡訊。但是 GSM 廠商紛紛將其功能加以增強與改革，使得 SMS 有網際網路(Internet)資訊存取的功能，如收發電子郵件(e-mail)或瀏覽 WWW（純文字），這是目前在全世界 GSM 系統中最普遍被使用於存取網際網路資訊的方法。

目前這種方法有三個缺點：

1. 傳送速度太慢：一般 GSM 系統中資料傳送的速度為 9.6Kbps 或 14.4Kbps，這樣的傳輸速度對於一些多媒體應用（如瀏覽圖文並茂的 WWW 網站）而言可能不敷使用。
2. 效率不高：SMS 用 signalling channels 來傳送訊息，所以在 SMS 使用非常頻繁的情形下，可能會使得整個網路的服務品質大打折扣[2]。
3. 使用費用太昂貴：綜合以上兩個缺點，必定使得 operator 提供此服務時的成本就很昂貴，理所當然使用者也必須負擔較高的使用費。

General Packet Radio Service(GPRS)的優點

GSM 的系統廠商發現目前的技術對於處理 data traffic 有其先天不足的地方，需要開發新
的技術以滿足對於 data traffic 的需求。GPRS 也就應運而生。GPRS 使用 packet-switching 的方式，是一種能在原有的 GSM 的 radio channel 上以非常經濟且有效率傳送資料與控制信號的技術：

1. **高 bit rate**

GPRS 中提供四種不同的 coding schemes[1]：所以單一個 channel(time slot)所能提供的 bit rate 從 9.05Kbps 到 21.4Kbps，GPRS 可以使用 1 至 8 個 channel，故理論上 GPRS 所能提供的最高速度為 171.2Kbps，以此速度以目前而言應可符合大部分的應用所需了，如瀏覽 WWW、e-mail 等等。

2. **使用 packet switching，適合於 bursty traffic**

GPRS 採用與目前 GSM 系統中 circuit switching 不同的 packet switching，使用此種交換技術，可以使得多個使用者同時共享同一資源，因爲使用者只有在真正傳送資料的時候才會佔用資源，其他時候此資源可以由有需要的使用者來使用，因此大幅提高了網路與 radio resource 的使用效率，故可使使用者與 network operator 得以更經濟的使用 GPRS。也因爲 GPRS 採用 packet switching，並且支援一些目前最常用的協定，如 IP、X.25，因此可以非常容易去連結這些 packet data network 如 Internet 與 X.25 網路[7]，透過 GPRS 來使用這些網路中的一些服務(telenet, chat, e-mail, ftp 等)，因此一個 GPRS 網絡也可以被視為是一個連結在網路上的子網域(sub-network)。此外，packet switching 十分適用於 bursty data 的傳送，而目前網際網路(Internet)上應用程式傳送的資料多屬於這種型態，因此 GPRS 非常適合作為存取網際網路上資訊的技術。

3. **快速的 call setup time[14]**

在開始傳送或接收資料之前，GPRS 將提供快速的 resource reservation 動作，通常在 0.5 至 1 秒內可以完成[5]：當 resource reservation 完成後，即可傳送或接收資料，而採用 GPRS 之前可能必須等待一段 modem 撥接設定的時間，這項特性將提供使用者有類似”always connected”[6]的功能，因爲一旦有資料需要被接受或傳送，GPRS 將可以在很短時間內建立 connection，這對一些 time critical 的應用，如 remote credit card authorization 相當的重要，因顧客若等待時間過長，將會令顧客難以接受[6]。

4. **可以與固有的 GSM 系統共存**
GPRS 利用一種相當理想的方法來與現今的 GSM 系統整合。由於 GPRS 使用 packet switching 的技術，要整合到現存 circuit switching 的 GSM 系統，將需要大量的升級。GPRS 將其所需處理的與傳統 GSM 的資料做了一個相當清楚的分隔，因採用 GPRS 只需增加兩個新的網路基礎節點，和一些固有設備的軟體升級[14]，即花費有限的投資就可以採用 GPRS，而先前的投資的資源也不會因此浪費，這對 network operator 是一個相當然有吸引力的優點。另外，在必要的時候，SMS 的一些資料流也可以利用 GPRS 來傳送，可減低 signaling channel 的負載，使得整個網路的效率更好[6]。

5. 有彈性地使用 radio resource 與網路

GPRS 以非常彈性的方式來分配 GPRS 資料可用資源與一般 GSM 傳統資料可用資源的比例，如在傳統電話尖峰時刻，GPRS 可以彈性的釋放一些資源給傳統的 GSM 服務來使用，這樣 operator 將可以根據自己的需求與網路狀況來調整適當的比例，使整個網路的效能提高。

6. 以傳送/接收的資料量來計費

由於 GPRS 使用 packet switching 的傳輸模式，因此必須採用一種不同於傳統 GSM 使用的計費方法，傳統的 GSM 是以時間來計費，這當然是因爲 circuit switching 的特性使然，但在 GPRS 中可以利用實際上傳送或接收的資料量來計費，這樣的計費方式配合上 GPRS 中"always connected"的特性，使得 GPRS 更加的有吸引力，使用者可以隨時的使用 GPRS，但只需要根據其使用資料量的多寡來付費。

7. 爲目前 GSM 邁向第三代網路的重要步驟

因爲第三代網路架構目標將是處理更為龐大的多媒體 packet traffic，提供更高的網路效率與服務。而 packet traffic 與目前 GSM 的 voice traffic 的特性完全不同，因此 network operator 可以利用 GPRS 學習如何將網路的狀態調整到最佳狀態，處理計費與顧客服務這方面的知識與經驗，為將來的第三代 GSM 網路做準備。

GPRS 的應用

GSM 系統藉由 GPRS 可以提供多樣不同的服務與應用。這些服務在以前可能因為 SMS 技術先天的限制而無法提供，或者有提供但是效率不好或太過於昂貴，而變得窒礙難
行；相反的，因为 GPRS 有上述的優點，若採用 GPRS 的技術，將使許多服務與應用實現的可能性大幅的提高。GPRS 可能的應用類型與所帶來的優點整理如下：

<table>
<thead>
<tr>
<th>應用類型</th>
<th>優點</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet access（WWW、e-mail 等）</td>
<td>提供快速經濟的無線資料服務</td>
</tr>
<tr>
<td>Vehicle tracking</td>
<td>可以即時提供目前車輛位置，以利各種有關車輛的服務如失竊車輛的尋找或是載客車輛的調配</td>
</tr>
<tr>
<td>Electronic cash/Credit card authorization</td>
<td>將驗證身份或資料的時間大幅簡短，避免使用者的等待時間太長所造成的不便。</td>
</tr>
<tr>
<td>Security & supervisor system</td>
<td>若發生意外情況可以快速發出通知訊號</td>
</tr>
<tr>
<td>Telemetry</td>
<td>能夠傳送 user 周圍的地圖等多媒體的資料，而不是只能侷限於文字訊息。</td>
</tr>
<tr>
<td>Information service by the location of user</td>
<td>能夠提供 user 周圍的地圖等多媒體的資料，而不是只能侷限於文字訊息。</td>
</tr>
</tbody>
</table>

表一 GPRS 的可能應用類型與 GPRS 所帶來的優點

GPRS 與 GSM 上數據資料技術之比較

現在目前 GSM 系統中提供高速資料傳輸服務的技術尚有 High-speed circuit-switched data(HSCSD)，也可以提供高速資料傳輸服務。而 Enhanced data for GSM evolution(EDGE)則是目前正在研發的新技術，可將 GPRS 與 HSCSD 的 bit rate 再加以提高。下列為上列兩種技術的說明：

- **High-speed circuit-switched data(HSCSD)**

 傳統的 GSM 使用 Time Division Multiple Access(TMDA)技術將一個 time frame 分割成 8 個 time slot，單一個 time slot 可以提供的 data bit rate 爲 9.6Kbps，但目前 GSM operator 已利用 V42bis 的壓縮技術已經能提供 14.4Kbps 的服務[4]。然而 14.4Kbps 對於一些需要高傳送速度的應用而言稍嫌不足，所以 HSCSD 可以同時使用數個 channel(time slot)提供較高的 bit rate，理論上 HSCSD 最高速度為 115.2Kbps，目前已經有數個 operator 提供 two-channel 28.8Kbps 的服務，和 four-channel 43.2Kbps 的服務[6]。Operator 若要採用 HSCSD 的服務，只需要將部分網路元件的軟體升級即可，這代表採用 HSCSD 所需投資將非常的低廉。

 由於 circuit switching 的特性，HSCSD 相當適合 FTP 或需要穩定且高 bit rate 和固定的 transmission delay 的應用，如視訊會議、mobile videotelephony。因此 HSCSD 與 GPRS 有相當明顯的市場區隔。

- **Enhanced data for GSM evolution(EDGE)**

 目前 GSM 是利用 Gaussian minimum-shift keying(GMSK)的 modulation technique，而
EDGE 使用一種新的 modulation technique 稱為 eight-phase-shift(8 PSK) modulation[6]。8 PSK 提供了更高的 bit rate，每個 time slot 能夠達到 48Kbps[3,4]，所以理論上 EDGE 最高的 bit rate 可以達到 384Kbps（使用 8 個 time slot）。這個速度已經是 GSM 傳統 bit rate 的 40 倍，而且足足比 GPRS 所能提供的最高速度（171.2Kbps）的三倍。

表二為 GSM 上有關數據資料服務的技術，包括 SMS、HSCSD、EDGE，它們所能提供的 bit rate、特性與適用的應用對象，整理如下：

<table>
<thead>
<tr>
<th></th>
<th>Bit rate</th>
<th>特性</th>
<th>適用的應用對象</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMS(9.6Kbps service)</td>
<td>9.6Kbps</td>
<td>GSM 傳統提供的 data traffic 的服務</td>
<td>適合一些資料量小，且需求量不大的應用</td>
</tr>
<tr>
<td>SMS(14.4Kbps service)</td>
<td>14.4Kbps</td>
<td>使用 V42bis 的壓縮技術，提供較高的傳送速度。</td>
<td>適合一些資料量小，且需求量不大的應用</td>
</tr>
<tr>
<td>GPRS</td>
<td>9.05~171.2Kbps</td>
<td>可同時使用多個 time slot，以提供較高的 bit rate</td>
<td>使用 packet switching，對於 bursty traffic 有較佳的效率，適合 internet 上的應用。</td>
</tr>
<tr>
<td>HSCSD</td>
<td>14.4~115.2Kbps</td>
<td>可同時使用多個 time slot，以提供較高的 bit rate</td>
<td>使用 circuit switching，適合於資料量大且連續的應用如視訊會議。</td>
</tr>
<tr>
<td>EDGE</td>
<td>48~384Kbps</td>
<td>使用一種新的 modulation 技術(8 PSK)，不論 circuit or packet switching 技術都可以適用</td>
<td>目前不論使用 packet switching 或 circuit switching 的 data traffic 服務(GPRS,HSCSD)，將可提供更高 bit rate。</td>
</tr>
</tbody>
</table>

表二 GSM 上有關數位資料服務的相關技術比較

二、GPRS 的網路架構

GPRS 的網路架構是將舊有的 GSM 網路架構加以延伸，增加兩個新的網路設備節點，分別為 Serving GPRS Support Node(SGSN)及 Gateway GPRS Support Node(GGSN)，用以處理 packet traffic 的 routing 及資料的收送，另外還有一些原有網路設備必須做一些軟體升級的動作，以配合 GPRS 系統的需要，需要做軟體升級動作的設備包括：BTS、BSC、MSC/VLR、HLR[14]。因此舊有的網路節點仍可以再度使用，如 BTS 與 BSC，而不需要加以淘汰，以節省所投資的資金。圖二為傳統 GSM 系統網路架構[1]，圖三為 GPRS 延伸 GSM 系統的架構圖[1]。
圖二 GSM 的系統架構圖

圖三 GPRS 的系統架構圖

Serving GPRS Support Node(SGSN)的功能

SGSN 最主要的功能是 packet 傳送或接收。SGSN 將負責記錄在它服務區域內有哪些使用者，若是使用者想要傳送的封包資料，先經由 BTS，BSC 傳送給 SGSN，SGSN 再決定接下來該把封包轉送到何處，或者有封包要轉送給使用者，則 SGSN 經由 BSC、BTS 將資料傳送給使用者。下列為 SGSN 提供的功能[11]：

1. Authentication and IMEI(International Mobile Subscriber Identity) check
2. Admission control
3. Mobility management
4. Logical link management towards the Mobile Station
5. Packet routing and transfer : relay, routing, address translation and mapping, encapsulation, tunneling, compression, ciphering
6. Charging data collection
7. Connection to the HLR, MSC, and BSC

Gateway GPRS Support Node(GGSN)的功能

GGSN 提供了一個 GPRS 網路與外界 packet data network 網路的介面，負責將封包由外界網路傳進 GPRS 網路或將封包由 GPRS 網路傳送到外界網路。下列為 GGSN 所提供的功能[11]：

1. Message screening
2. Mobility management
3. Packet routing and transfer : relay, routing, address translation and mapping, encapsulation, tunneling
4. Charging data collection

Packet routing

在 GPRS 系統中 packet routing 的功能最主要是依靠 GGSN 與 SGSN。

GGSN 最主要的功能是在外部網路與 GPRS 網路之間傳送封包資料，GGSN 在一個新的 mobile station(MS)進入系統時，會接收到服務此 MS 的 SGSN 所送來的 routing 資訊，此外，當有 packet 要由外界網路送入時，會經由 GGSN 進入 GPRS 網路。GGSN 會將 packet 封裝之後，藉由 GPRS 的 backbone，送至目前正在服務此 MS 的 SGSN，反之，GGSN 會將 SGSN 送來已封裝的 packet，加以解封裝（decapsulate），並傳送到適當的外部網路。

SGSN 在 packet routing 的最主要功能為[13]：

1. 偵測是否有新的 GPRS MS 進入系統
2. 接收或者傳送封包到 MS
3. 紀錄在它服務範圍內 MS 的位置
4. 處理新的 MS 的 attach procedure

當 SGSN 接收到由 GGSN 送出已封裝的 packet 時，會將其解封裝之後，傳送給適當的 MS，反之，若 SGSN 接收到 MS 所送出的 packet，將其封裝之後，藉由 GPRS 的 backbone，傳送到適當的 GGSN。這種在 GPRS support node 之間封裝(encrypt)與解封裝 (decapsulate)的動作稱為 tunneling[1]，GPRS 可以採用數種不同 tunneling 的 protocol，如 Point to Point Tunneling Protocol(PPTP)、Layer Two Tunneling Protocol(L2TP)，來提高傳送資料的安全性，增進其商業上的利用價值[7]。

圖四為三種不同的 routing 的方式，分別為[13]：

8
1. Mobile-originated

2. Mobile-terminated 当 MS 位於 home public land mobile network(PLMN)

3. Mobile-terminated 当 MS 位於 visited PLMN

1. Mobile-originated

MS 想傳送資料給在 GSM 外部某個區域網路上的 host
1. MS 將 packet 藉由 BSS 傳送到服務此 MS 的 SGSN
2. 若 SGSN 正確無誤的接收到 packet，將 packet 封裝後，藉由 GPRS backbone 送到適當的 GGSN
3. GGSN 接收到封裝過的 packet 後，將其解封裝，然後送到適當的外部網路

2. Mobile-terminated 当 MS 位於 home public land mobile network(PLMN)

GSM 外部網路上有一 host 傳送 packet 給位於在它自己的 GPRS operator 網路內的 MS。
1. 根據 packet 的目的位置，此封包被轉送到適當 GPRS 網路中的 GGSN
2. GGSN 會將 packet 封裝之後，根據 HLR 中的位置資訊，藉由 GPRS 的 backbone，傳送 packet 到目前服務此 MS 的 SGSN
3. SGSN 進行解封裝的動作，並透過 BSS 藉由 air interface 將 packet 傳送到 MS

3. Mobile-terminated 当 MS 位於 visited PLMN

GSM 外部網路上有一 host 傳送 packet 給正在其他 GPRS operator 網路內漫遊的 MS。
1. 根據 packet 的目的位置，此封包被轉送到 home GPRS 網路中 GGSN
2. 位於 home GPRS network 的 GGSN，根據 HLR 中的位置資訊，藉由 data packet network 傳送到 MS 漫遊的 GPRS 網路中的 GGSN
3. 位於 visited PLMN 的 GGSN 會將 packet 封裝之後，根據 routing 的資訊，藉由 GPRS 的 backbone，傳送 packet 到目前正在服務此 MS 的 SGSN
4. SGSN 進行解封裝的動作，並透過 BSS 藉由 air interface 將 packet 傳送到 MS
Capacity on demand [1]

GPRS 透過 MS 與 BBS 之間的 air interface，專門負責利用 radio channel 來傳送訊息。

physical channel 分成 packet data channel(PDCCH)與 traffic channel(TCH)，PDCCH 專門傳送
GPRS 的 packet data traffic，而 TCH 爲傳送 GSM 的 voice 或 data traffic。TCHs 與 PDCCHs
的比例可以根據"capacity-on-demand"的原則動態配置。

為了達到彈性使用 radio resource，所以 GPRS 採用了"capacity-on-demand"的觀念，PDCH
的數目，可以根據 operator 所設定的某些條件，適度的增加或減少。當系統中有多餘的
radio resource 可被配置成 PDCH 來增加 GPRS 傳送資料的速度，或當 GSM 的傳統服務
使用的尖峰時段所需的 radio resource 不足時，可將 PDCH 釋放後配置為 TCH，以增加
可使用的 radio resource。

四、GPRS 的現況

GPRS 目前在歐洲顯得比較受到重視，因爲在歐洲許多的 network operator 正在進行與
GPRS 的供應商洽談合約，預計在西元 2000 將會有 GPRS 的服務將在歐洲正式運作，
反觀在美洲或亞洲這樣動作似乎就少了一點。台灣的和信

GPRS 的供應商洽談合約，預計在西元 2000 將會有 GPRS 的服務將在歐洲正式運作，
反觀在美洲或亞洲這樣動作似乎就少了一點。台灣的和信、中華電信、香港的香港電訊、
數碼通，皆正積極爭取第一家推出相關服務的榮銜，原本和信可望取得率先推出該項服
務的車位，在中華電信及香港業者紛紛加入籌備建設之後，競爭態勢升高，和信電訊表
示預定明年下半年推出，中華電信也預定明年第二、三季上市，香港兩家業者更號稱可
在明年上半年問世，更增添亞太地區業者在寬頻系統競爭的激烈程度[10]。表三是世界
上目前已經簽立 GPRS 合約的 operator 的整理，此外於 July 29 1999，Ericsson and T-Mobil
為世界上首先測試 GPRS 的 GPRS Vendor 與 network operator[8,9]。

亞洲

<table>
<thead>
<tr>
<th>Operator</th>
<th>Country</th>
<th>GPRS Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>中華電信</td>
<td>台灣</td>
<td>Nortel</td>
</tr>
<tr>
<td>和信</td>
<td>台灣</td>
<td>Nokia</td>
</tr>
<tr>
<td>Sunday</td>
<td>香港</td>
<td>Nortel</td>
</tr>
<tr>
<td>香港電訊</td>
<td>香港</td>
<td>Nokia</td>
</tr>
<tr>
<td>數碼通</td>
<td>香港</td>
<td>Ericsson</td>
</tr>
<tr>
<td>M1</td>
<td>新加坡</td>
<td>Nokia</td>
</tr>
</tbody>
</table>

美洲

<table>
<thead>
<tr>
<th>Operator</th>
<th>Country</th>
<th>GPRS Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnipoint</td>
<td>USA</td>
<td>Ericsson(Trial)</td>
</tr>
</tbody>
</table>

歐洲

<table>
<thead>
<tr>
<th>Operator</th>
<th>Country</th>
<th>GPRS Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonofon</td>
<td>Denmark</td>
<td>Nokia</td>
</tr>
<tr>
<td>Radiolinja</td>
<td>Finland</td>
<td>Nokia</td>
</tr>
<tr>
<td>Sonera</td>
<td>Finland</td>
<td>Nokia</td>
</tr>
<tr>
<td>Polkomtel</td>
<td>Poland</td>
<td>Nokia</td>
</tr>
<tr>
<td>Mobilkom</td>
<td>Austria</td>
<td>Nortel (Trial)</td>
</tr>
<tr>
<td>Bouygues Telecom</td>
<td>France</td>
<td>Nortel(Trial)</td>
</tr>
<tr>
<td>Sonera</td>
<td>Finland</td>
<td>Ericsson</td>
</tr>
<tr>
<td>T-Mobil</td>
<td>Germany</td>
<td>Ericsson</td>
</tr>
<tr>
<td>Telfort</td>
<td>The Netherlands</td>
<td>Ericsson</td>
</tr>
<tr>
<td>One2One</td>
<td>UK</td>
<td>Ericsson</td>
</tr>
<tr>
<td>Belgacom</td>
<td>Belgium</td>
<td>Motorola</td>
</tr>
<tr>
<td>RadioMobil</td>
<td>Czech Republic</td>
<td>Motorola</td>
</tr>
<tr>
<td>BT Cellnet</td>
<td>UK</td>
<td>Motorola</td>
</tr>
<tr>
<td>France Telecom</td>
<td>France</td>
<td>Motorola(Trial)</td>
</tr>
<tr>
<td>TELE.RING</td>
<td>Austria</td>
<td>Alcatel</td>
</tr>
<tr>
<td>SFR/ Cegetel</td>
<td>France</td>
<td>Alcatel</td>
</tr>
<tr>
<td>France Telecom</td>
<td>France</td>
<td>Alcatel (Trial)</td>
</tr>
<tr>
<td>Mannesmann D2</td>
<td>Germany</td>
<td>Siemens</td>
</tr>
</tbody>
</table>
表三目前已簽訂GPRS合約的network operator與GPRS vender的整理
合約資料來源：The mobileGPRS(http://www.mobileGPRS.com)

五、結論

愈來愈多人希望可以無論他們身在何處，都可以方便而有效率的取得他們想要的資訊，除此之外PDA與筆記型的電腦的使用人口的大幅成長，與Internet的蓬勃發展也間接地造成人們對mobile data access的需求。根據圖五所顯示的資料，data traffic與所需的頻寬有日趨增加的趨勢，而目前GSM傳送data的服務將不敷使用，所以GPRS將可為GSM系統帶來新的packet switching的技術，使得GSM系統對於處理data traffic的能力大幅提高，相對的這也將為network operator帶來新的客戶群與新的應用。

此外，因爲目前GPRS是以使用者收發的packet的數量來收費，但是到目前還沒有辦法禁止未經使用者同意的IP traffic到達使用者的MS，若碰到有人蓄意的傳送一些垃圾資料到使用者的MS，將會使得使用者必須負擔許多不必要的支出，這將使得GPRS的可用性大幅的降低，計費相關問題將對GPRS的前景有重大的影響！

![Traffic split on PTO core network](image)

圖五Traffic split on PTO core network
1997-2005(資料來源:Dataquest,April 1998)

參考資料