Multiple-Resource Request Scheduling for Differentiated QoS at Website
Gateway

Ying-Dar Lin, Ching-Ming Tien, Shih-Chiang Tsao, Ruo-Hua Feng
Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
{ydlin, cmtien, weafon, rhfeng} @cis.nctu.edu.tw

Yuan-Cheng Lai, Department of Information Management
National Taiwan University of Science and Technology, Taipei, Taiwan , laiyc @cs.ntust.edu.tw

Abstract

Differentiated quality of service is a way for a website
operator to provide different service levels to its clients.
Traditional HTTP request scheduling schemes can achieve
this, but they schedule requests to manage only one server
resource, such as CPU or disk I/O. Actually, processing a
request on the server will consume multiple resources. This
paper presents a multiple-resource request scheduling al-
gorithm, called mQoS, for differentiating the utilization of
the server resource. The mQoS scheduler consists of several
sub-schedulers and a main scheduler. Each sub-scheduler
manages a server resource to differentiate its utilization
among the classes. The main scheduler checks the avail-
ability of every server resource and triggers an appropriate
sub-scheduler to balance the utilization of server resources.
The implementation of the mQoS gateway is based on Squid
and Linux. The evaluation compares the mQoS schedul-
ing with no scheduling (nQoS) and single-resource request
scheduling (sQoS). The mQoS scheduling reveals the accu-
rate differentiation on every server resource. In addition,
the total server throughput in the mQoS scheduling is im-
proved by 21%, compared with the sQoS scheduling. The
average user-perceived latency of the mQoS scheduling is
also shorter than other scheduling.

1. Introduction

Web Quality of Service (QoS) is a way for a Web service
provider to differentiate its service levels to users. Through
service differentiation, a Web service provider can allow
a specific group of users, e.g. paid users, to get better
server throughput or user-perceived latency than other gen-
eral users. There are many ways of enforcing Web QoS. The
effort of some past researches was to modify the system ker-
nel or the server daemon of a Web server, a caching proxy,

or a cluster dispatcher for service differentiation. These
QoS-enabled boxes intercept HTTP requests, perform re-
quest classification and request scheduling for dealing with
the bottlenecked resource, such as bandwidth or processing
power.

There are two issues in the above schemes. The first is-
sue is where to deploy a QoS-enabled box. Many researches
have been proposed in modifying the system kernel [1] or
server daemon [2] [3] of a Web server to have the capabil-
ity of scheduling HTTP requests. However, this solution
is hard to be deployed on a non-open operating system or
server daemon. Some researches have been proposed in
enforcing request scheduling on a dispatcher of a cluster
server [4] [5] [6]. The QoS-enabled dispatcher schedules
requests to the backend servers in a weighted round-robin
fashion or according to the server loads. Some researches
have proposed QoS-enabled content adaptation [7] [8] or
cache replacement algorithms [9] on caching proxies in-
stead of request scheduling for service differentiation. The
second issue is what resource for a request scheduling to
manage. Common request scheduling schemes schedule
requests by managing the bottlenecked resource, such as
bandwidth or processing power. These request schedulers
seem to perform the single-resource scheduling, which has
a blind spot. Processing a request on a server needs to con-
sume multiple resources, e.g. CPU, disk I/O, and band-
width, rather than a single resource. In the single-resource
scheduling, some resources may be wasted, when the man-
aged resource is well utilized. A request scheduler should
well utilize all resources by scheduling requests for manag-
ing all resource utilization. Some researches have discussed
multiple-resource request scheduling, but many of them are
applied on grid computing and multimedia applications [10]
[11], and few on HTTP request scheduling [12] [13] [14].

Considering the issues of QoS deployment and multiple-
resource request scheduling, this paper presents a multiple-
resource request scheduling algorithm called mQoS, which

is deployed at a website gateway for controlling the requests
toward a Web server. Today’s gateways can perform fire-
wall packet inspection, intrusion detection, virus scanning,
and so on. A website operator can deploy a gateway for pre-
venting attacks and providing value-added services. Hence,
enforcing request scheduling at a website gateway is practi-
cal, and that can provide service differentiation without any
modification on clients and the server.

There are three main functions in the mQoS gateway: re-
quest profiling and server profiling, content-aware request
classification, and mQoS scheduling. The request profiling
finds out the amounts of the server resources consumed by
a request, whereas the server profiling measures the capaci-
ties of the server resources. The request classification mech-
anism inspects the headers or payloads of requests and puts
requests into proper class queues. Specially, a service class
has several queues, each of which stores specific resource-
intensive requests. That is, when m service classes and n
server resources exist, there are m * n queues. The mQoS
scheduling, derived from the Deficit Round Robin (DRR)
scheduling [15], composed of one main scheduler and sev-
eral sub-schedulers. One sub-scheduler, which has some
deficit counters, manages one server resource. However,
differing from the traditional DRR scheduling, the deficit
counter of a class in a sub-scheduler can be decremented by
any sub-scheduler because a request would consume mul-
tiple resources rather than a single resource. In addition,
the main scheduler maintains the availability of the server
resources in the resource availability counters. The main
scheduler hence knows which resource is the most avail-
able and then triggers the corresponding sub-scheduler to
service specific resource-intensive requests.

The mQoS gateway is implemented on Squid and Linux.
The request and response modules of Squid are modified
to be capable of classifying and scheduling requests. In
the evaluation, the mQoS scheduling is compared with no
scheduling (nQoS) and single-resource request scheduling
(sQoS). The resource utilization, server throughput, and
user-perceived latency of every scheduling algorithm are
measured to demonstrate the effect of the mQoS scheduling.
From the test results, the mQoS scheduling reveals its capa-
bilities of differentiating server resource utilization, maxi-
mizing the total server throughput, and sharing resource.

The rest of this paper is organized as follows. Section
2 states the problems of resource management on a Web
server. Section 3 introduces the architecture of the mQoS
gateway and the designs of the request profiling and server
profiling, content-aware request classification, and mQoS
scheduling algorithm. Section 4 describes the evaluation of
the mQoS gateway. Finally, Section 5 gives the conclusion
and the future work of this research.

2. Problems of Server Resource Management

The workload on a Web server will affect the utilization
of the server resource. In a light-load situation, every HTTP
request will get enough resources when being processed,
but there could be unused resources on the server. Con-
versely, in a heavy-load situation, a request may be queued
on the server and wait for being processed. If the server
resources are inadequate for the requirements of the arrival
requests, an HTTP request would experience long queuing
and processing delay. For maximizing the utilization of the
server resources and avoiding extra delay simultaneously,
the resources on the server should be well managed.

Some researches have proposed admission control
schemes to prevent new arrival requests from accessing
a heavy loaded server. With admission control, a server
would drop new arrival requests when its resources cannot
meet the requirements of the requests. However, admission
control itself is not sufficient to support service differenti-
ation because all arrival requests have the same probability
to access server resources. The purpose of service differ-
entiation is to allow different clients receive different treat-
ments, such as server throughput and response time. For
service differentiation, some researches have proposed re-
quest scheduling algorithms to manage the workload on
a server [1] [2]. The general schemes of the mentioned
scheduling algorithms are to allocate different amounts of
concurrent connections, request rate, or bandwidth among
service classes.

A request entering a server requires several types of re-
sources, e.g. CPU, disk I/O, and bandwidth, when being
processed. The lack of any available resource would lead
to a bottleneck. In other words, if there are n kinds of
resources, there could be n kinds of bottlenecks on the
server. Many of the mentioned request scheduling algo-
rithms deal with the problems of single-resource schedul-
ing. They manage a single resource for maximizing its
utilization and differentiating its utilization simultaneously,
but they cannot avoid the bottlenecks derived from the other
resources. A resource can be managed well, while the other
resources may be still non-fully utilized or inadequate for
new arrival requests. Thus, a single-resource scheduling al-
gorithm could lead to an inefficient or overloaded server.
Actually, a request scheduling algorithm should consider
the presence of multiple server resources. In the below,
three request scheduling schemes, no scheduling, single-
resource request scheduling, and multiple-resource request
scheduling, are discussed. The assumption for the discus-
sion is that there are three resources, CPU, disk I/0, and
bandwidth, on the server and a request will consume mul-
tiple resources. Besides, there are three service classes of
clients issuing requests to the server, and the heavy-load sit-
uation is considered.

2.1. No Scheduling (nQoS)

The nQoS scheduling is without any resource manage-
ment scheme, such as admission control or request schedul-
ing, enforced for the service differentiation. The requests
originated from the three classes of clients contend for the
server resources. The server works on a first-come-first-
serve basis. The server workload of the nQoS scheduling
is shown in Figure 1(a). The vertical axis stands for the
resource utilization and cl, c¢2 and c3 stand for the class
1, class 2 and class 3, respectively. Due to the resource
contention, every class of clients gets a third of each server
resource. All server resource utilization is affected by the
workload, but there is no any service differentiation. The
pending requests would be queued on the server and wait
for being processed, causing extra resource consumption,
and prolonged user-perceived latency.

2.2. Single-resource Request Scheduling

In the sQoS scheduling, a request scheduler manages
the utilization of one server resource. Figure 1(b) shows
the server workload of the sQoS scheduling. The CPU re-
source is managed for service differentiation, and the ratio
of the resource allocated to the three classes of clients is
6:3:1. In this example, the sQoS scheduling indeed allo-
cates the expected amount of the CPU resource to the three
classes of clients, but it cannot take care the utilization of
the other resources. The sQoS scheduling will stop schedul-
ing any request to the server when the CPU resource is well
utilized. However, the disk I/O and bandwidth resources
are actually still affordable for the new arrival disk I/O-
and bandwidth- intensive requests, respectively, causing the
waste of these resources. Conversely, the sQoS scheduling
will keep scheduling requests to the server when it finds the
CPU resource is available. However, the disk I/0 and band-
width resources may be already fully utilized, causing an
overloaded server and potentially prolonged user-perceived
latency.

2.3. Multiple-resource Request Scheduling

In the mQoS scheduling, a request scheduler manages
all server resources. The server workload of the mQoS
scheduling is shown in Figure 1(c). The mQoS scheduling
chooses the appropriate requests to well utilize all resources
and at the same time allows the three classes of clients to use
every resource proportionally. The mQoS scheduling elim-
inates the resource wasting or server overloading occurred
in the sQoS scheduling, and the total server throughput can
be improved. Due to scheduling the proper requests to the
server, each resource utilization under the mQoS scheduling
is better than that under the nQoS scheduling. The mQoS

Utilization Utilization Utilization
100% —= 100% 100%

C1

.t ct ct| |ct1]| |
62 ct| |ct
c2 40% | |— 40% - |— —
33% - — G2
c2 c2| |c2| |c2
%3 |cal |ca ©
1086 - 10% |- o = (=
"[[2] o3 o3| [ca] [cs
= [= >) s > o s
5 3 % & < % & < %
] < “ b1 [bl
=) S =) S [=) 5
22} a m
(a) nQoS (b) sQoS (c) mQoS

Figure 1. Server resource utilization under
different scheduling schemes.

scheduling further avoids resource contention and enables
service differentiation.

In the above discussion, the mQoS scheduling seems to
be a better solution for server resource management. In this
paper, a mQoS scheduling algorithm for service differenti-
ation is presented. The mQoS scheduling algorithm has the
capability of managing multiple server resources and it is
deployed on a website gateway located in front of a Web
server. The arrival requests are queued and wait for being
scheduled on the mQoS gateway instead of the server. This
has the advantage of avoiding extra resource consumption
on the server. The server itself can concentrate on the re-
quest processing only.

3. The mQoS Gateway Architecture and
Scheduling Algorithm

The purpose of the mQoS gateway is to avoid resource
bottlenecks, provide differentiation of resource utilization,
and maximize the server throughput. To do this, the mQoS
gateway performs three tasks: request profiling and server
profiling, request classification, and request scheduling.
The request profiling and server profiling let the mQoS gate-
way know the resource consumption of a request and the
capacity of each server resource. The request classification
allows the mQoS gateway to classify requests into different
service classes. The request scheduling determines the or-
der and the time in which the mQoS gateway sends a request
to the server.

The architecture of the mQoS gateway, as shown in Fig-
ure 2, is composed of three components: server prober, re-
quest classifier, and request scheduler. The working flow
of the gateway is described as follows. Before the on-line
operation of the gateway, the server prober sends HTTP re-
quests one by one to scan all Web pages on the server. The

Server |
Prober

URL 3: (Resol

Class 1 I -
Class 2 [RRERERREN

v Sub-scheduler |\

~ N - Class 1 (NENERERE NS
)

{ Internet Request > G2 T T TTT1

Classifier Glass 3 [T

Main Web
Soheduler Server

R 2

> Glass 1 y
% Resource 3 |/

Class Queue Request Scheduler

mQoS Gateway

Figure 2. Architecture of the mQoS gateway.

resource monitor program running on the server monitors
the resource consumption for every request and reports this
information to the server prober. The server prober records
the URLs and resource consumption of the Web pages in
the Web page table for the reference of the request classi-
fier. The QoS policy table defines the service classes and
their classification rules. Once the gateway starts to work, it
incepts arrival requests. The request classifier classifies the
incepted requests into different service classes according to
the rules defined in the QoS policy table. Then the request
classifier refers to the Web page table, tags the information
of the resource consumption to each request, and puts the
tagged requests into the corresponding queues. The request
scheduler checks the availability of the server resources. If
the available server resources are enough, the request sched-
uler fetches a request from a proper queue and sends it to
the server. The detailed design of the server prober, request
classifier, and request scheduler are described below.

3.1. Server Prober

The mQoS gateway is deployed in front of any type of
Web servers. The gateway has to know the server resource
consumption of a request and the capacity of each server
resource. For this, the server prober is used for request pro-
filing and server profiling. The request profiling is the pro-
cess of measuring the resource consumption of a request,
whereas the server profiling is the process of measuring the
maximum capacity of each server resource.

For measuring the resource consumption of a request, the
server prober sends HTTP requests one by one to scan all
Web pages on the server. Starting from the homepage, the
server prober recursively parses every Web page and finds
the URLSs of the embedded objects and hyperlinks until the
website is traversed. During the traversing, the monitor pro-
gram running on the server monitors the amounts of server
resources consumed for each request and reports this infor-
mation to the server prober. As an example, a query page
consumes 15 units of CPU, 5 units of disk I/O and 8 units
of bandwidth per second. To increase the validity of the

measurement, the probed results are verified before being
used. That is, when the prober sends multiple requests to
the server concurrently, the amount of the resource con-
sumption is multiplied as the number of concurrent requests
being processed on the server. Notice that this information
is not directly used by the request scheduling algorithm be-
cause the actual percentage of the resource consumption is
not known yet.

In order to calculate the percentage of the resource con-
sumption of a request, the server prober has to measure the
maximum capacity of each server resource. Thus, the server
prober sends huge amount of specific resource-intensive re-
quests at the same time to the server and checks the resource
utilization. The maximum capacity can be measured when
the resource is fully utilized. After all resource capacities
are measured, the actual capacities of the server resources
and the percentages of the resource consumption of a re-
quest are derived. The maximum capacity of a server re-
source can be derived from multiplying the number of the
concurrent requests on the server by the resource consump-
tion of a request. As an example of measuring the CPU
capacity, if there is 100 requests being processed by a fully-
loaded server and the CPU resource consumption of each
request is 15 units, then the maximum CPU capacity is 1500
units. The percentage of the CPU resource consumption of
arequest can be also derived from dividing its CPU resource
consumption by the CPU capacity. In the above example of
a query page, its percentage of the CPU resource consump-
tion is 1% (derived from 15/1500). The server prober finally
records the URLs and resource consumption information in
the Web page table for the use of the request classifier and
request scheduler.

3.2. Content-aware Request Classifier

The request classifier is used to identify the class and
the resource tendency for each request. The classification
is based on the predefined rules in the QoS policy table.
The header and payload of a request will be inspected by
the request classifier to check whether it matches a rule. If
yes, the request will be classified into this corresponding
class; otherwise, it will be compared with the other rules
until classified. Once a request is classified, its URL will
be inspected to match the URLs in the Web page table. The
purpose is to find out the expected resource consumption
and judge the tendency of the resource consumption. For
example, a request consuming 9% of CPU, 5% of disk I/O
and 7% of bandwidth is regarded as a CPU-intensive re-
quest. After a request is matched with the QoS policy table
and Web page table, the request classifier tags the informa-
tion of the resource consumption to this request and put it
into an appropriate queue. Every service class has several
queues, each of which stores specific resource-intensive re-

quests. If there are m service classes and n server resources,
there are totally m * n queues. The requests wait in the
queues for being scheduled by the request scheduler.

3.3. Multiple-resource Request Scheduler

The request scheduler schedules the requests in the class
queues to manage the server resources in order to pro-
vide service differentiation. The key idea of the mQoS
scheduling is derived from the deficit round robin (DRR)
scheduling for packet scheduling. A traditional DRR sched-
uler serves the head-of-line (HOL) packet of every non-
empty queue which the value of the deficit counter is greater
than the packet size. If it is lower, then later the deficit
counter is incremented by a given value called quantum. A
deficit counter is decremented by the size of packets being
served. However, some considerations should be noticed on
scheduling requests using the concept of the DRR schedul-
ing. The traditional DRR schedules packets to manage the
bandwidth of a link, whereas the presented mQoS sched-
uler schedules requests to manage the multiple resources of
a server. The utilization of the server resources has to be
balanced. None of the resources should be overused or un-
derused; otherwise a resource bottleneck would happen or
a server resource would be wasted.

The mQoS scheduler consists of a main scheduler
and several sub-schedulers, as shown in Figure 3. A
sub-scheduler services the class queues of a server re-
source for differentiating the resource utilization among
the classes, and the main scheduler triggers an appropriate
sub-scheduler according to the availability of the server re-
sources. In a sub-scheduler, there are several deficit coun-
ters (DCs), each of which is associated with a class to
record the unused quantum. However, differing from the
traditional DRR scheduling, the DC of a sub-scheduler can
be decremented by any other sub-schedulers because a re-
quest would consume multiple resources rather than a sin-
gle resource. Each sub-scheduler has a round-robin pointer
that indicates which class queue to be serviced. When the
round-robin pointer moves back to the first class queue, ev-
ery DC of this sub-scheduler is incremented by the prede-
fined quantum.

In the main scheduler, resource availability counters
(RACs) are used to record the availability of the server re-
sources. Each RAC contains the percentage of the avail-
ability of a server resource. By checking the RACs, the
main scheduler knows which resource is the most available
and then triggers the corresponding sub-scheduler to ser-
vice a specific resource-intensive request. Therefore, the
main scheduler can maximize the resource utilization and
balance the utilization among the resources.

Notation of resourca requirements:

[CcPUDis 170, Bandvidth] Deficit Counter
Class 1 —= Class 1
Class 2 814[734 Class2 30|
CPU Sub-scheduler
Dofioit Gounter Resource Availability Gounter
Class 1 283[354 —> Class 1 [_60_| — cPu[100 |
Glass 2 Glass 2 Disk 170 [100]
Class3 [1.62]392] Class3 [10] Bandwidth| 100
Disk I/O Sub-scheduler
Deficit Gounter
Glass 1 > Glass |
Cass2 [1.87]3.27] Class2 [30]
Bandwidth Sub-scheduler Main Scheduler
Class Queue Request Scheduler

Figure 3. mQoS scheduler.

3.4. Scheduling Algorithm

The mQoS scheduling algorithm works as follows. Ini-
tially, the value of each RAC is set to 100, which means
each type of server resource is 100% available. Each round-
robin pointer in these sub-schedulers moves to the first class
queue. In the traditional DRR scheduling, a DC is incre-
mented only when the round-robin pointer moves to its
corresponding queue. However, here all DCs of a sub-
scheduler are incremented at the same time by the prede-
fined quantum because the DC of a sub-scheduler could be
decremented by another sub-scheduler. The main scheduler
checks the values of the RACs to find out which resource
is the most available. A sub-scheduler will be triggered for
scheduling the corresponding resource-intensive requests to
effectively utilize the most available resource. The main
scheduler randomly triggers a sub-scheduler, when there is
no resource more available than the others.

The triggered sub-scheduler inspects the resource con-
sumption information of the HOL request of the queue
which the round-robin pointer locates. If no request waits in
this queue, the sub-scheduler moves the round-robin pointer
to the next queue and the remaining deficit will be carried
over to the next service cycle in the DC. The resource re-
quirements of this request are then compared with the val-
ues of the RACs. If any resource is not enough, the sub-
scheduler will move the round-robin pointer to the next
queue without scheduling this request. If all resource re-
quirements are satisfied, the sub-scheduler will check the
values of the DCs of the same class from all the sub-
schedulers to see whether this class has enough values in
the DCs. If no, the sub-scheduler will move the round-
robin pointer to the next queue without scheduling the re-
quest. If yes, the sub-scheduler fetches the request from
the queue, decrements the amounts of the resource require-
ments from the DCs and RACSs, and sends this request to
the server. When the response from the server comes back,
the RACs will be incremented by the amounts of the re-
source requirements of the corresponding request to reflect

the releasing of the consumed resources. The main sched-
uler continues to trigger a sub-scheduler. A sub-scheduler
continues to serve the requests from a queue until the queue
becomes empty, or the resource requirements cannot be sat-
isfied. Since the scheduler has to be aware of the responses,
the mQoS scheduler is not proper to work with direct rout-

ing.
4. Evaluation

The implementations of the nQoS, sQoS, and mQoS
gateways are based on the Squid package and Linux operat-
ing system. The Squid package is a caching proxy and we
modified it to classify and schedule requests. Here these im-
plementations are practically evaluated on server resource
utilization, server throughput, and user-perceived latency.
The evaluation environment consists of a traffic generator,
a gateway, and a Web server. The gateway and server plat-
forms are Pentium IIT 700 MHz systems with 256 MBytes
main memory and 100 Mbps Ethernet network adaptors.
Spirent’s Avalanche software and SmartBits platform are
used as the traffic generator. Avalanche emulates a large
number of clients to issue HTTP requests to the server and
gathers the statistics. The gateway performs the traditional
DRR scheduling to manage the CPU resource of the server
for the sQoS scheduling, or the mQoS scheduling algorithm
to manage the CPU, disk I/O, and bandwidth resources. In
the nQoS scheduling, the gateway only forwards requests
and responses between the traffic generator and the server
without any processing. The Web server is based on Apache
and PHP. There are three kinds of pages in the server, and
different pages will lead to different consumptions of the
multiple resources when being accessed. The accesses to
the pages of CGI scripts are CPU-intensive. The accesses
to the pages of photos are disk I/O-intensive. The accesses
to the pages of streaming media are bandwidth-intensive. In
the evaluation, three service classes are defined in the QoS
policy table, and the ratio of their quanta is set to 6:3:1.
The workload contains three kinds of resource intensive re-
quests, but the traffic generator issues more CPU-intensive
requests than the other types of requests in order to test the
capabilities of the mQoS scheduling.

4.1. Resource Utilization

Different request scheduling schemes result in different
utilization of the server resources, shown in Figure 4. From
observing Figure 4(a), in the nQoS scheduling, every class
gets a third of every server resource due to the resource con-
tention. Although three resources are well utilized, there is
no differentiation on the resource utilization among three
classes. From observing Figure 4(b), in the sQoS schedul-
ing, the gateway schedules requests to well utilize the CPU

resource of the server and simultaneously to differentiate
the resource utilization to the ratio of 6:3:1. However, the
gateway stops sending requests to the server when the CPU
resource of the server is well utilized, causing the waste of
the disk I/O and bandwidth resources of the server. In Fig-
ure 4(c), the mQoS scheduler sends appropriate requests to
the server to well utilize the three server resources. Further-
more, the differentiation of the resource utilization is evi-
dently observed from that every server resource is utilized
by the three classes according to the defined ratio of 6:3:1.

(@)nQoS Scheduling (b)sQoS Scheduling (©) mQoS Scheduling

100%

80%

cPU Disk 1/O BW cPU Disk1/0 BW CPU Disk I/0 BW

60%

40%

20%

Resource Utilization

0%

mClass 1 mClass 2 oClass 3 O Total

Figure 4. Server resource utilization of the
nQoS, sQoS, and mQoS scheduling.

4.2. Server Throughput

The amount of the utilization of every server resource
will affect the server throughput, as presented in Figure
5. In the nQoS and mQoS scheduling, the maximum to-
tal throughput is close to 300 requests per second which
is limited by the server capacity. However, in the sQoS
scheduling, due to the waste of the disk I/O and bandwidth
of the server, the total throughput is only 260 requests per
second. The mQoS scheduling improves the total through-
put by 21% from the sQoS scheduling. Another finding
is that there is no differentiation on the server throughput
among the three classes in the nQoS scheduling. However,
the sQoS and mQoS scheduling reveal the differentiation
on the server throughput because they schedule requests for
different classes. The ratio of the server throughput of the
three classes is close to 6:3:1.

In Figure 5, the server throughput of the nQoS schedul-
ing is close to that of the mQoS scheduling. This is be-
cause the maximum server throughput is limited by the
server capacity. The workload in the nQoS and mQoS
scheduling make the server resource well utilized. In nQoS
scheduling, the server faces uncontrolled heavy request ar-
rival rate, whereas in the mQoS scheduling, the server faces
the scheduled request arrival rate which can well utilize the
server. Due to the uncontrolled request arrival rate, the
nQoS scheduling has the longer user-perceived latency than
the mQoS scheduling.

The throughput improvement in the mQoS scheduling

Server Throughput

350
300

250
200
150
100
50
o

nQoS sQos mQoS

Requests/Second

@ Class 1 B Class 2 [JClass 3 [Total

Figure 5. Server throughputs of the nQoS,
sQoS, and mQoS scheduling.

results from the fact that the gateway sends appropriate re-
quests to the server to effectively utilize the three server
resources. Figure 6 compares the types of outstanding re-
quests between the sQoS and mQoS scheduling. In the
sQoS scheduling, the gateway does not try to balance the
utilization of the server resources. However in the mQoS
scheduling, the main scheduler takes effect to balance the
utilization on every resource. Also the three sub-schedulers
differentiate the utilization of every resource among the
three classes with a ratio close to 6:3:1.

sQos ~=-Class 1, CPU ~=-Class 2, CPU ~=-Class 3, CPU
N + Class 1, Disk /O —Class 2, Disk /O - Class 3, Disk /O
Scheduling | . ciass 1, Bandwidth - Class 2, Bandwidth - Class 3, Bandwidth
60

Requests/Second
(%3
o

6 7 8
Time (Second)

(a) Types of requests sent by the sQoS scheduling.

mQoS - Class 1, CPU -=-Class 2, CPU -=-Class 3, CPU
> + Class 1, Disk IO —-Class 2, Disk /O - Class 3, Disk I/O
Scheduling . Cjass 1, Bandwidth - Class 2, Bandwidth - Class 3, Bandwidth
60
= 50 s === t‘.<_—,/f\£'/~/‘:
s Y
g 40
€N _
@ 30 -
B =
g — "
S 20 /
3
[

e

Time (Second)

(b) Types of requests sent by the mQoS scheduling.

Figure 6. Types of requests sent to the server
by the sQoS and mQoS scheduling.

User-perceived Latency

o

nQoS sQoS mQoS
M Class 1 BClass 2 (O Class 3 [0 Average

,200

AaaaanNN

User-perceived Latency (ms)
NAOOXONLO®O
0000000000
0000000000

=]

Figure 7. User-perceived latency of the nQoS,
sQoS, and mQoS scheduling.

4.3. User-perceived Latency

User-perceived latency is the time between issuing a re-
quest and receiving a response back at the client. Fig-
ure 7 shows the user-perceived latency of the nQoS, sQoS,
and mQoS scheduling. For the nQoS scheduling, there is
no differentiation on the user-perceived latency among the
three classes. Because the heavy workload leads to re-
quests queued on the server, the average latency is longer
than mQoS scheduling. For the sQoS scheduling, although
the user-perceived latency is differentiated, the average la-
tency is longer. For the mQoS scheduling, besides the
mQoS gateway differentiates the resource utilization, the
user-perceived latency is also differentiated but the ratio is
not exactly 6:3:1. Furthermore, the average user-perceived
latency of the mQoS scheduling is shorter than those of the
nQoS and sQoS scheduling.

5. Conclusion and Future Work

Resource management on a Web server allows a website
operator to control the utilization of the server resources
and provide differentiated quality of service. Traditional
single-resource request scheduling cannot manage multiple
server resources well, that leads to resource wasting or over-
loading. This research presents a multiple-resource request
scheduling algorithm, mQoS, deployed at the website gate-
way to provide service differentiation. The mQoS gateway
consists of a server prober, a request classifier, and a request
scheduler. The server prober profiles the resource consump-
tion of every Web page and the capacity of every server re-
source. The content-aware request classifier determines the
resource tendency and the service class of requests, and puts
them into different class queues. The mQoS scheduler con-
sists of several sub-schedulers and a main scheduler. Each
sub-scheduler manages a server resource and differentiates
the resource utilization among the classes. The main sched-
uler checks the availability of the server resources and trig-
gers an appropriate sub-scheduler to balance the utilization
among the resources. The mQoS scheduling algorithm is

work-conservative to the server to keep the server resources
well utilized. However, it is non-work-conservative to the
class queues because the scheduler remains idle when there
are no enough resources for servicing a request.

The mQoS gateway is implemented on Squid and Linux.
The mQoS scheduling is compared with no scheduling
(nQoS) and single-resource request scheduling (sQoS). The
nQoS scheduling owns no differentiation, and the sQoS
scheduling owns the differentiation only on the utilization
of one server resource. However, the mQoS scheduling
holds the differentiation on the utilization of every server re-
source. Because all server resources are well utilized in the
mQoS scheduling, the total server throughput is improved
by 21%, compared with the sQoS scheduling. Moreover,
the user-perceived latency is also differentiated among the
classes in the mQoS scheduling due to the differentiation of
the gateway queuing delay. The evaluation reveals that the
mQoS scheduling has the capabilities of differentiating the
server resource utilization, maximizing the server through-
put, and sharing resource.

The presented mQoS scheduling algorithm is for one
Web server. It should be improved to support scheduling re-
quests for a cluster of servers. The more complex multiple-
resource, multiple-server request scheduling algorithm can
be implemented on a server load balancer. The issues of
service differentiation, resource utilization, and server load
balancing should be completely considered in the design of
the new algorithm.

References

[1] J. Almeida, M. Dabu, A. Manikutty, and P. Cao, "Provid-
ing Differentiated Levels of Service in Web Content Hosting,”
Proceedings of the 1st Workshop Internet Server Performance,
Jun. 1998.

[2] L. Eggert and J. Heidemann, ”Application-Level Differenti-
ated Services for Web Servers,” World Wide Web Journal, vol.
2, no. 3, pp. 133-142, Aug. 1999.

[3] R.Pandey, J. F. Barnes, and R. Olsson, ”Supporting Quality of
Service in HTTP Servers,” Proceedings of the 7th Annul ACM
Symposium on Principles of Distributed Computing, pp. 247-
256, Jun. 1998.

[4] V. Cardellini, E. Casalicchio, M. Colajanni, and M. Mambelli,
”Web Switch Support for Differentiated Services,” ACM Per-
formance Evaluation Review, vol. 29, no. 2, pp. 14-19, Sep.
2001.

[5] H. Zhu, H. Tang, and T. Yang, "Demand-driven Service Dif-
ferentiation in Cluster-based Network Servers,” Proceedings of
the 20th Conference of the IEEE Communications Society, vol.
2, pp. 679-688, Apr. 2001.

[6] K. Shen, H. Tang, and T. Yang, ”A Flexible QoS Framework
for Cluster-based Network Services,” Proceedings of the 2002
USENIX Annual Technical Conference, Dec. 2002.

[7]1 S. Chandra, C. S. Ellis, and A. Vahdat, ”Application-Level
Differentiated Multimedia Web Services Using Quality Aware

Transcoding,” IEEE Journal on Selected Areas in Communica-
tions, vol. 18, no. 12, Dec. 2000.

[8] C. C. Hung and L. Y. Hong, ”Adaptive Proxy-based Content
Transformation Framework for the World-Wide Web,” Pro-
ceedings of the 4th International Conference/Exhibition on
High Performance Computing in the Asia-Pacific Region, vol.2,
pp. 747-750, May 2000.

[9] Y. Lu, T. Abdelzaher, C. Lu, and G. Tao, ”An Adaptive Con-
trol Framework for QoS Guarantees and its Application to Dif-
ferentiated Caching Services,” Proceedings of the 10th Inter-
national Workshop on Quality of Service, May 2002.

[10] W. Leinberger, G. Karypis, and V. Kumar, Job Scheduling
in the presence of Multiple Resource Requirements,” Proceed-
ings of the 7th International Conference on High Performance
Networking and Computing, Apr.1999.

[11] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar and J.
Hansen, ”A Scalable Solution to the Multi-Resource QoS Prob-
lem,” Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium, Dec. 1999.

[12] M. E. Crovella, R. Frangioso and M. Harchol-Balter, ”Con-
nection Scheduling in Web Servers,” Proceedings of the 1999
USENIX Symposium on Internet Technologies and System, Oct.
1999.

[13] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Re-
serves: A Mechanism for Resource Management in Cluster-
based Network Servers,” Proceedings of the SIGMETRICS
Conference on Measurement and Modeling of Computer Sys-
tems, pp. 90-101, Jun. 2000.

[14] E. Casalicchio and M. Colajanni, ”A Client-Aware Dispatch-
ing Algorithm for Web Clusters Providing Multiple Services,”
Proceedings of the 10th International World Wide Web Confer-
ence, pp. 535-544, May 2001.

[15] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Us-
ing Deficit Round- Robin,” IEEE/ACM Transaction on Net-
working, vol. 4, issue 3, pp. 375-385, Jun. 1996.

[16] X. Chen, P. Mohapatra, and H. Chen, ”An Admission Con-
trol Scheme for Predictable Server Response Time for Web Ac-
cesses,” Proceedings of the 10th World Wide Web Conference,
pp- 545-554, May 2001.

[17] K. Li, and S. Jamin, ”A Measure-Based Admission Control
Web server,” Proceedings of the 9th Annual Joint Conference
of the IEEE Computer and Communications Societies, vol. 2,
pp. 651-659, Mar. 2002.

[18] L. Cherkasova and P. Phaal, ’Session-Based Admission Con-
trol: A Mechanism for Peak Load Management of Commercial
Web Sites,” IEEE Transactions on Computers, vol. 51, issue 6,
pp. 669-685, Jun. 2002.

[19] S. Elnikety, J. Treacy, E. Nahum, and W. Zwaenepol,
”A Method for Transparent Admission Control and Request
Scheduling in E-Commerce Web Sites,” Proceedings of the
13th International World Wide Web Conference, pp. 276-286,
May 2004.

[20] N. Bhatti and R. Friedrich, "Web Server Support for Tiered
Services,” IEEE Network, vol. 13, issue 5, pp. 64-71, Sep.
1999.

[21] V. Kanodia and E. W. Knightyly, "Ensuring Latency Targets
in Multiclass Web Servers,” IEEE Transaction on Parallel and
Distributed Systems, vol. 14, no. 1, pp. 84-93, Jan. 2003.

