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A B S T R A C T

With Software Defined Networking (SDN), IP multicast becomes promising again. For IPTV applications over
SDN, existing works would not scale well since they are based on per-source trees. As control-plane in SDN is
logically centralized, constructing multiple shared trees is more feasible than that in traditional IP networks.
Thus, in this work, we present a locality-aware multicast approach (LAMA) to construct multi-group shared
trees in SDN, where each shared tree covers multiple multicast groups. In LAMA, the controller first clusters the
multicast sources located in the vicinity into the same multicast cluster. For each multicast cluster, the
controller selects the center switch which has the minimum distance to all multicast sources as its rendezvous
point (RP) and then constructs a shortest-path multicast tree from the RP to its hosts. Finally, based on the
multi-group shared trees, the controller can establish coarse-grained flow entries into on-tree switches to reduce
the number of installed flow entries. Emulations on the Ryu controller and the Mininet emulator show that only
2–5 shared trees would suffice. The computation time in the controller using LAMA is around 70 ms, much less
than hundreds ms required for per-source trees. Moreover, LAMA only establishes 2300 flow entries, 4% of that
with per-source trees in a large topology.

1. Introduction

Video streaming services, such as Internet Protocol TV (IPTV) and
video conferencing, have become popular applications among users
and have contributed a significant amount of Internet traffic. This type
of applications usually requires high-bandwidth and low-delay video
transmissions from a source to a large population of users. For these
applications, IP multicast is the most efficient vehicle, avoiding the
waste of bandwidth.

In traditional networks, due to the distributed nature, each router
needs to perform the multicast routing algorithm specified in multicast
routing protocols, such as Distance Vector Multicast Routing Protocol
(DVMRP) (Waitzman et al., 1988), Protocol Independent Multicast-
Dense Mode (PIM-DM) (Adams et al., 2005), Protocol Independent
Multicast-Sparse Mode (PIM-SM) (Farinacci et al., 1998), or Multicast
Open Shortest Path First (MOSPF) (Moy, 1994). These multicast
routing protocols are responsible for determining how multicast
packets are disseminated to avoid redundancy of information and
prevent loop. Therefore, each router requires keeping a lot of dupli-
cated states and exchanging information with neighboring routers to
update its routing table. Furthermore, each router may be responsible

for managing group events, e.g. host join or leave, through the Internet
Group Management Protocol (IGMP) (Fenner, 1997). Consequently,
deploying IP multicast in traditional networks would severely degrade
the performance of networks and remains unpractical.

1.1. Motivation

Software defined networking (SDN) has emerged as a clean-slate
approach, which enable us to reconsider the design of video streaming
services based on IP multicast. In SDN, the functionalities of the
control plane (decide how to handle traffic) are separated from
switches and is managed by a logical centralized controller. Thus, the
switches only have the functionalities of the data plane (forward traffic
according to the decisions made by the control plane). The controller
can support various applications to manage underlying switches via
south-bound application programming interfaces (APIs) such as
OpenFlow (McKeown et al., 2008). Under SDN context, (1) the
switches no longer bear the burden induced by multicast routing
protocols and group management protocols; (2) based on the full
knowledge of network conditions, the controller is capable to build an
optimal multicast tree and handle group events efficiently. Therefore,
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using SDN makes IP multicast become a possible alternative for video
streaming services.

Designing multicast routing algorithms in SDN has some differ-
ences with that in traditional networks. First, in traditional networks,
multicast trees are built by the distributed routers, but in SDN, the
controller centrally builds multicast trees and handles group events,
significantly adding SDN controller's load. Second, the router keeps
stateless unicast routing and stateful multicast routing only, so it does
not need to store much information. However, in SDN, the switch
maintains the states for unicast flows, causing that the flow entries are
precious resources. Thus the flow entries for multicast trees should be
kept as few as possible while keeping the desired QoS. Therefore, the
scalability issues including computation time in the controller and the
number of flow entries consumed by the multicast trees in the switches
are main concerns in designing multicast routing algorithms in SDN.

Up to now, there are few investigations on IP multicast using SDN
(Bondan et al., 2013; Marcondes et al., 2012; Zhao et al.,
2014). Bondan et al. (2013) proposed a multicast approach in which
the calculation of a route between a source and a host is performed
when the controller receives an IGMP join message. This approach
yields a longer initial latency when a large number of hosts joins
simultaneously. In Marcondes et al. (2012), the authors presented a
multicast approach in which the calculation of all possible routes from
sources to hosts is done in advance. Thus, the initial latency can be
reduced greatly. In Zhao et al. (2014), the authors proposed a
congestion-free multicast approach for multi-party video conferencing.
In the approach, delay-bounded multicast trees are built by either
rerouting congested links or adjusting the video streaming rate.
However, aforementioned approaches cannot handle a large number
of multicast groups because they are based on per-source trees, i.e.
each source owns a multicast tree. More specifically, when IPTV
applications adopted aforementioned approaches, the computation
time of the controller and the number of flow entries installed in the
switches would be increased greatly and become performance bottle-
necks. In order to address the scalability issues, the number of
multicast trees should be minimized while maintaining a desirable
video quality.

Fundamentally, multicast trees can be classified into two types: per-
source tree and shared tree. The per-source tree means that each
multicast source has its own multicast tree while a shared tree is a
multicast distribution tree that are shared by multiple group(s). Note
that a multicast group which contains a set of multicast sources and a
set of hosts is usually used to multicast a video channel. Because
control-plane are logical centralized in SDN, we can have three
alternatives of shared tree: per-group shared tree, multi-group shared
tree, and single shared tree. Firstly, the per-group shared tree
represents that the multicast sources in the same multicast group
share the same multicast tree. Secondly, the multi-group shared tree
means that several multicast groups share the same multicast tree.
Lastly, the single shared tree is an extreme case in which all the
multicast sources share the same multicast tree.

Given a system with N multicast groups and each multicast group
has M multicast sources, per-source tree and per-group shared tree
would yield N M× and N multicast trees, respectively. Thus, the major
drawback of the per-source tree and the per-group shared tree is that
the controller and the switches need to handle a large number of
multicast trees. On the other hand, the single shared tree requires only
one multicast tree, but it would suffer from the longest end-to-end
latency and on-tree switches would have very heavy workloads.
Therefore, we believe that the multi-group shared tree would be a
better approach for SDN because only N α/ multicast trees are needed
where α denotes the clustering factor. Table 1 shows a comparison of
four types of multicast trees.

1.2. Contributions

In this paper, we propose a locality-aware multicast approach
(LAMA) to achieve better scalability while meeting stringent require-
ments of video streaming services. In the LAMA, several multicast
groups are adaptively clustered into a multicast cluster and a shortest-
path multi-group shared tree is built for each multicast cluster. Since
generating optimal shared multicast trees is an NP complete problem
(Zappala and Fabbri, 2001), we divide the problem into three
independent sub-problems (multicast group clustering, rendezvous
point (RP) selection, and multicast tree construction) and solve these
sub-problems separately. In the multicast group clustering, we propose
a distance-based clustering algorithm in which the multicast sources
located in the vicinity can be clustered into the same multicast cluster.
In the RP selection, we present a locality-aware selection algorithm to
determine a proper RP which has the minimum distance to all
multicast sources within a multicast cluster. Finally, a shortest-path
multi-group multicast tree is constructed from the selected RP to the
hosts for each multicast cluster. Based on the multi-group shared trees,
coarse-grained flow entries are inserted into on-tree switches, greatly
reducing the number of required flow entries.

Specifically, this paper has the following contributions:

(1) LAMA is proposed to construct multi-group shared trees for IP
multicasting in SDN.

(2) The number of flow entries in switches and the computation time
in the controller for constructing multicast trees is small to keep
excellent scalability of SDN.

(3) Numerous emulations are performed to compare LAMA with other
approaches, including the per-source tree approach and the single
shared tree approach, to verify its outperformance on scalability.

The remainder of this paper is organized as follows. Section 2
discusses the related works. Section 3 gives an overview of our system
model and problem formulation. We present our approach, LAMA, in
Section 4. Section 5 demonstrates our experimental results. Finally, the
conclusions are given in Section 6.

2. Related work

In this section, we describe the related studies that have focused on
IP multicasting using SDN. In Bondan et al. (2013), the authors
proposed an approach for multimedia multicasting, in which the
shortest-path route between the source and the client was computed
on demand to decrease the end-to-end latency. But, when a large
number of clients join the system simultaneously, this approach
produces long initial latency. Marcondes et al. (2012) also presented
a multicast approach, in which the controller calculates all possible
routes from sources to group members in advance, so that initial
latency could be reduced. In Zhao et al. (2014), the authors proposed a
novel multicast construction and packing method for multiparty video
conferencing, in which the SDN controller constructs multicast trees
for video flows. In that method, multiple source-based multicast trees
are constructed, which aims to maximize system-wide utility and

Table 1
A Comparison of Multicast Trees.

per-source
tree

per-group
shared tree

multi-group
shared tree

single
shared tree

Number of trees N M× N N α/ 1
Computation time Long Medium Medium Short
Number of states Many Few Few Very Few
Load on the on-tree

switches
Light Medium Medium Heavy

End-to-end distance Short Medium Medium Long
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guarantee an end-to-end distance bound. However, because the afore-
mentioned works used source-based trees, when the numbers of
sources became large, the system would face two scalability issues:
(1) the controllers were required to maintain large numbers of multi-
cast trees；(2) these approaches consumed substantial amounts of
space on the flow tables of the related switches.

Cui and Qian (2014) proposed a dual-structure multicast approach
in which the controller classifies the multicast groups into two groups,
mice and elephants, based a predefined threshold of bitrate. For mice,
the traffic is forwarded using unicast so that the switches do not retain
the flow entries for mice. For elephants, the scheme constructs multiple
shared trees for each group depending on whether all group members
are in the same pod or not. Compared to using source-based trees,
using shared multicast trees is a better approach to reduce controller
overhead as well as switch overhead. However, in their use case, using
per-group shared trees is only suitable for rack area networks (i.e.
datacenter). In a more generic network, using per-group shared trees
may still cause noticeable controller overhead and consume consider-
able switches’ flow entries when the number of groups is large.

Therefore, in this paper, we propose to use multi-group shared trees
for arbitrary networks. By constructing multi-group shared trees with
end-to-end distance bound, our approach can enhance the scalability of
the controller and the switches in terms of both the computation time
and the number of flow entries while maintaining a desirable video
quality. Moreover, our approach can reduce initial latency because it
can preset the flow entries in related switches. The aforementioned
works are summarized in Table 2.

3. System model

Let G V E= { , } denote the network topology where V is a set of
nodes and E is a set of links representing the connections between
nodes. There are three type of nodes: switch S, multicast source M , and
host H . Let S , M , H , and E be the number of switches, multicast
sources, hosts, and links, respectively. Each switch si has its traffic load
L s( )i and the bandwidth capacity of each switch is equal to B. Each
multicast source mk has its streaming rate rk. For each network link eu v,
where u V∈ and v V∈ , D e( )u v, denotes the distance of the link euv. Let
P u v e e e( , ) = { , , ..., }u a a b c v, , , denotes the path from the node u to node v.
The distance of the path P u v( , ) is the sum of distance of all links in
P u v( , ) as

∑D P u v D e( ( , )) = ( ).
e P u v∈ ( , ) (1)

A tree T s H( , ) is a sub-graph of the network topology G spanning
from a node s to the set of nodes H . The distance of the tree T s H( , ) is
defined as follows:

D T s H D P s h h H( ( , )) = max ( ( , )), ∀ ∈ . (2)

Let g m H= { , }k k k denote a multicast group k which contains a
multicast source mk and the hosts Hk, which subscribe the streaming
from the multicast source mk . We assume that multicast sources and
hosts are registered to the controller in advance. Here, we define a

multicast cluster cn, n M1 ≤ ≤ , which is a set of multicast groups. Let
In k, be an indicator where

I c g= 1 if multicast cluster includes multicast group
0 otherwise

.n k
n k

,
⎧⎨⎩ (3)

Therefore, c I g= ∪ ⋅n
k

M
n k k

=1

| |
, . For a multicast cluster cn, the aggregated

streaming rate is defined as

∑R c r( ) = .agg n
g c

k
∈k n (4)

The maximum distance among multicast sources in the cluster cn is
defined as

D c D P m m m c m c( ) = max ( ( , )), ∀ ∈ and ∀ ∈ .n u v u n v nmax (5)

In additional, the distance of two clusters cA and cB is defined as

D c c D P m m m c m c( , ) = max ( ( , )), ∀ ∈ and ∀ ∈ .A B u v u A v B (6)

Let T c( )n be the shared tree of the multicast cluster cn. According to
Eqs. (1) and (2), the distance of the shared tree T c( )n is defined as

∑D T c D P m rp D T rp H( ( )) = ( ( , )) + ( ( , )).n
g c

k n n k
∈k n (7)

Finally, the number of flow entries of the shared tree is defined as
F T c( ( ))n . Table 3 shows the notations used in this study.

Given a network topology G V E= { , }, the bandwidth capacity of
switch B, and the streaming rate rk of multicast source mk , we aim to (1)
minimize the number of shared trees by clustering multicast groups,
(2) minimize the distance of each shared tree D T c( ( ))n by selecting a
proper rendezvous point rpn, and (3) minimize the number of flow
entries of the shared tree F T c( ( ))n . The constraints of our problem are
(1) the maximum distance among multicast sources in each cluster cn
must be smaller than a predefined threshold, Dth, that is D c D( ) <n thmax ,
and (2) each switch cannot be overloaded, that is L s B( ) ≤i .

4. Locality-aware multicast approach

To solve the problem, we propose a locality-aware multicast
approach (LAMA), which includes three-stages: multicast source
clustering, RP selection, and multicast tree construction. In the multi-
cast source clustering, we propose a distance-based clustering algo-
rithm to cluster the multicast sources located in the vicinity into a
multicast cluster. For each multicast cluster, we present a locality-
aware selection algorithm to select the center switch which has the
minimum distance to all multicast sources in a multicast cluster as a
proper RP. Then, a shortest-path multicast tree is constructed from the
selected RP to the hosts. Furthermore, the video data transmitted by
the same shared multicast tree is forwarded by matching the same flow
entry so that the number of flow entries installed on the related
switches can be greatly reduced.

Table 2
A Comparison of related works.

Multiflow (Bondan et al.,
2013)

CastFlow (Marcondes et al.,
2012)

MTCP (Zhao et al.,
2014)

DuSM (Cui and Qian,
2014)

Ours work

Topology Generic Generic Generic Fat Tree Generic
Type of multicast tree Per-source tree Per-source tree Per-source tree Per-group shared tree Multi-group shared tree
End-to-end distance Shortest Shortest Bounded Bounded Bounded
Flow entries in RP 0 0 0 Depends on topology O(|M|)
Flow entries in on-tree

switch
O(|M|) O(|M|) O(|M|) Depends on topology O(|RP|)

Initial latency High Medium Medium Low Low
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4.1. Detailed algorithms

4.1.1. Multicast source clustering
Fig. 1 shows pseudo code of the distance-based clustering algo-

rithm. This algorithm is based on complete linkage clustering
(Johnson, 1967), which iteratively decides whether two clusters should
be merged or not according to the distance between clusters. In
complete linkage clustering, the distance between clusters equals the
distance between those two multicast sources (one in each cluster)
which are farthest away from each other. Therefore, the multicast
sources located in the vicinity can be clustered in the same multicast
cluster. In this algorithm, each multicast source forms an individual

cluster in the beginning. Next, we select two multicast clusters cA and cB

which have the minimum distance according to Eq. (6). Then we check
(1) whether the distance between the multicast clusters cA and cB is
smaller than the distance threshold Dth and (2) whether the aggregated
streaming rate is smaller than the bandwidth capacity. If the conditions
(1) and (2) are met, the multicast clusters cA and cB are merged together
and the procedure is executed repeatedly. Otherwise, either the
procedure is aborted (when the condition (1) is not met) or the
multicast clusters cA and cB are removed from the set of multicast
clusters (when the condition (2) is not met).

4.1.2. RP selection
Inspired by Zappala and Fabbri (2001), the main idea of the

locality-aware RP selection algorithm is to select the switch that has
the minimum sum of distance to multicast sources as a proper RP from
a set of candidate RPs. Fig. 2 shows the pseudo code of the locality-
aware RP selection algorithm. In this algorithm, given the network
topology G and the set of multicast clusters C as the inputs, we first
select all source-attached switches as candidate RPs for each multicast
cluster cn. Then, for each candidate RP, we calculate the distances from
each candidate RP to all multicast sources in this cluster. Finally, we
select the switch which has the minimum distance to all multicast
sources as the RP, rpn, for each multicast cluster cn.

4.1.3. Multicast tree construction
In order to reduce the end-to-end latency, a shortest-path multicast

tree is constructed for each multicast cluster. Fig. 3 shows pseudo code
of the shortest-path tree construction algorithm. In this algorithm, we

Table 3
Description of notations.

Categories Notation Type Descriptions

Topology G V E= { , } Input The network topology

Nodes V S M H= { , , } Input The set of network nodes
S s i= { | ≥ 1}i Input The set of switches
M m k= { | ≥ 1}k Input The set of multicast sources
H h j= { | ≥ 1}j Input The set of hosts

L s( )i Variable The traffic load of switch si
B Input The bandwidth capacity of each switch
R r k= { | ≥ 1}k Input The set of streaming rate of multicast source mk
g m H= { , }k k Input The multicast group from the multicast source mk

C c n M= { |1 ≤ ≤ }n Variable The set of multicast clusters
RP rp n M= { |1 ≤ ≤ }n Variable The set of rendezvous points

Links E e u V v V= { | ∈ , ∈ }u v, Input The set of network links

D e( )u v, Input The link distance of link eu v,
Dth Input The distance threshold

Path P u v e e e( , ) = { , , ..., }u a a b c v, , , Output The path from node u to node v, where a b c V, , ∈

Tree T c( )n Output The shared tree of multicast cluster cn
F T c( ( ))n Output The number of flow entries of shared tree T c( )n

Decision variable In k, Variable A multicast cluster cn includes multicast group gk or not

Fig. 1. Pseudo code of the distance-based clustering algorithm. Fig. 2. Pseudo code of the locality-aware RP selection algorithm.
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first select the multicast cluster with the highest aggregated streaming
rate to construct the multicast tree because the multicast cluster with
the higher aggregated streaming rate would occupy more bandwidth.
For each multicast cluster cn, we use the Dijkstra's algorithm to
construct the shortest paths from each multicast source m c∀ ∈k n to
the RP rpn, and then construct the shortest path tree from the RP rpn to
the hosts Hk . Based on multi-group shared-trees, we finally insert a
coarse-grained flow entry into on-tree switches instead of several fine-
grained flow entries. Note that our approach, LAMA, tries to construct
multi-group shared trees, rather than per-source trees, to reduce the
number of required flow entries while keeping the acceptable path
length. This stage will construct the shortest paths from each multicast
source in the same cluster to RP and also construct the shortest paths
from RP to the hosts. Therefore, the path from a source to a host may
not be the shortest path.

4.2. An example

An example shown in Fig. 4 is presented to explain the overall
procedure of LAMA. Fig. 4(a) shows the network topology G. The
streaming rates of multicast sources, m1, m2, m3, and m4, are 200 KB/
s, 50 KB/s, 100 KB/s, and 200 KB/s, respectively. The switch band-
width B and the distance threshold Dth are 300 KB/s and 5 hops,
respectively.

First, every multicast source forms a multicast cluster and calcu-
lates the distance from one multicast cluster to the others. The original
distance is shown in Fig. 4(b). Next, we select two multicast clusters
which have the minimum distance, i.e., c1 and c3. The distance
D c c( , ) = 31 3 is smaller than D = 5th , and the aggregated streaming rate
is equal to the bandwidth capacity, R c R c B( ) + ( ) = 200 + 100 ≤agg agg1 3 .
Therefore, we merge c1 and c3 together, i.e., c c c= ∪1 1 3, I = 03,3 , and
I = 11,3 . The updated distances between each cluster are calculated. The
next two near clusters are c1 and c2. The distance
D c c D( , ) = 4 < = 5th1 2 . However, the aggregated streaming
rate is greater than the bandwidth capacity,
R c R c B( ) + ( ) = 300 + 50 >agg agg1 2 . Therefore, the pair c c( , )1 2 is re-
moved. The next two near clusters are c1 and c4. The distance
D c c D( , ) = = 5th1 4 , means that no clusters are near. Finally, the set of
multicast clusters C is c c c{ , , }1 2 4 , where c g g= { , }1 1 3 , c g= { }2 2 , and
c g= { }4 4 .

Then LAMA selects a proper RP for each cluster. For cluster c1,
there are two multicast groups in this cluster c g g= { , }1 1 3 . The set of
candidate RPs is s s{ , }1 3 . We calculate the distances of
s1 and s3 as D P m s D P m s( ( , )) + ( ( , )) = 1 + 2 = 31 1 3 1 and
D P m s D P m s( ( , )) + ( ( , )) = 2 + 1 = 31 3 3 3 , respectively. In this case, we
randomly select s1 as an RP. For cluster c2 and c4, we select s6 and s5,
respectively. Therefore, the set of rendezvous points RP s s s= { , , }1 6 5 .

Finally, for cluster c1, we construct two shortest paths m s→1 1 and
m s s→ →3 3 1. In additional, we construct a shortest-path tree from s1 to
all hosts, as shown in Fig. 4(c). Then the shortest paths for cluster c2
and c4 are also constructed correspondingly.

4.3. Implementation

Fig. 5 shows the architecture of our implementation. Based on
OpenFlow specification 1.3.2 (OpenFlow Switch Specification Version
1.3.2), our approach is implemented on Ryu controller (RYU SDN
Framework) as a controller module. In the LAMA module, there are
four functional blocks: topology discoverer, group membership man-
ager, multicast tree constructor, and flow inserter. The topology
discover and the group membership manager are responsible for
periodically acquiring global topology information and multicast group
membership, respectively. The multicast tree constructor is to cluster
all multicast sources into multiple clusters and to build a multi-group
shared tree for each multicast cluster according to the proposed
algorithms. The flow inserter is to insert the required flow entries into
the related switches.

The flow entries are inserted into the related switches through the
modify_state messages of OFPMatch() and OFPInstruction(). In our
approach, these are two kinds of flow entries. One is from each
multicast source to the RP, where the match field is “ip_src=multi-
cast_source_ip, ip_dst=multicast_group_ip” and the action field is
the output port transmitted to the next switch along with the shortest
path. The other is from the RP to hosts, where the match field is
“vlan_id=x” instead of “ip_dst=multicast_group_ip” to reduce the
required flow entries, and the action field is the output port sent to on-
tree switches. The reason is when several multicast trees have the same
partial path, the switches on the path will record many flow entries
when the match field is set as “ip_dst=multicast_group_ip”.
Therefore, the same path for different multicast trees should be
aggregated into one flow entry in the switches on the path.

The technique of VLAN is adopted as our implementation for
aggregating flow entries. We use OFPActionPushVLan() and
OFPActionSetField() functions to insert the flow entries with action
“tag vlan_id=n” at the RP and use OFPActionOutput() function to pass
the packets to the next on-tree switch, where n is the index of the
shared tree. By matching the VLAN tag, the on-tree switches can
forward the packets to the hosts. Since the host can’t recognize the
packets with the VLAN tag, we use OFPActionPopVLan() to insert the
flow entries with action “untag vlan_id” at edge switches. After
popping the VLAN tag, the edge switch forwards the packets to the
hosts by matching “ip_dst=multicast_group_ip”.

5. Performance evaluation

5.1. Emulation environment

We employ two servers to build our emulation environment. The
first server (i.e., Intel core i5-4590 CPU 3.30 GHz, Debian 7.8 on
VMware workstation) acts as the OpenFlow controller, running the Ryu
version 3.13. In the second server (i.e., Intel core i5-4440 CPU
3.10 GHz, Debian 7.8), we used the Internet topology generator
BRITE to simulate the real topology because most multicast experi-
ments in other researches also used BRITE to simulate the real
topology. Given the number of hosts, switches, and sources, BRITE
can generate the topology by creating proper links and their distances.

Fig. 3. Pseudo code of the shortest-path tree construction algorithm.
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Mininet (Lantz et al., 2010) is used to emulate the topology composed
of switches, multicast sources, and hosts. VLC tool is used to generate
streaming data on multicast sources and receive streaming data on
hosts. Table 4 shows the default setting of parameters used in the
emulation environment.

In our experiments, we compare our approach, LAMA, with the per-

source tree (PST) approach and the single shared tree (SST) approach.
We do not compare LAMA with Multiflow (Bondan et al., 2013),
CastFlow (Marcondes et al., 2012), and MTCP (Zhao et al., 2014)
individually, which are listed in Table 2, because they all construct per-
source trees and will have similar performance with PST. Although
DuSM (Cui and Qian, 2014) constructs per-group shared trees, it will
be reduced to construct per-source trees because a source corresponds
to a group in our experiment. Therefore, DuSM is not considered in our
experiment since its performance is also similar to PST and it is mainly
applied to the fat-tree topology. The computation time and the total
number of installed flow entries are adopted as performance metrics.
The computation time shows the controller spends how much time to
build the required multicast trees. The total number of installed flow
entries indicates how many TCAM spaces consumed by the required
multicast trees.

5.2. Results

5.2.1. Scalability of the control-plane
Firstly, we investigate the scalability of the proposed approach in

the control-plane. Fig. 6 shows the average computation time of the
proposed approach with various number of (a) switches, (b) multicast

Fig. 4. An example. (a) Network topology. (b) Distances between each cluster. (c) Shared tree T c( )1 .

Fig. 5. Implementation architecture.
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Table 4
Defaulting setting of parameters.

Notation Meaning Default setting

S| | The number of switches 1000
.. The number of multicast sources 100
H| | The number of hosts 500
B The bandwidth capacity of switch Generated by BRITE
E e u V v V= { | ∈ , ∈ }u v, The set of network links Generated by BRITE

D e( )u v, The link distance of link eu v, 1 (hop count)

R r k= { | ≥ 1}k The set of streaming rate of multicast source mk Default setting in VLC
g m H= { , }k k k The multicast group, Hk , from the multicast source mk All Hk=H

Dth The distance threshold The maximum distance between any two multicast sources

Fig. 6. Average computation time of the controller.
Fig. 7. Average number of multicast trees.
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sources, and (c) hosts. In Fig. 6, with the number of switches, multicast
sources, and hosts increases, the average computation time of the PST
approach increases significantly. In cases of 1000 switches, 100 multi-
cast sources, and 500 hosts, the average computation time of the PST
approach is larger than 900 ms. Therefore, when IPTV applications
employ the PST approach, the controller would become a performance
bottleneck. On the contrary, the average computation time of the SST
approach is less than 30 ms in all cases since the controller only needs
to maintain a single multicast shared tree for all the multicast groups.
However, the SST approach is impractical because the QoS require-
ments cannot be satisfied. The average computation time of LAMA is
around 70 ms regardless of the number of switches, multicast sources,
and hosts. It is because LAMA can dynamically group a large number of
multicast groups into few multicast clusters and effectively build a
multi-group shared tree for each multicast cluster. As shown in Fig. 7,
LAMA only yields 2–5 multicast shared trees. Thus, these results show
our approach has good scalability in control-plane and is a practical

approach.

5.2.2. Scalability of the data-plane
Next, we investigate the scalability of the proposed approach in the

data-plane. Fig. 8 shows the total number of installed flow entries with
various number of (a) switches, (b) multicast sources, and (c) hosts. In
Fig. 8, we can observe the total number of installed flow entries of the
PST approach increase significantly as the number of switches, multi-
cast sources, and hosts increases. In cases of 1000 switches, 100
multicast sources, and 500 hosts, the total number of installed flow
entries of flow entries of the PST approach is 57,647. Therefore, when
the PST approach is employed, a large TCAM space in the switches
would be occupied. Although the SST approach only needs to insert
very few flow entries in the related switches, it also make the switches
become overloaded and congested. However, the total number of the
installed flow entries of LAMA is 2298, which is only 4% of that yielded
by the PST approach. It is because LAMA can insert a coarse-grained
flow entry into on-tree switches instead of several fine-grained flow
entries for each multicast cluster. These results show that our approach
also has good scalability in data-plane.

6. Conclusion

In this paper, we proposed a locality-aware multicast approach
(LAMA) to enhance the scalability of the controller and the switches in
SDN. In the proposed approach, there are three stages: multicast group
clustering, RP selection, and multicast tree construction. In the multi-
cast group clustering, a distance-based clustering algorithm is pre-
sented to cluster all the multicast sources into few multicast clusters. In
the RP selection, a locality-aware selection algorithm is proposed to
determine the center switch which has the minimum distance to all
multicast sources within a multicast cluster as a proper RP. In the
multicast tree construction, a shortest-path multicast tree is con-
structed from the selected RP to the hosts for each multicast cluster.
Also, based on the multi-group shared trees, coarse-grained flow
entries are inserted into on-tree switches, greatly reducing the number
of required flow entries.

The emulation results show only 2–5 multicast shared trees would
suffice. The computation time in the controller using LAMA is only
around 70 ms, much less than hundreds ms required for the PST
approach. The total number of installed flow entries of LAMA is about
2300, only 4% of that yielded by the PST approach. These results show
LAMA has good scalability in both control-plane and data-plane, so it is
very suitable for IPTV applications.
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