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Abstract—An intrusion detection system (IDS), traditionally
an example of an effective security monitoring system, is facing
significant challenges due to the ongoing digitization of our
modern society. The growing number and variety of connected
devices are not only causing a continuous emergence of new
threats that are not recognized by existing systems, but the
amount of data to be monitored is also exceeding the capa-
bilities of a single system. This raises the need for a scalable
IDS capable of detecting unknown, zero-day, attacks. In this
paper, a novel multi-stage approach for hierarchical intrusion
detection is proposed. The proposed approach is validated on the
public benchmark datasets, CIC-IDS-2017 and CSE-CIC-IDS-
2018. Results demonstrate that our proposed approach besides
effective and robust zero-day detection, outperforms both the
baseline and existing approaches, achieving high classification
performance, up to 96% balanced accuracy. Additionally, the
proposed approach is easily adaptable without any retraining and
takes advantage of n-tier deployments to reduce bandwidth and
computational requirements while preserving privacy constraints.
The best-performing models with a balanced set of thresholds
correctly classified 87% or 41 out of 47 zero-day attacks, while
reducing the bandwidth requirements up to 69%.

Index Terms—intrusion detection, binary classification, multi-
class classification, multi-stage detection, hierarchical architec-
ture

I. INTRODUCTION

Our society is continuously exposed to an increased risk
of cybersecurity threats due to the ongoing digitization in
the modern world [1]. The never-ending growing number and
variety of interconnected devices, including critical systems
such as power grids, does not only expand the attack surface
for a malicious actor but is also negatively affecting the
possible consequences in case of a successful attack [2].
Furthermore, the increasing generated load on existing security
monitoring systems is exceeding single system capabilities
and challenging their scalability to detect threats in near real-
time [3]. As a result, the historical arms race between attackers
and defenders is shifting advantageously towards the attackers.
This demands consistent efforts from the research community
to further improve the existing defenses in place as well as
develop novel approaches that contribute to the mitigation of
the cybersecurity risk.

Traditional security mechanisms such as a firewall are
effective at detecting specific types of attacks but are unable to
detect unknown or more advanced attacks. Intrusion detection
systems (IDS) are often deployed as a second line of defense

and are an example of a security monitoring system capable of
detecting known as well as unknown and more sophisticated
attacks. The detection can happen before, during, or after an
attack is executed. In case the system is not only capable
of detecting such an intrusion but also actively prevents the
attack from succeeding, it is called an intrusion prevention
system (IPS). An IDS and IPS can be categorized by the
source of the input used for detection. Host-based intrusion
detection systems (HIDS) use features gathered from the host
machine such as resource usage and system calls, therefore
a monitoring module needs to be deployed on every single
device that needs to be secured. On the other hand, a network
intrusion detection system (NIDS) is deployed on a particular
node in the network and monitors all traffic passing through
it. When a combination of both sources is used as input for
the detection, it is called a hybrid intrusion detection system.
These systems can also be differentiated by the applied method
for detection. Signature or misuse-based systems rely on a
database consisting of patterns or signatures of known attacks.
This technique is an effective tool for detecting known attacks
with few false alerts but fails to detect any attack not present in
the signature database and therefore is unable to detect zero-
day attacks. On the contrary, anomaly-based detection models
normal behavior instead of the attack itself, and everything
deviating too much from normal is flagged as malicious. This
approach allows the detection of both known and unknown
attacks as long as they diverge sufficiently from the learned
baseline. Anomaly-based detection often relies on machine-
learning techniques to learn the normal baseline from data.

Currently proposed IDS solutions often rely on a single
machine learning model for either attack detection or classi-
fication. This poses multiple challenges. First, a single model
generally excels either in attack detection or classification.
Using a combination of multiple models particularly trained
for a specific task could potentially improve the classification
performance. Secondly, all samples need to transmitted to and
processed by this single model. In case the monitored network
is distributed, this will not only lead to high computational
costs but also have high bandwidth requirements, leading to
increased latency. Last, the proposed models often lack the
ability to detect unknown or zero-day attacks.

In this paper, a novel multi-stage approach for hierarchical
intrusion detection is proposed. Fundamentally, this approach
is applicable for each type of IDS, independent of the source
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of the input or used detection method, considering the char-
acteristics of each layer are met. Our novel approach features
improved classification performance over both a single model
baseline and existing multi-stage approaches, in addition to its
ability to effectively detect zero-day attacks. The classification
is performed by a system consisting of three stages. The
first stage performs a lightweight outlier detection, associating
an anomaly score to each event. By only forwarding events
to the second stage with an anomaly score above a certain
threshold, this layer acts as a filter. This allows the use of more
computationally expensive methods in the next layer as it will
only be applied to a small share of the total number of events.
The second stage classifies each of the suspicious events from
the first stage to a known attack type with a certain confidence.
Events with low prediction confidence, most likely do not
belong to any of the known attack classes and are forwarded to
the third stage. This last stage reuses the anomaly score of the
first stage to separate miss-classified benign events from the
first stage and zero-day attacks. Events with an anomaly score
higher than another threshold which is higher than the previous
threshold in the first stage, are flagged as an unknown attack
while events with a lower score are corrected as benign. Since
each layer employs a threshold to define its prediction, the
final performance can easily be tuned by adjusting these values
without retraining any of the used models. This flexibility also
allows adapting the models’ specific trade-offs to changing
requirements over time. Finally, the novel approach is designed
to take advantage of a hierarchical deployment. Each of the
stages can either be deployed separately or combined. This em-
powers an n-tier deployment of our novel proposed approach
that minimizes bandwidth requirements and latency associated
with the predictions. In case the first stage is deployed close
to the network being monitored, a privacy-aware operation
is ensured as only suspicious events are forwarded, retaining
most of the benign traffic locally.

The main contributions of this paper are three-fold.

• We propose a novel multi-stage approach for hierarchical
intrusion detection performing both binary and multi-
class detection. Our highly adaptable novel approach is
specifically designed to empower a multi-tier deployment
to minimize latency and bandwidth requirements while
preserving privacy constraints. Furthermore, both known
and zero-day attacks can be detected.

• A hyperparameter optimization using machine learning
best practices is performed for two unsupervised, au-
toencoder and one-class support vector machine, and two
supervised, random forest and neural network, algorithms
for the first and second stage, respectively.

• An extensive validation and analysis of our novel pro-
posed approach is performed on modern flow-based net-
work intrusion datasets, CIC-IDS-2017 and CSE-CIC-
IDS-2018 [4], against both a single baseline model and
the existing state-of-the-art multi-stage approach.

The remainder of this paper is structured as follows. First,
the related work regarding IDS and more specifically multi-
stage IDS is discussed in Section II. Afterward, the novel
multi-stage approach for hierarchical intrusion detection is

presented in section III, followed by section IV describing the
methodology used to validate the newly proposed approach,
ensuring sound and reproducible results. In section V the
results of both the baseline, all intermediate stages, and the
final novel approach on a modern flow-based network dataset
are presented. An extensive analysis and discussion of these
results are laid out in section VI. Future work is listed in
section VII before stating a final conclusion in section VIII.

II. RELATED WORK

In the literature several studies regarding multi-layer or
multi-stage IDS exist, starting from a different definition. A
first definition refers to a hierarchical context where each
layer has different input data available to execute the detection
or classification, the final prediction is then a combination
of each tier’s prediction. Zhang et al. [5] propose an IDS
to detect cyberattacks in smart grids. This smart grid exists
of three layers where each layer has the ability to monitor
a unique set of features used for attack detection. Through
internal communication between the different layers, the smart
grid is able to identify malicious traffic. Similarly, Ali and
Yousaf [6] proposed an approach composed of three tiers to
detect intrusions in software-defined networks (SDN). The
first tier validates user authentication through an RFID tag
and encrypted signatures using routers as edge devices. Next,
the second tier located on switches validates the raw network
packets using fuzzy filtering. In the third tier, located in
network controllers, the reconstructed flows from the raw
packets are used as input in a convolutional neural network
(CNN) for the detection of malicious traffic.

A second definition found in the literature describes multi-
stage approaches as a cascade of detection and classification
methods on the same input data. The goal is often to achieve a
higher classification performance. Li et al. [7] proposed such
a cascade to classify network traffic to the correct attack type.
The first stage consists of a collection of binary classifiers
whose output is aggregated to form a prediction. Traffic for
which the aggregated prediction is uncertain is sent to the
second stage to determine the correct class using the k-nearest
neighbors model (KNN). Likewise, Pajouh et al. [8] [9] used
a two-stage feature reduction method followed by a two-stage
classification approach chaining the naive Bayes algorithm and
certainty factor KNN (CF-KNN) to classify network traffic.
All traffic classified as benign by the naive Bayes algorithm
is forwarded to the CF-KNN for further investigation. The
final prediction is formed by combining both stages. On the
contrary, Al-Yaseen et al. [10] chained multiple stages with
each stage consisting of a classifier able to detect a single
attack type instead of using a second layer to reclassify
predictions with low confidence. This chain forms a waterfall
pattern where each sample propagates to the next classifier
until successful detection of an attack type. In case the last
classifier also fails to classify the sample as a known attack,
the sample is classified as an unknown attack. The study
conducted by Ji et al. [11] proposed a two-stage model with the
same goal of improving the classification performance but uses
rule-based detection followed by an anomaly-based model for
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TABLE I
TAXONOMY OF THE RELATED WORK

Study Detection Classification Stages Zero-Day Hierarchical Computational Reduction

Zhang et al. [5] ± ✓ 3 ✗ ✓ ✗
Ali and Yousaf [6] ± ✓ 3 ✗ ✓ ✗

Li et al. [7] ✗ ✓ 2 ✗ ✗ ✗
Pajouh et al. [8] [9] ✗ ✓ 2 ✗ ✗ ✗
Al-Yaseen et al. [10] ✗ ✓ 5 ✓ ✗ ✗

Ji et al. [11] ✓ ✓ 2 ✗ ✗ ✗
Khan et al. [12] ✓ ✓ 2 ✗ ✗ ✗

Divyatmika and Sreekesh [13] ✓ ✓ 3 ✓ ✗ ±
Umer et al. [14] ✓ ✓ 2 ✗ ✗ ✗

Abuadlla et al. [15] ✓ ✓ 2 ± ✗ ✗
Bovenzi et al. [16] ✓ ✓ 2 ✓ ✓ ±

Verkerken et al. ✓ ✓ 3 ✓ ✓ ✓

the first and second stage, respectively. The approach proposed
by Khan et al. [12] consists of two layers with both layers
containing a deep autoencoder (DAE) and a soft-max classifier.
The DAE is used to construct the latent space of the input data
in an unsupervised manner. On top of this latent space, a soft-
max classifier is placed which is fine-tuned using a limited
set of labeled data. The first layer will output an anomaly
probability which is then used as an extra feature in the second
layer. The second layer performs the final classification based
on both the input data and anomaly probability outputted by
the first layer.

Next to achieving a higher classification performance by
employing multiple detection methods, the third cluster of
studies exists that relies on a combination of anomaly de-
tection, often based on unsupervised machine learning tech-
niques, and a multi-class classifier. Here the goal of the first
stage is to filter out suspicious samples in a lightweight
manner, which are then sent to the next, more computational
complex stage for attack type classification. The goal of these
studies is to achieve a high classification performance while re-
ducing latency, bandwidth and computational requirements, of-
ten combined with unknown attack detection capabilities [17].
Divyatmika and Sreekesh [13] use a three-stage approach to
classify network traffic, where the first stage relies on KNN
model to compare incoming traffic against the baseline traffic
of the network. New behavior and attacks are not matched
and are sent to the following stages where the multi-layer per-
ceptron (MLP) algorithm and reinforcement learning is used
for misuse and anomaly detection, respectively. The first stage
is acting as a filter to reduce the load by the computational
more expensive algorithms in the succeeding stages. The study
by Umer et al. [14] presents a multi-stage model for next-
generation networks consisting of an anomaly detection and a
multi-class classifier relying on solely unsupervised machine-
learning techniques. The first layer uses a one-class support
vector machine (OC-SVM) for binary detection. Only traffic
predicted as malicious by the first layer is classified by the
second layer using a self-organizing map. Abuadlla et al. [15]
present an easy expandable two-stage model. Both stages rely
on a neural network (NN) for respectively, anomaly detection
and multi-class classification in the first and second stages. The
study mentions the ability to detect unknown attacks but does
not further specify in detail how the supervised NN achieves

this in the absence of labeled samples of unknown attacks.
The two-stage hierarchical approach proposed by Bovenzi
et al. [16] consists of a multi-modal DAE and soft output
classifiers in the first and second stage, respectively. The soft
output classifier in the second stage is able to detect unknown
attacks using a threshold on the confidence of the prediction.
In case the confidence of a sample belonging to a known attack
class or benign traffic is lower than the threshold, the sample
is predicted as an unknown attack. The multi-class classifier
is trained using the open-set approach, removing one of the
known attack types from the training data and considering it
as an unknown attack. By repeating this approach for each of
the known attack types, the threshold on the confidence can be
optimized. Further, this model is optimized for a distributed
and privacy-preserving deployment with the need for limited
retraining to adjust performance trade-offs. This study is the
closest to our novel approach and is used as the current state-
of-the-art multi-stage approach for comparative purposes.

Other studies in the literature also describe their work as
multi-layer or multi-stage but do not refer to classification in
multiple steps or a chain of classifiers. For example, Injadat
et al. [18] simply refers to the multiple steps in a data
processing pipeline, such as preprocessing, feature selection,
hyperparameter optimization, and classification, to claim her
proposed model as multi-stage.

While few of the previously discussed related works men-
tioned the reduction of the required computational capacity
of the proposed architecture, none of them provided exper-
imental results or analyzed this statement more thoroughly.
This study discusses the reduction on basis of the share
of samples propagating to the second layer, thus requiring
extra computational resources and bandwidth in a hierarchical
deployment. A taxonomy of the related work can be found
in table I. For each study it is examined if separate anomaly
detection and classification are obtainable, the number of used
stages, the ability to detect zero-day attacks, the possibility
for a hierarchical deployment, and achieving reduction of
required computational capacity. The taxonomy clearly shows
the unique characteristics of this study.

The use of machine learning techniques for intrusion detec-
tion is a well-studied topic by the research community. Several
surveys [19] [20] [21] advocate the usage of both supervised
and unsupervised methods to assist existing IDS or even
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replace them completely. More specifically, promising results
have previously been achieved by employing AE [22] [23] and
OC-SVM [24] to detect anomalies in streams of network traf-
fic. Similarly, tree-based algorithms, such as an RF [25] [26],
and deep learning algorithms, in particular convolutional neu-
ral networks [27] [28] and artificial neural networks [29]
have been confirmed to achieve promising results on academic
benchmark datasets. This study evaluates the use of an AE and
OC-SVM for anomaly detection and RF and NN for multi-
class classification, respectively, in the first and second stage
of the proposed novel multi-stage approach. Furthermore, a RF
trained using an open-set option for zero-day detection serves
as a single model baseline.

III. NOVEL APPROACH

In this section, the novel multi-stage approach for hi-
erarchical intrusion detection is described. First, the over-
all architecture is introduced and the design choices made
throughout the development are explained in depth. Afterward,
the stages composing the overall architecture are individually
discussed. Finally, the benefits of a hierarchical deployment
are highlighted as well as the implementation choices to be
made for an operational system.

A. General architecture

The multi-stage hierarchical architecture proposed in this
paper consists of three stages with each a distinct characteristic
and objective. Figure 1 presents the overall architecture. The
feature vector denoted as X serves as an input to the system
and is sent to the first stage. The first stage consists of
an anomaly detector that outputs an anomaly score, λB ,
specifically a high value indicates a high probability that X
is not benign and thus an intrusion. If this anomaly score
is lower than a threshold τB , the model is confident enough
to predict the sample as benign and no further processing is
necessary. However, if the anomaly score is higher than τB ,
the sample is forwarded to the second stage where an attack
classifier predicts if the sample belongs to one of the known
attack classes (ATKi). If the attack classifier fails to match
the sample to a known attack class with a certainty higher than
a threshold τM , the sample is sent to the third and last stage.
The last stage or extension stage does not introduce another
classifier but rather reuses the anomaly score λB outputted
by the first layer. In case the anomaly score is lower than
the threshold τU , the output of the first layer is corrected by
eventually classifying the sample as benign, on the contrary,
the sample is predicted as an unknown or zero-day attack if
the anomaly score is higher than τU .

Additionally, live adjustment of the thresholds τB , τM ,
and τU enables our novel approach to adjust its classification
performance in real-time without the need for any retraining.
This is done by balancing the trade-off between the number
of false positives and false negatives in each stage.

The proposed architecture is developed with a scalable
hierarchical deployment in mind. The first stage acts as a
lightweight filter with minimal hardware requirements, for-
warding only suspicious samples. This results in minimal

computational cost for most of the benign traffic as these are
not subjected to further analysis by the subsequent stages.
Ideally, the first stage is located close to the network being
monitored, for example in a fog or edge device, while the
other stages can be deployed further away, for instance in a
centralized cloud. Subsection III-E describes in more detail
the configuration and benefits of a hierarchical deployment.

Tstage1 = O(TB)

Tstage2 = O(TB + TM )

Tstage3 = O(TB + TM + TU )

Ttotal = O(TB + αTM + αβTU )

⇒ O(TB + TM )

(1)

where: TB = Time Complexity Anomaly Detector
TM = Time Complexity Attack Classifier
TU = Time Complexity Extension Stage
α = fraction of flows forwarded by 1st stage
β = fraction of flows forwarded by 2nd stage

Equation 1 uses the big O notation to describe the com-
putational complexity of our novel hierarchical approach,
regardless of the algorithms used in each stage. The sum of
all the stages creates the final performance, which will be
impacted accordingly by the algorithms that are ultimately
selected at each stage. Note that the computational complexity
of the extension stage is equal to O(1) and thus has no impact
on the final complexity since it reuses the anomaly score of
the first stage with a new threshold.

While our proposed architecture is independent of both
the used input source and employed classification methods,
this paper evaluates the novel approach with machine-learning
models for detection and classification on a modern flow-based
network intrusion detection dataset.

B. Stage 1: Anomaly Detection

The first stage has the goal to filter out malicious samples
in a computationally efficient manner. This way the number
of samples that need to be analyzed in the subsequent stages
is greatly reduced. Because the first stage is applied to each
sample and ideally located close to the monitored network
generating the input, the binary classifier is required to perform
the anomaly detection in a lightweight manner on limited
hardware.

The binary model in the first stage is exclusively trained
on benign data. This allows the anomaly detector to learn
a representation of the normal behavior of the monitored
network. During training, the optimal hyper-parameters are
selected using the area under the receiver operating charac-
teristic (AUROC) as a validation metric with a validation set
consisting of both malicious and benign data. The AUROC is
selected because it is independent of the eventually employed
threshold τB on the anomaly score, which determines the final
prediction. After the hyper-parameter optimization of a model,
multiple candidate thresholds τB are selected by computing
the F1 till F9 metric for every unique value encountered in the
anomaly scores of the validation set. The value corresponding
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Fig. 1. The proposed architecture of the multi-stage hierarchical intrusion detection system.

to a maximum f-score is added to the list of candidate
thresholds for this particular model. The eventually optimal
threshold depends on the intended result. Since τB balances
both a performance and computational tradeoff, it is crucial
to be carefully set. The impact of the candidate thresholds is
analyzed more in detail when the overall performance of the
multi-stage approach is assessed.

This study evaluates unsupervised machine-learning tech-
niques to execute the anomaly detection because of their abil-
ity to detect both known and unknown intrusions, even when
only trained on benign data. But in practice, any technique
that outputs an anomaly score is suited.

C. Stage 2: Multi-Class Classification

The second stage attempts to classify the samples predicted
as malicious by the first stage to a known attack class using a
multi-class classifier. This classifier is trained on exclusively
malicious data and is accordingly only able to classify samples
to the attack classes present in the training data. A validation
set consisting of both malicious and benign data is used to
select the optimal hyper-parameters for the model using the F1
score as the validation metric. The classifier outputs a vector,
[PATK1

, PATK2
, ..., PATKN

], with the probabilities for each
of the known attack classes that the input vector X belongs
to that attack. The attack with the highest probability is then
the predicted class, except if this probability is lower than
the threshold τM , the sample is predicted as unknown and
forwarded to the last stage. The threshold is set to the value
that yields the highest weighted f1-score on the validation set.
This threshold is responsible for defining how confident the
model needs to be before assigning a sample to a known
attack class, as a result, it balances a false positive, false
negative tradeoff. Since the validation set is composed of both
benign and malicious data, the model is not only forced to

correctly classify the malicious samples but also to output a
low probability for each of the known attack classes for the
benign samples, to achieve a high validation score. Similarly,
an unknown attack will be associated with a low probability
for each of the known attack classes, which will successfully
send the sample to the next stage. This resolves the challenge
to detect unknown attacks without corresponding labeled data.

This study evaluates supervised machine-learning tech-
niques for the attack classification of known intrusions but
could be replaced by any technique able to produce prediction
probabilities. However, the model should be able to output if
a sample does not correspond to any of the learned attacks
by explicitly outputting an extra probability estimation for an
unknown class or implicitly by associating low probabilities
to each of the known classes.

D. Stage 3: Extension

The third stage or also extension stage does not implement
another classifier but rather reuses the anomaly score outputted
by the first stage, to produce its prediction. The main goal of
this stage is to reduce the number of false positives, namely
benign traffic being classified as an attack while providing the
ability to effectively detect zero-day attacks. Currently, one of
the main challenges anomaly-based IDS are facing is the high
number of false positives.

Since this stage reuses the model of the first stage, no new
training or validation sets are required to train the model. Only
the threshold τU needs to be defined using the same validation
set of the first stage. Because one of the main purposes of this
stage is to reduce the number of false positives, the threshold
is set using the quantile of the anomaly score of the benign
samples. As a result, the maximum false positive rate can
approximately be set using this threshold. The third stage is
only effective if the threshold in this layer (τU ) is greater than
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Fig. 2. Representation of an enterprise network consisting of a three-tier IDS
and three local subnetworks: R&D, sales, and private cloud.

the threshold in the first stage (τB). This way the extension
layer can achieve a higher precision because a sample needs a
higher anomaly score before being marked as an attack. The
resulting samples that are eventually detected as malicious by
the extension layer have a high probability to be a zero-day
attack or known attack but not trained on in the second stage.

E. Hierarchical Deployment

Our novel multi-stage approach for intrusion detection is
specifically designed to empower an n-tier hierarchical deploy-
ment. To illustrate the benefits of a hierarchical deployment
we will introduce a simple enterprise network, see figure 2,
with three local subnetworks secured by a three-tier IDS. To
illustrate the advantages of our proposed approach we will use
a simple scenario where each stage is placed bottom-up in
the three-tier IDS, respectively, the first, second and extension
stage are placed in the bottom, middle and upper tier.

The local deployment of the first stage has multiple ad-
vantages. On one hand, locating the first stage in the same
(sub)network, close to the systems being monitored, will result
in low latency predictions and a privacy-preserving operation
since most of the benign samples are filtered out by the
anomaly detector and not forwarded to the next stage, thus
never leaving the local premises. On the other hand, this
allows the deployment of multiple unique anomaly detectors
trained on local data to learn a representation of normal
behavior specific to the monitored (sub)network. As a result, a
higher degree of flexibility is achieved, potentially improving
the global classification performance. For example in our
simple enterprise network, what is benign in the private cloud
might not be in the sales and R&D department or vice-versa.
Similarly, certain (sub)networks might require more strict
thresholds. An unique anomaly detector specifically developed
and configured for each (sub)network can then offer a solution.

The threshold τB previously introduced in the first stage
to differentiate benign from attack, now also influences the
overall computational and bandwidth requirements because τB
controls the number of samples forwarded to the next stage
for further analysis, which need to be transmitted over the
network. Since the extension layer has the ability to correct

TABLE II
ORIGINAL AND DOWN-SAMPLED ATTACK OCCURRENCES IN

CIC-IDS-2017.

Attack Class Details Original Sampled

Benign ALL 2,071,822 2,071,822

(D)DOS ALL 3,216,637 1,948
Hulk 172,726 1,046
DDOS 128,014 775
GoldenEye 10,286 63
DoS slowloris 5,383 33
Slowhttptest 5,228 31

Port scan ALL 90,694 1,948

Brute Force ALL 9,150 1,948
FTP-Patator 5,931 1,263
SSH-Patator 3,219 685

Web-Attack ALL 2,143 1,948
Brute Force 1,470 1,336
XSS 652 593
SQL Injection 21 19

Botnet ALL 1,948 1,948

Unknown ALL 47 47
Infiltration 36 36
Heartbleed 11 11

benign samples falsely classified as malicious in the first
layer, the thresholds τB and τU allow to balance both the
computational requirements and classification performance.

In earlier work [30] we simulated such a three-tier IDS and
optimized the capacity and task allocation of the individual
stages using simulated annealing and queueing theory. The
study concluded that either a single edge or dual edge-cloud
deployment are optimal for the lowest delay and stable perfor-
mance, with the latter being favored by low cloud computing
costs.

IV. METHODOLOGY

This section describes the applied methodology to evaluate
the novel multi-stage approach for hierarchical intrusion detec-
tion using a modern flow-based network dataset and contains
all the necessary information to reproduce the reported results
in section V. First, subsection IV-A introduces the dataset
used for validation together with the applied preprocessing
steps. Next, the algorithms used in both the first and second
stages are presented before the evaluation strategy is laid out in
subsection IV-C. At last, the hardware specification on which
the experiments are executed is given in subsection IV-D.

A. Data

The CIC-IDS-2017 dataset is a modern flow-based net-
work intrusion dataset developed by Sharafaldin et al. [4].
Before generating CIC-IDS-2017, Sharafaldin et al. already
developed NSL-KDD, an altered version of the most popular
intrusion detection dataset of the last decades, KDD99 [31].
NSL-KDD resolved many of the found issues present in the
original version developed by the Defense Advanced Research
Projects Agency (DARPA). In 2016, a list with 11 criteria
was published that a proper intrusion detection dataset needs
to satisfy [32]. The CIC-IDS-2017 was built from scratch to
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be the first to successfully fulfill all 11 criteria, justifying the
use of this dataset for benchmark purposes. The generation
of the dataset was spanned over a period of 5 days using 14
machines. The dataset consists of both benign and malicious
traffic. The benign traffic is simulated using B-profiles, derived
from the benign behavior of a group of 25 humans using
statistical techniques and machine learning. On the other hand,
the malicious traffic is generated by executing existing attack
tools at specific time windows. The benign and malicious
traffic is combined into a single dataset and distributed in
machine-learning friendly flow-based CSV files and packet
captures (PCAP). CICFlowMeter [33] is used to generate
the bidirectional flows from the raw PCAP files. A biflow
aggregates and computes 80 statistical network features over
all the sent packets within a single connection and is identified
by the source and destination IP address and port as well as
a timestamp.

The original CIC-IDS-2017 dataset is cleaned in three steps
by removing columns with redundant information, dropping
rows with missing or infinity values, and eventually, the
resulting dataset is filtered from duplicates. After cleaning,
the data is scaled by normalizing the features using the
StandardScaler implementation from scikit-learn [34]. The
exact same cleaning and scaling approach is described more
in-depth in previous work [35]. Following best practices to
avoid any bias, it is important to note that a separate scaler
is used to normalize the data for the anomaly detector and
multi-class classifier fitted on their respective training set.

An overview of the number of occurrences for each of
the attack classes and benign traffic of the cleaned data is
given in table II. This study aggregated the original attack
classes into six more high-level attack categories. For example,
both FTP- and SSH-patator are categorized as brute force.
Because the dataset is highly unbalanced, containing mostly
(D)DOS traffic, a sampling technique is used. The minimum
number of occurrences of the newly created categories, 1948
in the botnet category, is used to downsample the other
categories to the same number so that all attack categories
are equally represented in the final dataset. A stratified random
sampling technique is chosen because of the abundant number
of samples in the majority classes. Since only 11 and 36
samples are present in the original dataset for the attack class
infiltration and heartbleed, respectively, these two classes are
well suited to be used as a proxy for unknown or zero-
day attacks. As a result, the unknown category contains 47
samples, which will only be used to evaluate the proposed
approach zero-day detection.

Figure 3 visualizes the train, validation, and test split
strategy for each of the stages and eventually the complete
multi-stage approach. The first two rows indicate the applied
downsampling technique. Afterward, the resulting dataset is
split into three parts for training, validation, and testing. The
down-sampled dataset with malicious samples is split into 70%
train and 30% test. The 47 zero-day samples are added to
the test set with malicious samples. From the malicious train
set, 300 samples for each attack class are sampled, resulting
in a validation set containing 1,500 samples. The cleaned
benign samples are also split into train, validation, and test

sets to match the required distribution between benign and
malicious in the final datasets. Eventually, the composition of
the train and validation sets for the individual stages, together
with the test is presented. The anomaly detector in the first
stage is trained using only benign data, respectively, 10,000
and 100,000 samples for the OC-SVM and AE. On the other
hand, the validation set is composed of 95% benign and only
5% malicious traffic. An unbalanced validation set is chosen
because the anomaly detector needs to filter malicious traffic
out of a stream of mainly benign traffic. On the contrary, the
classifier in the second stage is trained using a balanced set
containing only malicious traffic. This is important to prevent
any bias towards a known attack category. Since no samples
of unknown attacks exist, they can not be used to validate
the classifier in the second stage. Instead, benign traffic is
used in such a way that classifiers that output a vector with
low probabilities for each of the trained known attacks are
rewarded with a higher validation score. The validation set
for the second stage consists equally of benign and malicious
samples. Finally, the test set consists of 95% benign and 5%
malicious traffic not used before to train or validate any of the
stages, simulating a realistic network stream of mainly benign
traffic. Important to note is that all train, validation, and test
sets are sampled in a stratified manner from the previously
balanced dataset.

The CSE-CIC-IDS-2018 dataset, the successor of the CIC-
IDS-2017, is generated using the same tools but deployed in
the cloud rather than on a local university network. From
the 2018 dataset 127,844 additional infiltration samples are
obtained and cleaned in an identical manner as described
before. These samples are kept separately to test the robustness
of the zero-day capability of our novel proposed approach.

B. Algorithms
1) Anomaly Detection: The first stage relies on an anomaly

detector to filter the malicious samples from benign traffic.
Unsupervised machine learning models are well suited for
this task since they model the normal baseline traffic and
everything deviating from this is flagged as an anomaly. Since
the model only learns the benign baseline from data, it is
capable to detect known as well as unknown attacks. This
study evaluates the use of both an autoencoder (AE) and one-
class support vector machine (OC-SVM) as anomaly detector
in the first stage.

An AE is a neural network composed of an encoder and
decoder. The encoder projects the input vector onto a lower-
dimensional or latent space. The decoder reconstructs the
input vector as close as possible from this latent space. The
reconstruction error, calculated as the sum of squared errors
(SSE), is used as an anomaly score. In case the encoder and
decoder are built from more than one layer, it is called a
deep autoencoder (DAE). The Keras framework [36] on top of
Tensorflow [37] is used for the experimental implementation.
The following hyper-parameters are optimized during train-
ing: number of hidden layers, number of neurons per layer,
activation function, and regularisation terms.

An OC-SVM is a special SVM that instead of separating
two classes using a hyper-plane, encloses a single class as tight
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1st Stage Anomaly Detector
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Fig. 3. Visualization of the used train, validation and test strategy for all the stages and final multi-stage approach.

as possible using a hyper-sphere. The use of the radial basis
function as (rbf) kernel function allows a complex, non-linear
boundary for this hyper-sphere. The scikit-learn library is used
for the implementation. The input features are first reduced
using a PCA transformation. During training, the number of
components in the PCA transformation, kernel coefficient, and
regularization parameter is optimized.

2) Multi-Class Detection: The second stage classifies for-
warded suspicious samples from the first stage using a multi-
class classifier to a known attack class. Supervised machine
learning models are well suited to learn this representation
from labeled data. This study evaluates two classifiers: a
random forest (RF) and a neural network (NN).

An RF is an ensemble of decision trees where each tree is
built using the whole or sub-sample of the dataset. The final
prediction is defined as the average output of all the trees,
or in the case of classification as the most predicted class.
The hyper-parameters considered during optimization are the
number of trees, sub-sample percentage, and the number of
features used for each split in a single tree. The scikit-learn
implementation is used in this study.

A NN is composed of an input layer, one or more hidden
layers, and an output layer. Each layer consists of multiple
nodes which are connected with a certain weight to the nodes
of the next layer. Data is sent from one layer to another if the
value is above a particular threshold, defined by the activation
function. The structure and name are inspired by the human
brain and form the basis of deep learning algorithms. The
number of layers, the respective number of nodes per layer,
and a regularization term are optimized during hyperparameter
tuning. For the implementation, the Keras framework on top
of TensorFlow is used.

C. Evaluation Strategy

The novel multi-stage approach for hierarchical intrusion
detection proposed in this study is composed of three stages.
Before the performance of the complete IDS can be analyzed
and compared with both a single model baseline implemen-
tation and existing state-of-the-art multi-stage approaches,
the individual models in the stages and their corresponding

thresholds need to be defined. Both the anomaly detector in
the first stage and multi-class classifier in the second stage
are trained individually using the training and validation set
introduced in subsection IV-A. The optimal hyper-parameters
for each model, as described in subsection IV-B, are obtained
by performing hyper-parameter optimization with as validation
metrics the AUROC and weighted F1 score for the first
and second stage, respectively. Optuna [38], an open-source
optimization framework, is used for the implementation with a
Tree-structured Parzen Estimator (TPE) as sampling algorithm.
The possible thresholds corresponding to a model are also
computed on the same validation set. For each model in the
first stage, ten possible values for τB are proposed, selected
by the anomaly score corresponding to the maximum F1 to
F9 score. The threshold used in the extension layer, τU is also
computed on the same anomaly score but is selected using
quantiles on the anomaly score of the benign flows in the
validation set. Four possible candidates are examined using
the 0.995, 0.99, 0.975, and 0.95 quantiles. Finally, only a
single candidate for the threshold τM in the second stage is
proposed, computed by the cut-off value on the confidence of
the prediction achieving the maximum weighted f1 score.

The ten instances for each algorithm with the highest
validation score and their corresponding thresholds are further
analyzed for their use in the multi-stage approach. The final
performance on the test set is evaluated for each permutation
of the two models, anomaly detection and attack classifica-
tion, and the three values for the applied thresholds. These
permutations are then ranked and analyzed based on several
criteria such as accuracy, bandwidth requirements, and ability
to detect unknown attacks. Eventually, the performance of the
complete multi-stage approach is compared with a baseline
RF implementation and previous state-of-the-art multi-stage
approach as described by Bovenzi et al. [16]. The baseline RF
model is trained on a mixed dataset of benign and malicious
samples, using an open-set approach to add the ability to detect
zero-day attacks. The threshold used by the baseline model to
predict a sample as a zero-day is computed analogously to the
threshold τM in the second stage.

Eventually, the robustness of the zero-day detection is
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evaluated by classifying the additional obtained infiltration
samples from the CSE-CIC-IDS-2018 dataset. The fully opti-
mized model, trained on data from the CIC-IDS-2017 dataset,
is used to predict all the additional infiltration samples. A
robust model is expected to transfer the zero-day detection
capabilities with only a small drop in performance.

D. Hardware Setup

The experimental results in this study are obtained on GPU-
Lab, a distributed job-based platform hosted and maintained by
the university department IDLab in collaboration with IMEC.
All the experiments executed are submitted as a job that
runs in an isolated container built upon a basic Python 3.7
Docker image with all the needed libraries installed. Each job
was assigned 4 CPUs, Intel(R) Xeon(R) Silver 4108 CPU @
1.80GHz and 16GB of RAM.

V. RESULTS

A. Anomaly Detection

An overview of the classification performance using the rec-
ommended metrics for binary detection, as well as training and
inference timings, are given in table III. The table contains two
records with the test results of respectively the AE and OC-
SVM model achieving the highest validation AUROC score for
the first stage. An AE with a single hidden layer consisting
of 42 nodes and a regularisation term of 2.45e − 5 achieved
the highest AUROC of 0.9062 during hyper-parameter op-
timization on the validation set of stage 1 after 7 epochs.
On the test set, this resulted in an AUROC of 0.9117. The
fully optimized OC-SVM scored a slightly lower AUROC on
both the validation and test set with, respectively, 0.8931 and
0.8947, but it eventually performs better in combination with
the next stages in the multi-stage approach. The best hyper-
parameters for the OC-SVM in the first stage are a kernel
coefficient of 0.0633, a regularisation term of 2.317e− 4, and
PCA transformation with 56 components. Both models are
able to process the test set just shy of 60 thousand samples in
a matter of seconds, in other words, a single sample takes
less than a millisecond. Even with 2 orders of magnitude
difference in training time between the AE and OC-SVM, both
models are suitable to be practically used because training is
not required to happen in real-time on a resource-constrained
device. The main reason for the gap in training time is the
number of used training samples, respectively 10 thousand and
100 thousand for the OC-SVM and AE. For comparison pur-
poses, the OC-SVM is also retrained on the identical dataset
as the AE resulting in a similar classification performance but
increased training time of 273.0 ± 0.2s. This confirms our
previous work [39] showing that models quickly converge even
with limited available training samples on academic intrusion
datasets. The non-linear decrease in training time combined
with no classification degradation when reducing the number
of training samples, allowed us to perform the hyper-parameter
optimization for the OC-SVM without limiting the search
space using a smaller training set.

B. Multi-Class Classification

Table IV summarizes the results in the second stage for
the RF and NN model achieving the highest classification
performance on the test set after hyper-parameter optimization.
The RF outperforms the NN across all metrics for the task at
hand. The best performing random forest consists of 97 fully
grown trees with only 90% of the samples used to train each
individual tree and with 12 features considered at each split.
This RF achieved a weighted F1 score of 0.9710 and 0.9870 on
the validation and test set, respectively. The NN consisting of
a single layer with 41 nodes, 0.0379 as regularisation term and
17 epochs of training, achieves a weighted F1 of 0.9203 on the
validation set of stage 2 and 0.9525 on the test set. The macro
F1 score dropped from 0.9198 to 0.7096 for the validation and
test set, respectively. This is because the test set in contrary to
the validation set consists for 50% of benign data. Therefore,
even a small percentage of benign traffic classified as one of
the known attacks can heavily affect the F1 score associated
with the known attacks and thus also the macro F1 score. Even
with the NN model classifying less than half of the number
of samples in the same time period as the RF model, both
models are well suited to be implemented in a high-speed
network environment, with a single sample taking less than
a fraction of a millisecond of processing time. The training
time for the RF and NN currently only takes a few seconds,
allowing for more training samples if available.

C. Full Model Performance

The performance of the complete multi-stage model can
be assessed based on several criteria. First, the overall clas-
sification performance of the three stages combined. Next,
the ability to not only reduce the computation requirements
but also decrease the bandwidth requirements in case of a
hierarchical deployment, and lastly, the capability to detect
unknown attacks. Unfortunately, not a single permutation
of models and thresholds scores the highest on all of the
criteria but a trade-off needs to be made using the defined
thresholds τB , τM , and τU . The best performing permutations
are consistently composed of the best performing OC-SVM
and RF models from the first and second stage, respectively.

Table V gives an overview of the results for three interesting
permutations of the complete multi-stage model, the single
model baseline and the current state-of-the-art multi-stage
approach for hierarchical intrusion detection. The first row
presents the results of the permutation achieving the highest
classification performance in terms of accuracy and both
weighted and macro F1 scores. This permutation used the
anomaly score corresponding to the maximum F5 to F8 score,
an identical anomaly score, in the first stage as a value for
τB . The anomaly score corresponding to the 0.995 quantiles
is used as the value for τU in the extension stage. Using
these thresholds, a maximum weighted F1 score is achieved
of 0.9897 and an accuracy of 0.9877 on the test set, but
only 59.57% of the unseen attacks are successfully classified
as a zero-day attack when using the complete multi-stage
approach. In case it is deployed in a hierarchical manner
a bandwidth reduction of almost 69% is achieved between
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TABLE III
BEST RESULTS FIRST STAGE: ANOMALY DETECTION

Algorithm AUROC AUPR F1 F2 F3 F4 F5 F6 F7 F8 F9 Training (s) Inference (s)

AE 0.9117 0.3265 0.3984 0.5650 0.6666 0.7351 0.7863 0.8370 0.8715 0.8958 0.9135 39.671± 2.046 1.785± 0.017
OC-SVM 0.8947 0.3256 0.3893 0.5016 0.6426 0.7267 0.7823 0.8276 0.8584 0.8804 0.8976 0.771± 0.021 8.117± 0.277

TABLE IV
BEST RESULTS SECOND STAGE: ATTACK CLASSIFICATION

Algorithm F1 weighted F1 macro Accuracy Balanced Accuracy Training (s) Inference (s)

RF 0.9870 0.9094 0.9846 0.9654 1.249± 0.034 0.610± 0.005
NN 0.9525 0.7096 0.9403 0.9113 4.885± 0.189 1.555± 0.190

TABLE V
RESULTS FULL MULTI-STAGE APPROACH

τB τM τU F1 weighted F1 macro Accuracy Bal. Accuracy Bandwidth reduction Zero-day recall Inference (s)

Max F-score F5-8 F1 0.995 0.9897 0.8276 0.9877 0.8954 68.75% 0.5957 7.808± 0.009
Max bACC F9 F1 0.95 0.9580 0.7496 0.9341 0.9608 57.91% 0.9574 8.043± 0.065
Balanced F5-8 F1 0.99 0.9875 0.8231 0.9834 0.9342 68.75% 0.8723 7.882± 0.054

RF Baseline - - - 0.9849 0.7981 0.9832 0.8877 - 0.8936 1.525± 0.013
Bovenzi et al. [16] F3 F1 - 0.9383 0.7549 0.8957 0.8550 86.22% 0.9574 6.969± 0.399

the local anomaly detector and centralized attack classifier,
in comparison with an IDS forwarding all its traffic to a
centralized system.

The second row in the table presents the results of the
permutation scoring the highest on the balanced accuracy
with a value of 0.9608. This configuration also achieves an
extremely high recall of zero-day attacks, with 45 out of 47
samples, while preserving high overall classification scores.
Contrary to the first row, a higher value is used for τB ,
corresponding to the anomaly score with the maximum F9
score in the first stage, leading to more traffic forwarded to
the next stage. On the other hand, the value for τU is decreased
to the anomaly score corresponding to the 0.95 quantiles. This
results in a more swift classification as zero-day and thus
higher recall of zero-day attacks.

The third row presents the results for a permutation bal-
ancing between the high classification performance of the
first row and the high zero-day recall of the second row.
For both the threshold τB and τU , a value is chosen in
between the thresholds selected in the first and second row.
This permutation serves as a middle ground in the challenge
to balance the multiple trade-offs.

The performance results of the single model baseline can
be found in the fourth row. There are no values present for
the thresholds as well as for the bandwidth reduction since
these are not relevant. The hyper-parameters obtained through
optimization for the baseline RF are 57 fully grown trees with
only 87% of the samples used to train each individual tree
and with 30 features considered at each split. Additionally,
the threshold used in the open-set classification is set to 0.93,
yielding a zero-day recall of 89%.

The last row contains the performance metrics for the
state-of-the-art multi-stage approach. There is no value for
the threshold τU since their approach lacks an extension
stage. Overall the approach by Bovenzi et al., which was not
previously validated on CIC-IDS-2017, performs fairly well.

Especially the bandwidth reduction and zero-day recall are
high, while the other classification metrics are consistently
out-preformed by our novel approach.

The last column in Table V lists the execution time to
classify all the samples in the test. The single model RF
baseline yields the lowest execution time, while the novel
approach has the longest execution time.

Figure 4 presents six confusion matrices for each of the
individual stages, intermediate result and final result of the
complete multi-stage approach on the test set using the
thresholds of the permutation balancing the multiple trade-
offs together with the final confusion matrix of the existing
multi-stage approach by Bovenzi et al. [16] applied to the CIC-
IDS-2017 dataset. The confusion matrix in figure 4a visualizes
the true negatives, false positives, false negatives, and true
positives in, respectively, the upper left, upper right, lower
left, and lower right quadrant for the anomaly detector in the
first stage. Only the positive samples are forwarded to the
next stage, therefore already 119 samples or 4% of the fraud
samples are misclassified which are unable to be corrected
by the succeeding stages. Simultaneously, nearly 69% of the
benign samples are correctly classified and prevented from
propagating further in the system. Figure 4b contains the
confusion matrix for all the suspicious classified samples by
the anomaly detector in the first stage, corresponding to the
positives from the first confusion matrix. Most of the known,
as well as unknown attacks, are correctly classified, while
most of the benign samples are properly predicted as unknown
and thus forwarded to the final extension stage. Before the
confusion matrix of the extension layer is presented, the
matrix for the intermediate result of the first and second stage
combined is given in figure 4c. Except for the high number
of benign samples classified as unknown, the results already
look good. To correct the mistakes in the first stage to send
these benign samples to the second stage, the extension stage
was introduced. Figure 4d shows the confusion matrix for the
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extension stage. Clearly, most of the benign traffic is being
successfully corrected and eventually classified as benign. The
confusion matrix in figure 4e eventually presents the results
of the predictions of all three stages combined for our novel
proposed approach. The last confusion matrix in figure 4f is of
the existing multi-stage approach applied to the test dataset.
The results are similar to the confusion matrix in figure 4c
albeit the number of benign samples classified as unknown
is lower but still significantly high. Furthermore, most attack
classes are reliably detected except for botnet followed by
brute-force attacks.

D. Robustness Zero-day detection

The robustness of the zero-day detection capabilities is
evaluated on 127,844 additional samples from the CSE-CIC-
IDS-2018 dataset. Our proposed approach correctly classifies
100,199 samples as unknown attack, equal to a recall of
78.38%. The baseline RF only succeed to classifiy 76 sam-
ples correctly as unknown, which is less than 0.01% recall.
The approach by Bovenzi et al. classifies 111,215 samples
correctly, resulting in a recall of 86.99%.

VI. DISCUSSION

A. Improved Classification over Baseline and State-of-the-art

Section V and more specifically table V present the results
for three permutations of the proposed novel multi-stage ap-
proach, the open-set RF baseline, and the previously proposed
multi-stage approach by Bovenzi et al.

When we compare our novel proposed multi-stage approach
against the baseline RF and state-of-the-art approach, the
classification metrics are consistently being out-preformed.
Only the state-of-the-art approach can present the same zero-
day recall and even higher bandwidth reduction. This can be
explained by the extension stage in our novel approach since
it creates the opportunity for the model to correct mistakes
of the first stage. As a result, the threshold τB in the first
stage can be configured less strictly which has a negative effect
on the bandwidth reduction but more significant improvement
of classification performance. When bandwidth reduction is a
priority, our novel approach also allows tuning τB to obtain
at least an equal reduction.

Recent literature questions the marginal improvements made
in studies to not improve performance in the real world
because of the lack of generalization power [35] [40] [41]. As a
result, the main takeaway is that the classification performance
at least matches the state-of-the-art while providing additional
features such as extra flexibility, zero-day detection, and
bandwidth reduction.

B. Advantage of Extension Stage

The extension stage serves multiple purposes. First of all, it
improves the classification performance by predicting samples
classified as unknown by the second stage as benign. In
figure 4c, more than 30% of all the benign samples are
classified as unknown. Without an additional stage, the model
would fail to correct them. Next, the extension stage permits

the first stage to make mistakes. Therefore, the first stage can
mark more samples as suspicious, knowing that forwarded
benign samples can be corrected by the following stages. The
improved classification performance comes at a tradeoff with
the bandwidth requirement since forwarded samples need to
be transmitted over the network in a hierarchical deployment.

C. Hierarchical Deployment

The novel multi-stage approach proposed in this study is
designed for a scalable hierarchical architecture. Each of the
individual stages can be deployed on its own location in the
network, for example in the edge, fog, or cloud. Ideally, the
anomaly detector is situated near the network being monitored.
This way privacy is preserved during operation because mostly
malicious data is forwarded from the local premises.

Furthermore, the bandwidth and computational reduction
are achieved by applying a threshold on the anomaly score
predicted by the first stage such that only a fraction of
all samples are forwarded to the next stage, which requires
transmission over a network in case of a n-tier deployment.
Since only a small share of all data is being forwarded
by the first stage, most samples are only processed by the
lightweight filter skipping the potentially more computational
expensive multi-class classifier in the second stage. Contrarily,
recent studies such as Khan et al. [12] which employs a
similar architecture consisting of binary detection followed by
attack classification is less suited for a hierarchical deployment
because the anomaly score is used as an extra feature for
improved classification in the second stage and not as a
lightweight filter.

The execution times in Table V show a small increase in
overhead between the approach by Bovenzi et al. and our novel
approach due to the addition of an extra stage. Evaluating the
execution times between the different configurations of our
novel approach only show small differences. But keep in mind
that these results are obtained on a single machine, reiterating
the same experiment with a n-tier deployment will also include
the effect of the bandwidth reduction as shown in our previous
work [30].

D. Thresholds τB , τM and τU

Figure 5 plots the distribution of both the benign and
malicious samples in function of the anomaly score for the
OC-SVM with the highest AUROC and eventually used as
the anomaly detector in the complete multi-stage model. The
values for τB and τU are marked using a vertical dashed line.
All samples left from the first dashed line, thus having a lower
anomaly score than the threshold τB are classified as benign,
while all samples on the right side with an anomaly score
higher than τB are forwarded to the next stage. Carefully
selecting this threshold is crucial to obtaining proper results.
If the threshold is set too low, many samples are forwarded
to the next stage, consuming both computational resources
and bandwidth with an additional risk of classifying benign
samples wrongly as a known attack. When the threshold is set
too high, the first stage classifies actual intrusion as benign.
As a result, the threshold τB balances the computational
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(b) Stage 2: Multi-class Classification
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(c) Stage 1 and 2 combined
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(e) Full Multi-Stage Approach
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(f) SotA Bovenzi et al. [16]

Fig. 4. Confusion Matrices.
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Fig. 5. Histogram of the anomaly score outputted by the first stage for both
benign and fraud traffic with the possible thresholds τB and τU visualized.

and bandwidth requirements as well as final classification
performance. The second dashed line visualizes the applied
cut-off value to classify a sample as a zero-day attack. If the
anomaly score is higher than τU and thus on the right side of

the line, the sample is marked as a zero-day attack. However,
if the anomaly score is between τB and τU the sample will
be classified as benign in the extension stage. Setting the
threshold τU too low will wrongly classify benign samples
as zero-day attacks while setting it too high prevents zero-
day attacks from being discovered. Accordingly, defining τU
is essential to successfully detect zero-day attacks.

The threshold τM controls the cut-off on the confidence of
the prediction by the attack classifier in the second stage. In
case τM would be equal to zero, none of the samples would be
classified as unknown and thus not forwarded to the extension
stage. Rather, if τM is set to one, only samples where the
attack classifier is absolutely sure will be classified as one of
the known attack classes. Consequently, setting the threshold
too low allows loose classification to one of the known classes
which will wrongly predict benign samples to one of the
known attacks. Yet, setting the threshold too high will prevent
actual attacks to be correctly classified.
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E. Manual selection of thresholds

In this study, an optimization technique is used to select
the optimal values for the thresholds τB , τM , and τU with
mixed validation set consisting of both benign and malicious
samples. This is a valid approach to obtaining good results
on benchmark datasets but not always feasible in a real-world
setting. The collection of labeled malicious samples is complex
and time-demanding. The inclusion of benign samples in the
validation set of the multi-class classifier breaks the privacy
preserved training and becomes increasingly complex when
samples of multiple (sub)networks need to be included.

Following rules of thumb can help with the initial configu-
ration of the thresholds. Afterward, the performance tradeoff
can be iteratively adjusted until a favorable configuration is
obtained.

1) τB: This study optimized the value for the threshold
yielding the maximal f-score. Interesting is that this f-score
corresponds to a certain false positive ratio (fpr). When we
look at the top hundred permutations with the highest global
classification performance from subsection IV-C, then we find
that the average and median fpr is equal to 0.2259 and
0.2107 ± 0.0661, respectively. As a result, a value for the
threshold τB can be selected using only benign samples.

2) τU : The same approach as with τB can be taken for τU
with as difference that the selected fpr is an upper limit for
the fpr of the whole multi-stage approach. Both the median
and average fpr used in the top hundred best-performing
permutations are 0.995± 0.001.

3) τM : The selection of τM can also intuitively be done but
often vary depending on the used multi-class classifier. Most
classifiers produce a probability value associated with each
of the classes, the threshold then determines the minimum
required confidence to classify a sample as a known attack.
The mean and average τM for the best performing classifiers
after optimization are respectively, 0.95 and 0.93± 0.03.

F. Adaptability

All the thresholds τB , τM , and τU allow live adjustment to
dynamically balance the trade-offs in the individual stages, and
as a result, adapt the final classification performance without
the need for retraining the machine-learning models.

Our novel approach has not been designed specifically to
tackle concept-drift challenges in mind, but rather to enable
these performance trade-offs in real-time. Although, we expect
this approach to withstand concept-drift to a certain degree, for
example, a radical shift of the underlying benign traffic will
at least require retraining of the anomaly detector in the first
stage.

G. Robustness of zero-day detection

A limitation of our study is that only 47 samples from
the CIC-IDS-2017 dataset are used as unknown or zero-day
attack. Therefore, the robustness of the zero-day detection
capabilities is evaluated on 127,844 additional infiltration
samples extracted from the CSE-CIC-IDS-2018 dataset. The
results show that the baseline RF fails completely to maintain a

similar zero-day detection capability with a recall that dropped
from almost 90% to less than 0.01%. On the contrary, the
approach by Bovenzi et al. and our novel approach are able to
maintain the majority of their zero-day detection capabilities
with a drop in recall of less than 10%. As a result, a multi-
stage approach is not only able to achieve a higher zero-day
detection rate but is also more robust.

VII. FUTURE WORK

The experimental implementation of the multi-stage ap-
proach for hierarchical intrusion detection only relies on net-
work features as input while the general proposed architecture
is also applicable to both host-based and hybrid IDS. Future
work could extend this study by evaluating the proposed
approach on multiple input sources. For instance, ensemble
techniques can then be applied to aggregate the output of a
machine-learning model on each of the input vectors.

Recently published work [42] [43] together with our previ-
ous work demonstrates that most, if not all, currently proposed
models trained on network IDS datasets lack generaliza-
tion strength. Future work should evaluate if a multi-stage
model is more resilient against this classification performance
degradation. Moreover, our proposed approach is capable of
having a separate anomaly detector specifically trained for
each subnetwork in a hierarchical deployment. This enables
the simulation of a more realistic diverse network, for example
consisting of both IoT and general purpose devices, using a
multi-data set evaluation.

Parallel to this study, we have evaluated 10 possible task
allocations, which assign to each task a capacity in a three-tier
network consisting of the edge, fog, and cloud. A simulation is
performed with queueing theory, resulting in multiple optimal
configurations depending on specific requirements [44]. A
follow-up on this work will try to confirm the theoretical
results using an experimental setup of a multi-stage IDS on a
multi-tier architecture.

VIII. CONCLUSION

In this study, a novel multi-stage approach for hierarchical
intrusion detection is proposed. First, the general architecture
is introduced and the design choices made, are justified.
The strengths of the new approach are the high adaptability
without the necessity to retrain any of the classifiers, the
empowerment of an n-tier deployment to reduce the bandwidth
and computational requirements, and the capability to detect
zero-day attacks. Additionally, in the case of a hierarchical
deployment, privacy is preserved during both training and
operational service.

After the novel approach is introduced an experimental im-
plementation is evaluated using two modern network intrusion
datasets, CIC-IDS-2017 and CSE-CIC-IDS-2018. An AE and
OC-SVM are evaluated for anomaly detection, while an RF
and NN are evaluated for the attack classification. The experi-
mental results show that the classification performance at least
matches or even outperforms both the baseline single model
and existing multi-stage approaches for most of the evaluated
metrics. Besides the improved classification performance, the
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novel multi-stage approach proved its robust capability to
detect unseen, zero-day attacks and the ability to reduce the
computational and bandwidth requirements. The implemen-
tation of the novel multi-stage approach that balances the
trade-off between a high zero-day recall, bandwidth reduction,
and classification performance achieves a weighted F1 and
balanced accuracy score of 0.9875 and 0.9342, respectively,
as opposed to 0.9383 and 0.8550 for the state-of-the-art
approach for multi-stage intrusion detection. In particular, 41
out of 47 or 87% zero-day samples were correctly classified
from CIC-IDS-2017. Moreover the robustness of the zero-
day detection is validated by correctly classifying 100,199
out of 127,844 or 78% zero-day samples from CSE-CIC-IDS-
2018. The bandwidth was reduced by almost 69% between
the local anomaly detector and centralized attack classifier
in case of a hierarchical deployment in comparison with an
IDS forwarding all its traffic to a centralized system. The
specific results depend on the selected thresholds and are
highly adaptable to obtain the desired trade-offs.
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M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[38] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

[39] L. D’hooge, T. Wauters, B. Volckaert, and F. De Turck, “Classification
hardness for supervised learners on 20 years of intrusion detection data,”
IEEE Access, vol. 7, pp. 167 455–167 469, 2019.

[40] D’hooge, Laurens and Wauters, Tim and Volckaert, Bruno and
De Turck, Filip, “Inter-dataset generalization strength of supervised
machine learning methods for intrusion detection,” JOURNAL OF
INFORMATION SECURITY AND APPLICATIONS, vol. 54, p. 13,
2020. [Online]. Available: http://dx.doi.org/10.1016/j.jisa.2020.102564

[41] C. F. T. Pontes, M. M. C. de Souza, J. J. C. Gondim, M. Bishop,
and M. A. Marotta, “A new method for flow-based network intrusion
detection using the inverse potts model,” IEEE Transactions on Network
and Service Management, vol. 18, no. 2, pp. 1125–1136, 2021.

[42] S. Layeghy and M. Portmann, On Generalisability of Machine Learning-
based Network Intrusion Detection Systems, May 2022.

[43] M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano, “Transferability
of machine learning models learned from public intrusion detection
datasets: the cicids2017 case study,” Software Quality Journal, Mar
2022. [Online]. Available: https://doi.org/10.1007/s11219-022-09587-0

[44] Y.-C. Lai, D. Sudyana, Y.-D. Lin, M. Verkerken, L. D’hooge,
T. Wauters, B. Volckaert, and F. De Turck, “Machine learning
based intrusion detection as a service: Task assignment and capacity
allocation in a multi-tier architecture,” in Proceedings of the
14th IEEE/ACM International Conference on Utility and Cloud
Computing Companion, ser. UCC ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3492323.3495613

Miel Verkerken is a PhD candidate and teaching
assistant at Ghent University at the Internet and Data
Science Lab (IDLab - imec) since September 2019.
He obtained his M.Sc. in information engineering
technology in 2018, after which he first gained some
international professional experience before starting
as a researcher. His research interests lie in the
field of Cybersecurity and Machine Learning, with a
specific focus on applying AI to intrusion detection
systems.

Laurens D’hooge is a PhD candidate at Ghent Uni-
versity at the Internet and Data Science Lab (IDLab
- imec) since October 2018. He obtained his M.Sc.
in information engineering technology from Ghent
University the same year. His area of research lies
at the intersection of cybersecurity, more specifically
network security, and applied machine learning.

Didik Sudyana is a PhD candidate at Electrical
Engineering and Computer Science (EECS) Inter-
national Graduate Program of National Yang Ming
Chiao Tung Unviersity (NYCU). He received his
M.S. degree in Informatics from Universitas Islam
Indonesia (UII), Indonesia, in 2016. He is a lecturer
and a researcher in Informatics at STMIK Amik
Riau, Indonesia. His research interests include cy-
bersecurity, machine learning, and network design
and optimization.

Ying-Dar Lin (Fellow, IEEE) is a Chair Professor
of computer science at National Yang Ming Chiao
Tung University (NYCU), Taiwan. He received his
Ph.D. in computer science from the University of
California at Los Angeles (UCLA) in 1993. He was a
visiting scholar at Cisco Systems in San Jose during
2007–2008, CEO at Telecom Technology Center,
Taiwan, during 2010–2011, and Vice President of
National Applied Research Labs (NARLabs), Tai-
wan, during 2017–2018. He cofounded L7 Networks
Inc. in 2002 and O’Prueba Inc. in 2018. His research

interests include cybersecurity, wireless communications, network softwariza-
tion, and machine learning for communications. He is an IEEE Fellow (class
of 2013). He has served or is serving on the editorial boards of several IEEE
journals and magazines, including Editor-in-Chief of IEEE Communications
Surveys and Tutorials (COMST, 2017–2020).

Tim Wauters (Member, IEEE) received the M.Sc.
and Ph.D. degrees in electro-technical engineering
from Ghent University, in 2001 and 2007, respec-
tively. He has been working as a Postdoctoral Fellow
of F.W.O.-V. with the Department of Information
Technology (INTEC), Ghent University. He is cur-
rently active as a Senior Researcher at imec. His
work has been published in more than 150 scientific
publications. His research interests include design
and management of networked services, covering
multimedia distribution, cybersecurity, big data, and

smart cities.

Bruno Volckaert (Senior Member, IEEE) received
the Ph.D. degree in resource management for grid
computing from Ghent University, in 2006. He is
currently a professor in advanced distributed systems
at Ghent University and senior researcher at imec.
He has worked on over 45 national and interna-
tional research projects and is author or co-author
of more than 150 peer-reviewed papers published in
international journals and conference proceedings.
His current research deals with reliable and high
performance distributed software systems for a.o.

Smart Cities, scalable cybersecurity detection and mitigation architectures and
autonomous optimization of cloud-based applications.

Filip De Turck (Fellow, IEEE) leads the network
and service management research group at Ghent
University, Belgium and imec. He has coauthored
over 700 peer reviewed papers. His research interests
include design of secure and efficient softwarized
network and cloud systems. He was elevated as
an IEEE Fellow for outstanding technical contri-
butions. He is involved in several research projects
with industry and academia, served as chair of the
IEEE Technical Committee on Network Operations
and Management (CNOM), and steering committee

member of the IFIP/IEEE IM, IEEE/IFIP NOMS, IEEE/IFIP CNSM and IEEE
NetSoft conferences.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3259474

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on April 27,2023 at 14:45:15 UTC from IEEE Xplore.  Restrictions apply. 

https://www.tensorflow.org/
http://dx.doi.org/10.1016/j.jisa.2020.102564
https://doi.org/10.1007/s11219-022-09587-0
https://doi.org/10.1145/3492323.3495613

	Introduction
	Related Work
	Novel Approach
	General architecture
	Stage 1: Anomaly Detection
	Stage 2: Multi-Class Classification
	Stage 3: Extension
	Hierarchical Deployment

	Methodology
	Data
	Algorithms
	Anomaly Detection
	Multi-Class Detection

	Evaluation Strategy
	Hardware Setup

	Results
	Anomaly Detection
	Multi-Class Classification
	Full Model Performance
	Robustness Zero-day detection

	Discussion
	Improved Classification over Baseline and State-of-the-art
	Advantage of Extension Stage
	Hierarchical Deployment
	Thresholds B, M and U
	Manual selection of thresholds
	B
	U
	M

	Adaptability
	Robustness of zero-day detection

	Future Work
	Conclusion
	References
	Biographies
	Miel Verkerken
	Laurens D'hooge
	Didik Sudyana
	Ying-Dar Lin
	Tim Wauters
	Bruno Volckaert
	Filip De Turck


