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Abstract—The huge amount of data generated by the Internet
of things (IoT) devices needs the computational power and
storage capacity provided by cloud, edge, and fog computing
paradigms. Each of these computing paradigms has its own
pros and cons. Cloud computing provides enhanced data storage
and computing power but causes high communication latency.
Edge and fog computing provide similar services with lower
latency but limited capacity, capability, and coverage. A single
computing paradigm cannot fulfill all the requirements of IoT
devices and a federation between them is needed to extend their
capacity, capability, and services. This federation is beneficial
to both subscribers and providers and also reveals research
issues in traffic offloading between clouds, edges, and fogs.
Optimization has traditionally been used to solve the problem of
traffic offloading. However, in such a complex federated system,
traditional optimization cannot keep up with the strict latency
requirements of decision-making, ranging from milliseconds to
sub-seconds. Machine learning approaches, especially reinforce-
ment learning, are consequently becoming popular because they
could quickly solve offloading problems in dynamic environments
with some unknown information. This study provides a novel
federal classification between cloud, edge, and fog and presents
a comprehensive research roadmap on offloading for different
federated scenarios. We survey the relevant literature on the
various optimization approaches used to solve this offloading
problem and compare their salient features. We then provide
a comprehensive survey on offloading in federated systems with
machine learning approaches and the lessons learned as a result
of these surveys. Finally, we outline several directions for future
research and challenges that have to be faced in order to achieve
such a federation.

Index Terms—Offloading, cloud computing, edge computing,
fog computing, federation, optimization, machine learning

I. INTRODUCTION

THERE are many computing paradigms which provide
computational power and storage services for the huge

amounts of data generated by an ever-increasing number of
heterogeneous devices. Three of the most well-known and
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Fig. 1: Integrated cloud, edge, and fog systems

widely adopted computing paradigms are cloud, edge, and fog
computing. The terms cloud, edge, and fog represent three
computing tiers of cloud, edge, and fog computing systems.

Fig. 1 shows the cloud-edge-fog system that consists of
three tiers. (a) Cloud tier: the top tier is a cloud system [1],
that encompasses the cloud computing paradigm which is the
most well-known and widely adopted computing paradigm for
more than a decade because of its attractive features such as
scalability, rapid elasticity, resource pooling, cost saving, and
easy maintenance. This tier consists of different clouds, such
as Google and Amazon. These basically deal with industrial
big data, business logic, analytical databases, data “warehous-
ing,” and so on. (b) Edge tier: the middle tier is an edge
system [2], that comprises the edge computing paradigm. Edge
computing has its origins in the European Telecommunication
Standards Institute (ETSI), which proposed virtualizing the
capabilities of cloud computing into mobile network operators.
An edge server can be deployed behind a cellular system’s
base station and central office, which re-architects the central
office as a data center (CORD) to provide more computing
resources close to the user equipment (UE). This tier includes
different service providers such as Verizon, T-Mobile, AT&T,
Chunghwa telecom, and so on, and consists of local network
assets, micro data centers, central offices, base stations, etc.
(c) Fog tier: the bottom tier is a fog system [3] or IoT
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system consisting of mobile users (e.g., smartphones, tablets,
and laptops), smart vehicles forming vehicular fogs, and IoT
devices, such as industrial actuators, wearable devices, and
smart sensors. Fog nodes are located close to the data source
and extend the infrastructures like cloud and edge. The fog
computing resource aggregates some fog nodes at a given time
and location. The computational node capacity can change
over time [4]. It covers real-time data processing on industrial
PCs, process-specific applications and autonomous equipment,
a group of local computing devices, electronic vehicles, etc.
Since most vehicles are now equipped with sensors and
computing to ensure safety and comfort, vehicular fog is
gaining popularity [5].

A. Cloud, Edge, and Fog Computing Paradigms

The Internet of Things (IoT) devices, that have taken
the world by storm, need computational power and storage
capacity for the huge amounts of data generated by them,
to provide services to their subscribers [6]. Cloud, edge and
fog computing are the potential paradigms that could fulfill
the demand of subscribers [7]. Cloud computing is the on-
demand availability of computer system resources, especially
data storage and computing power, without the need for direct
active management by a user [1]. However, cloud computing
introduces high communication latency in the hundreds of
milliseconds because its servers are far from end-users or
subscribers. A cloud computing paradigm is not suitable for
some applications with stringent communication latency limi-
tations, such as Ultra Reliable Low Latency Communications
(URLLC) and enhanced Mobile Broadband (eMBB) services,
which have a unit millisecond latency constraint. This is
where edge and fog computing models play a crucial role in
providing similar services with lower latency [8] [9].

Again, all these computing paradigms, i.e., cloud, edge, and
fog, have limitations regarding capacity, capability, coverage,
storage, and latency. A single computing paradigm cannot,
by itself, fulfill the diverse requirements of a vast number
of traditional and heterogeneous IoT devices. For example,
a user might need to use two different applications at the
same time, and one of them is latency sensitive, while the
other is computation sensitive. In this case, the user would
require the services provided by both cloud and edge or fog
[10]. Also, if a cloud customer needs some extra service
that is not available in that cloud, then the cloud must try
to arrange that service for the customer without a delay to
provide satisfaction. The cloud may otherwise lose the trust
of the customer and, in some cases, may lose the customer,
which may affect its business financially and reputation. This
is where a federation between multiple computing paradigms
can play a key role in resolving these issues. Such a federation
is not only suitable for subscribers but also for providers. A
subscriber will be able to access the services provided by
different computing paradigms without having to buy multiple
subscriptions. On the other hand, providers would be able to
extend their capacity, capability, and coverage without having
to lose subscribers to other providers.

B. Offloading in Federated Fog-Edge-Cloud Systems

A federation between multiple computing paradigms gives
rise to many opportunities and challenges such as authentica-
tion, access control, resource sharing, and traffic offloading.
Traffic offloading is an important challenge as the federation
among multiple computing paradigms is a distributed system
with dispersed computing capacity. In this work, we focus on
offloading in a federated environment where cloud, edge, and
fog offload traffic to each other. Such offloading is basically
a transfer of tasks that are resource intensive to a separate
platform in order to perform a task in a better way. Such
offloading becomes necessary when a task assigned to a
service provider exceeds its computing resources and has to
be offloaded to another service provider that can provide the
required computing power. Thus, offloading is required in
order to fulfill different constraints under different situations.
Some important constraints are latency, load balancing, pri-
vacy, storage constraints, guarantees, SLAs, etc.

There can be two types of offloading In a federated system,
intra-domain and inter-domain offloading, as there are mul-
tiple domains in such a federation. Intra-domain offloading
involves the traffic offloaded between the entities belonging to
the same tier i.e., cloud-to-cloud, edge-to-edge, or fog-to-fog,
while inter-domain offloading involves the entities belonging
to different tiers, such as cloud-to-edge, cloud-to-fog, or edge-
to-fog, etc. Intra-domain and inter-domain offloading can
occur between two providers.

Optimization has traditionally been used effectively to of-
fload traffic in single networks [11] or in a federation, because
a single network provides the optimal offloading ratio that
reduces the overall cost of the network. Although traditional
optimization has been used for years, it takes much time
to generate decisions because of a network’s complexity
and the large number of variables involved. The non-convex
algorithms in traditional optimization perform an exhaustive
search to find an optimal solution, which takes much time
to converge [12]. Modern applications are latency sensitive
and cannot afford such delays in offloading decisions, as the
control and data planes need a decision in milliseconds to sub-
seconds. In the current era, optimization solutions for quick
offloading decisions are becoming obsolete and machine learn-
ing approaches are taking the place of traditional optimization
in complex network systems because of their faster response
times.

The machine learning approach has an advantage over
the traditional optimization approach in such complicated
federated systems, because machine learning does not require
complete knowledge of the system compared to the traditional
optimization, and it can quickly solve offloading problems
with various bits of unknown information. In the various
machine learning approaches, reinforcement learning (RL) is
the most suitable for offloading decisions because RL does
not need a well-labeled dataset, and can learn directly from
the environment [13]. This makes RL suitable for offloading
decisions in a dynamic environment with much unknown
information. This also shows that the RL is better than the
traditional optimization approach because, in such complex
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systems, traditional optimization may not be able to converge
to an optimal solution and may preferably rely on heuristics.
Traditional optimization would take much more time for
decision-making compared to the RL because of exhaus-
tive searching. When we consider offloading in a complex
federated environment together with traditional optimization,
machine learning, and reinforcement learning, many research
opportunities and challenges arise.

We summarize these various research opportunities such as
V2X, fog-fog federation, mobility in vehicular-fog, scaling,
resource allocation, centralized vs. distributed federation, etc.
We also provide some insight into the important challenges
that will be faced by the operators to deploy this kind
of federation, such as redundancy, fault tolerance, service-
level agreement (SLA), reliability, geo-diversity, performance,
security, and interoperability between entities of the different
domains in a federated environment.

C. Survey on Surveys

In this section, we discuss some recent studies that survey
offloading in federated systems, as well as the importance
of our survey. Table I compares offloading surveys which
are divided into coverage, federation models, optimization
approaches, and what the focus of that survey is.

The authors of [14]–[18] discussed traffic and data offload-
ing between cellular, Wi-Fi, and opportunistic networks, but
did not consider the computation offloading in a federated
system such as an edge-cloud system. Rebecchi et al. [14]
reviewed data offloading approaches in cellular systems with
Wi-Fi environments and categorized them based on their
latency requirements. Maallawi et al. [15] surveyed offloading
and management approaches in wireless access and in core
networks. Their objective was to address providers’ problems
such as radio access scheduling, revenue per user decrease,
and coverage. Chen et al. [18] surveyed traffic offloading in
heterogeneous cellular networks, including small cells, Wi-Fi
networks, and opportunistic networks, and [16] focused on the
algorithm for selecting the optimal subset of offloading nodes
in an opportunistic network, which would allow a node to of-
fload traffic and computation tasks to another node. This kind
of D2D offloading is beneficial to cellular operators and users
in terms of monetary cost. Huan et al. [17] surveyed mobile
data offloading, which involves small cells, Wi-Fi networks,
opportunistic networks, and heterogeneous networks. The pros
and cons of each of these networks are also detailed.

Computation offloading between mobile devices and the
cloud is discussed in [19]–[21]. Kumar et al. [19] categorized
offloading techniques based on the decision characteristics and
applications. The security and privacy challenges in mobile
cloud computing are discussed in [20]. The offloading tech-
niques with environmental variation which included applica-
tions, networks, execution platforms, and cloud management,
are summarized in [21].

Edge-cloud system offloading was surveyed in [10], [13],
[22]–[28]. Mach et al. [22] discussed mobile edge-cloud
system architectures and considered computation offloading
resources allocation, and mobility management. Wu et al. [24]

discussed multi-objective offloading, which was initiated by a
large heterogeneous system such as mobile edge computing.
Response time and energy consumption were their two main
objectives. Offloading criteria were categorized into what,
when, where, and how to offload. The taxonomy of edge-cloud
offloading was categorized in [26], based on the task type,
offloading scheme, objectives, device mobility, and multi-hop
cooperation. De et al. [27] presented a classified taxonomy of
V2X system offloading, based on a communication standard,
problem, and experiment.

Fog-edge-cloud offloading was discussed in [10], [13], [23],
[25], [28]. Jiang et al. [10] surveyed and discussed state-of-
the-art computational offloading in mobile edge computing.
Aazam et al. [23] discussed the offloading technologies in
fog computing for IoT. The survey of Zhou et al. [25]
focused on vehicular offloading, which included vehicle-to-
vehicle, vehicle-to-infrastructure, and vehicle-to-everything,
with a brief discussion of the architecture design, algorithm,
and problem formulation. Lin et al. [28] focused on offloading
modeling, which included communication, computation, en-
ergy harvesting, and channel modeling. Shakarami et al. [13]
classified machine learning-based offloading into approaches
such as supervised ML, unsupervised ML, and reinforcement
learning (RL).

None of these surveys details a federation between cloud,
edge, fog, and vehicular-fog. Each combination of such a
federation has different characteristics and offloading direc-
tions which leads to complex issues. In most of the surveys,
traditional optimization was used to optimize the offloading
decision in a federation. Traditional optimization takes a long
time to converge in such a complex federation system. By
contrast, an offloading decision must be rapidly determined by
the control plane. ML-based approaches have recently become
popular to solve offloading optimization problems in such
a complex federation system with fast response times. This
survey focuses on edge-cloud federation offloading and covers
state-of-the-art offloading approaches that use ML.

D. Survey Methodology

The survey methodology is outlined in this Section. Fog,
edge, cloud, V2X, and vehicular-fog were the terms we
searched for in articles published between 2012 and 2022 that
pertain to offloading optimization for these edge systems. The
cited publications study one or more computing paradigms,
constituting a federated system. The majority of the selected
papers are from IEEE journals and conferences. Some other
journals are published in Science Direct, ACM, Springer, and
MDPI. We selected articles based on their relevance to the
survey topic and their citation count.

E. Contributions

The major contributions in this paper are as follows. First,
we discuss the classification of federation between cloud,
edge, and fog systems. Each federation scheme has different
characteristics which affect the offloading directions. Second,
we discuss the current research status of different federated
architectures and offloading techniques and classify them.
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TABLE I: Survey on Surveys on Offloading in the Federated Systems

Coverage

References C
loud

E
dge

Fog

Vehicular-fog

D
evice

Federation
m

odel

O
ptim

ization

Focus of the survey

[14] 3 Data offloading techniques in cellular networks
[15] 3 Offload techniques and management in wireless access and core networks
[18] 3 Traffic offloading in heterogeneous cellular network
[16] 3 Opportunistic Offloading
[17] 3 Mobile data offloading technologies
[19] 3 Computation offloading for mobile systems
[20] 3 Security and privacy challenges in mobile cloud computing
[21] 3 Adaptation techniques in computation offloading
[22] Single Architecture and Computation Offloading
[24] Multi-objective decision-making for mobile cloud offloading
[26] 3 A Survey and taxonomy on task offloading for edge-cloud computing
[27] 3 Computation offloading for vehicular environments
[10] Computation offloading in edge-cloud systems
[23] 3 Offloading in fog computing: Enabling technologies
[25] 3 Data offloading techniques in V2X networks
[28] 3

T

Computation offloading modeling for edge computing
[13] 3 ML Machine learning-based approaches in mobile edge computing

Ours

3

3

3

3 3 Multiple T/ML Offloading in federated cloud-edge-fog systems
T: Traditional; ML: Machine Learning

Third, we survey offloading based on traditional optimization
and machine learning approaches and make a comparative
study of both approaches. Finally, we discuss some key
research challenges associated with the task offloading and
point to possible future research directions. To the best of our
knowledge, this is the first work to discuss computing system
federation, offloading optimization, and the offloading opti-
mization approaches, i.e., traditional optimization and machine
learning.

The rest of this paper is organized as follows. Section
II describes a federation of cloud-edge-fog systems and the
classification of such a federation. Section III presents the
offloading, classification of the offloading, and the current
research status of federated architecture and offloading. The
survey on offloading is detailed in Section IV, which also
classifies the approaches into traditional optimization and ma-
chine learning. Lessons learned from the survey are discussed
in Section V. The research opportunities and challenges are
presented in Section VI and the conclusions of this survey are
discussed in Section VII.

II. A FEDERATION

A federation can be defined as the collection of clouds
that cooperate to provide resources requested by users [29].
Stated another way, a cloud can provide computing resources
wholesale or rent to another cloud provider [30]. A federation
can render the cloud a user and resource provider at the same
time [33]. A customer’s request submitted to one cloud can be
fulfilled by another. A cloud provides capacity and coverage,

but for latency reduction and fault tolerance, a cloud needs
edge and fog. Likewise, fog and edge need a cloud service
to increase their capacity and coverage. The federation could
be realized if an agreement is established between service
providers to develop cooperation that benefits them and their
customers. All federation possibilities are depicted in Fig. 3,
and federation agreements can be made between 1-to-1, 1-to-
many, and many-to-many.

T-system is an example of the federation of clouds that cov-
ers cloud services supported by a number of cloud providers,
including Open Telecom Cloud, AWS, Azure, and Google
Cloud. They also federate edge and the mentioned public
clouds to support rich services [31]. They deliver industry-
specific, end-to-end IT systems and digital transformation
solutions for all businesses and the public sector at the lowest
possible cost and with the least amount of complexity. They
provide extensive coverage in over twenty countries. Another
federation example is Google’s Fi project, which allows feder-
ation across Wi-Fi and cellular networks. This project includes
T-mobile and U.S. cellular service provider federation. This
federation is, nonetheless, a type of communication service
federation [32].

Cloud, edge, and fog computing paradigms provide different
services to users or subscribers, depending on their limitations
and capacity [37]. Since subscribers have different demands
and service requirements, each paradigm may not have all
kinds of services to fulfill all users’ needs because each com-
puting paradigm has its limitations [38]. Thus there is a need
for a “federation” between different service providers to cope
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TABLE II: Federation Framework

Federation type Framework Features Enterprise Academia
Slicing Scaling Offloading

E-C Zadara [34] ‡ ‡ ‡

C-C BEACON [35] ‡ ‡ ‡

F-C Kubefed [36] ‡ ‡

with the users’ heterogeneous requirements and to increase the
capacity, coverage, capability, and fault tolerance of the service
providers. For example, in a smart city environment, different
users or IoT devices have different requirements that a single
service provider may not address. A federation then comes
into the picture to fulfill the various demands. The benefits
of the federation are twofold, i.e., from both a subscriber’s
and provider’s perspectives. A subscriber would not have to
subscribe to the services of all providers but will get the
services of all by just subscribing to one of them. Subscribers
do not have to keep multiple accounts and do not have to pay
multiple providers. On the other hand, a provider will not lose
a customer just because it cannot provide a particular service.

Table II presents several federation frameworks developed
by enterprises or academic institutions. The federated program
of Zadara [34] enables hosting providers or managed service
providers to manage dispersed clouds and enable edge com-
puting fully. Involving cloud and edge providers from around
the world to deliver computing resources in proximity to users
with low propagation latency. BEACON [35] manages cross-
site virtual networks for federated cloud infrastructures in
order to facilitate the automatic deployment of applications
and services across various clouds and data centers. The
overlay layer-2 and layer-3 network concepts are employed
to interconnect services hosted by multiple cloud providers.
These overlay networks are developed using OpenDOVE,
which provides network virtualization. Kubefed [36] facilitates
the management of several Kubernetes clusters via a central-
ized API. The goal is to facilitate the deployment of multi-geo
applications. Kubernetes is an open-source container manage-
ment, deployment, and scalability platform that may also be
used to create fog, edge, and cloud. None of these frameworks
specifically explain the offloading mechanisms that are used.
Only Zadara provides load balancing to distribute the traffic
in some instances but does not specify the action taken for
incoming traffic in case an edge/cloud site is overloaded.

A. Federation vs. Non-federation

A non-federated scenario is one where a service provider
cannot share its resources with other service providers, and
it can neither lend nor rent its surplus resources to others. In
such a scenario, it is difficult to handle the dynamic demands
of users, and the service provider may face issues like Lock-
in [39] [40] [41] and single point failure [42] [43]. Lock-in is
one of the most cited and controversial obstacles to widespread
cloud computing adopted by enterprises [44]. It is also risky
for a customer to be tied to a single vendor because that vendor
might raise prices, go out of business, become unreliable, or
fail to keep up with technological progress.

Different service providers, such as cloud, edge, or fog,
provide different services to their subscribers depending on

Fig. 2: Computing paradigms characteristics

their limitations and capacity [45]. Again, a subscriber of a
service provider may have different demands at different times,
which may not be fulfilled by the service provider always.
This can also be understood with the help of an example of a
perfect smart city where there would be different types of IoT
devices, and each type would have its own requirements that
a single IoT service provider cannot fulfill. In such a scenario,
the provider will be able to provide all sorts of IoT services
after federating with other providers. When acquiring IoT
deployment, a federated environment is thus more beneficial
than a non-federated scenario.

Federated fog-edge-cloud encounters several challenges due
to the varied characteristics and administration complexities of
fog-edge-cloud systems. Fig. 2 depicts the differences across
computing paradigms regarding network locations, comput-
ing resource capacity, dispersion, dynamism, and ownership.
The cloud has more computing power with less dispersion
and volatility. Low dispersion indicates that the cloud has
a centralized location. Edge and fog are both examples of
distributed systems. Since fog comprises user equipment,
which includes vehicular-fog, it has the highest computing
resource dynamism.

In [46], Cominardi et al. listed some challenges of the
federated system that also pertain to the challenges of feder-
ated offloading, including trust management, dynamic resource
discovery, multi-tenancy, multi-virtualization technology co-
existence, application placement, dynamic service placement
and migration, dynamic resource management, and security.
We introduce offloading as a federation challenge because, in
a distributed system, incoming traffic must be spread across
available resources. The challenges mentioned are the costs
that must be considered during the federation. Maintaining
trust between entities is also not trivial. The federated systems
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Fig. 3: Classification of federation

address the aforementioned challenges by outsourcing to a
trusted company (broker) or maintaining them distributively
by the entities (peer-to-peer). This paper focuses on multi-
direction offloading optimization in federated systems, which
include a large distributed and dynamic system.

B. Classification of Federation

With federation technology, different users or subscribers
of different service providers get different benefits. With this
technology, different service providers can federate with each
other to provide a better service to their users. A federation
between these service providers can be divided into three
categories, horizontal, vertical, and hybrid federations. These
federations are all based on the cloud, edge, and fog integrated
architecture; the classification of all possible federation scenar-
ios is shown in Fig. 3. To the best of our knowledge, such a
classification has not been dealt with in any of the studies we
reviewed.

1) Horizontal Federation. A horizontal federation consists
of two federated entities in the same tier, such as a cloud-
cloud federation [47]. A horizontal federation can be cloud-
cloud �C�C� or CH , edge-edge �E�E� or EH , or Fog-Fog
�F � F � or FH .

2) Vertical Federation. A vertical federation is a federa-
tion between entities in different tiers [33] as in a cloud-
edge federation. Since a cloud-edge-fog system is a three-
tier system, we can classify a vertical federation into two and
three-tier federations, such as cloud-edge �C � E�, edge-fog
�E�F �, and cloud-fog �C�F � federations, or a cloud-edge-
fog �C � E � F � federation.

3) Hybrid Federation. A hybrid federation is a federation
that combines both horizontal and vertical combinations [61],

where entities can simultaneously federate horizontally with
another entity in the same tier, as well as vertically with an
entity in another tier. For example, in an edge-edge-cloud
�EH �C� federation, an edge is federated with another edge
in tier-2 and also federated with a cloud in tier-3. Such a
hybrid federation can be classified into two-tier and three-tier
federations.

1) A two-tier hybrid federation consists of all possible com-
binations of horizontal and two-tier vertical federations.
For example, in �CH � E� federation, one cloud �C1�
will federate with another cloud �C2� horizontally, and
with an edge �E1� vertically. Similarly, in �CH �EH�,
two clouds �C1 and C2� become federated with each
other, two edges �E1 and E2� are federated with each
other horizontally, and are simultaneously also federated
vertically �E1 and C1�. All nine possible two-tier
hybrid federation combinations are shown in Fig. 3.

2) A three-tier hybrid federation consists of all possible
combinations of a horizontal federation and three-tier
vertical federation; all seven possible federation com-
binations are also shown in Fig. 3. For example, in
�CH � EH � FH�, two clouds �C1 and C2� in tier-3,
are federated with each other, two edges �E1 and E2�
in tier-2 are federated with each other, and two fogs
�F1 and F2� in tier-2 are federated with each other. At
the same time, C1 with E1, and E1 with F1 also become
federated vertically.

The three federation schemes discussed above give new
computing systems with varying characteristics, objectives,
offloading directions, and complexity. Section III describes the
concept of offloading, and classifies some offloading schemes
required by some federated systems. This offloading scheme is
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associated with the federation scheme. For example, horizontal
offloading is employed between entities in the same tier,
whereas vertical offloading is employed during federation
between entities in different tiers.

III. OFFLOADING

When an entity or service provider (say SP1) with a
federated architecture receives requests from its subscribers
or customers, and needs another entity (say SP2) to execute
tasks on behalf of the SP1 and return the results. This is
called offloading [48]. Again, there are various criteria that are
used when deciding whether to offload certain tasks. A few
examples of this are as follows. To meet a resource constraint:
when a task requires more computing resources than the local
system’s available capacity, it must be offloaded to another
system with the required capacity [49]. To address latency: as
distance affects time-sensitive applications, the node closest to
the receiving node must be involved in the task of offloading to
provide the services faster [50]. Load balancing: when a server
has reached its capacity for executing tasks, additional tasks
need to be distributed between other entities in the service
provider’s ecosystem [51]. Storage: small computing devices
with limited storage facilities may require offloading to another
that has a large storage capacity [52]. To maintain privacy,
confidentiality, and security: depending on the sensitivity of
data, they may be offloaded to more secure cloud storage [53].

A. Renting vs. Scaling vs. Offloading

In an offloading scenario, resources are used based on the
requests from customers. These may vary from time to time,
based on demand. Here, the use of resources can be scaled
up or down based on the demand, and a customer will pay
according to the use. This is called autoscaling. However, in
renting, a customer will reserve the required resources for a
predetermined duration for the future use. The customer may
or may not utilize the entire resources that were reserved,
but will pay according to the reservation. Offloading is a
method where a service provider passes the request to another
service provider to provide the service to its own customer. For
example, a client of Amazon sends a request to Amazon, but
Amazon passes the request to Google, and Google provides
the service, provided there is a federation agreement between
the two service providers.

B. Classification of Offloading

Based on the federation agreement between entities, one
entity can offload its tasks to another entity for service. This
offloading can be classified into Horizontal, Vertical, or Hybrid
offloading, based on different federation agreements. Our
offloading classification focuses on the computation capacity
and communication time perspective. However, an offloading
classification can also be applied to other criteria such as
storage, security, etc.

1) Horizontal Offloading. Horizontal offloading always
takes place between two entities in the same tier with a hori-
zontal federation agreement. As with a horizontal federation,

horizontal offloading also comes in three types, shown as #1
to #3 in Fig. 4.

1) In cloud-to-cloud �C � C� horizontal offloading, two
federated clouds can offload to each other [54]. Google
can offload to Amazon or vice versa.

2) In edge-to-edge �E � E� horizontal offloading, two
service providers in edge tiers can offload to each other
[95].

3) In fog-to-fog �F � F � horizontal offloading, two
computing resources in two different fogs can offload
to each other [55]

2) Vertical Offloading. Vertical offloading always takes
place between two entities in different tiers, for example,
edge-to-cloud. There are fifteen different vertical offloading
combinations from #4 to #18 in Fig. 4, which can be classified
into four different categories: upward (#4 to #6), downward
(#7 to #9), reverse (#7 to #9), and bi-directional (#10 and #11).

1) Vertical offloading occurs upward from the lower to the
higher tier, which is more centralized, covers a bigger
area, and has a greater computing capacity than the
lower tier [78]. The possible upward offloading scenarios
are edge-to-cloud �E ) C� fog-to-edge �F ) E�, and
fog-to-cloud �F ) C� offloading.

2) When an upper tier offloads its task to a lower layer
entity that is closer to the user and has lower network
latency than the upper tier, it is known as downward
vertical offloading. [63], [96]. The possible downward
offloading scenarios are cloud-to-edge �C + E�, cloud-
to-fog �C + F �, and edge-to-fog �E + F � offloading.
These scenarios are triangular, i.e., the user requests
are given to an upper-tier entity and then offloaded
to a lower-tier entity. For example, in cloud-to-edge
offloading, the cloud user gives its request to the cloud,
then the cloud will offload the task to the edge with
which it has a federation agreement.

3) Reverse offloading is a special type of downward vertical
offloading, where the distance between two entities is
relatively far, and to overcome latency and data transfer
costs associated with highly time-sensitive tasks, an
entity in the upper tier can reverse offload its task
to a lower-tier entity [58]. These are non-triangular
offloading scenarios, i.e., if there is a federation between
two entities in two different tiers, and if a subscriber of
an entity in an upper tier is closer to an entity in a lower
tier, then a user’s requests are given directly to the lower
tier entity, instead of to the entity in the upper tier. For
example, cloud-to-edge reverse offloading: if there is a
federation between cloud and edge, the subscriber to the
cloud is closer than to an edge, it can directly send the
request to the edge instead of to the cloud. Cloud-to-
edge �C � E� and cloud-to-fog �C � F � are the two
reverse offloading scenarios for our system. Since edge
and fog are very close to each other, we do not consider
the reverse offloading scenario between them.

4) Bidirectional offloading is a combination of all possible
scenarios of upward with downward offloading, upward
reverse offloading, or a combination of all three, i.e.,
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Fig. 4: Classification of offloading based on federation

TABLE III: Saturation Level of Federated Systems and Different Offloading Scenarios

Saturation Level Federation Types Offloading Types
Saturated C �C C � C

Semi-saturated C � F , E � F , E �E E ) C, F ) C, F ) E, E � E

New F � F F � F , C + E, C + F , E + F , C � E, C � F

upward with both downward and reverse offloading. For
example, the offloading scenario #12 in Fig. 4 is a
combination of offloading scenario #4 and #8; similarly,
#14 is a combination of #4, #8 and #10. All possible
bidirectional vertical offloading scenarios are shown in
Fig. 4.

3) Omni-directional Offloading. Omni-directional offloading
is the combination of all possible horizontal and bidirectional
offloading scenarios. For example, the #22 offloading scenario
in Fig. 4 is the combination of offloading scenarios #1 and
#13 (a combination of #4 and #10). There are twenty-one
different omni-directional offloading scenarios from #19 to
#39 as shown in Fig 4.

However, these scenarios are only limited to two-tier archi-
tectures. They can be further extended to three-tier architecture
by combining two two-tier architectures. To the best of our
knowledge, such classification of the offloading scenarios has
not previously been considered and is here set out.

C. Current Research Status of Federated Architectures and
Offloading

Before doing the survey, we consider the current status
of different federated architectures and offloading scenarios,
which are divided into three categories, as shown in Table III.
Fig. 4 shows 39 different offloading scenarios. However, out of

these scenarios, 11 are core offloading scenarios that are con-
sidered for this categorization based on a one-to-one federation
and offloading. Some scenarios have been addressed in many
papers, which we consider as a saturated scenario—for exam-
ple, a C �C federation. In [59], Mashayekhy et al. proposed
a game-theoretical model to reshape the business structure
between cloud providers, which could improve their dynamic
resource scaling capabilities by establishing cooperation with
the federation method. They proposed a cloud federation
mechanism to maximize the profit of cloud providers, by
reducing the utilization of computing resources. Hassan et
al. [60] presented a capacity-sharing mechanism using game
theory in a federated cloud environment. This mechanism may
lead to a global energy sustainability policy for federated
systems and can encourage such systems to cooperate. The
main goal of the paper is to minimize the overall energy cost
by means of a capacity sharing technique, that will promote
the long-term individual profit of cloud providers.

The integration of vertical and horizontal cloud federations
is discussed in [61]. In this integration, private clouds are
known as secondary clouds, and are federated with each
other horizontally, which become federated vertically with
the public clouds, termed primary clouds. The objective of
[61] is to establish stable cooperative partnerships for the
federation to improve efficiency. In [62], a distributed resource
allocation problem is discussed in a horizontally dynamic
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Fig. 5: Task offloading in the fog-edge-cloud federation

cloud federation (HDCF) platform. These authors used a game
theoretical solution to address this problem, to ensure mutual
benefits to encourage cloud providers (CPs) to form an HDCF
platform.

Similarly, cloud-to-cloud offloading is very rare as the
clouds lack capacity, capability, etc. One cloud may not
have something that another one can cover, and it is then
considered saturated. There are some federation architectures
and offloading scenarios which have been addressed by some
researchers, but there is still much to address. These scenarios
are termed semi-saturated; the rest are called new scenarios,
in which hardly any research has been done. These three
categories are shown in Table III. Note that the fog used in this
paper includes any static or dynamic fog, including vehicular-
fog that may have mobility.

Fig. 5 illustrates offloading in a three-tier fog-edge-cloud
federation. The fog system comprises a variety of devices,
such as smartphones, laptops, automobiles, and roadside units
(RSUs), all of which interact with one another and can even
collaborate on some tasks. Between fog and cloud lies a two-
tier MEC system with computing capacity behind the base
stations (AN-MEC) and in a central office with core network
functions (CN-MEC). Cloud computing is the top tier, with
massive computing capacity but is geographically remote from
UEs or data sources.

Fig. 5 shows three different offloading scenarios based on
task sources. The first scenario (1) involves a heavy task or
hotspot traffic at a stadium that is hosting a sporting event
or music concert. The task will be offloaded from the UEs
to the nearest AN-MEC. Because of the AN- MEC’s limited
computational capabilities, the task can be offloaded to a
less loaded AN-MEC or CN-MEC, and computing delay can
thus be minimized. In the second scenario (2), the vehicle
generates tasks from its sensors or multimedia applications for

safety and comfort. Some vehicle tasks are latency-sensitive
that are part of the navigation, autopilot, accident, or alert
systems. A nearby server must serve those kinds of tasks with
low propagation and computing latencies. The tasks can be
offloaded either horizontally to other vehicles or vertically to
an RSU. If the RSU is overloaded, it will vertically offload
the tasks to an AN-MEC, and the overloaded AN-MEC can
offload the tasks downward to vehicular fog. The third scenario
(3) describes the traffic generated by industrial IoT sensors,
with some operations requiring low latency, such as robotic
process automation, danger alerts, and suspicious activity
alerts, and can be vertically offloaded to AN-MEC. Large
amounts of sensor data from industrial IoT can be offloaded
to a cloud for future analysis.

IV. SURVEY ON OFFLOADING

This section provides a summary of the literature that
deals with the federated environment with different offloading
scenarios. Some papers discuss current surveys on cloud
federation [56] [57] with cloud-to-cloud offloading, some edge
federation [95], some edge-to-cloud offloading [23], some
edge-to-vehicular-fog offloading [63], and some cloud to edge
reverse offloading [58]. The major purpose of a federation is
to enhance storage and processing capabilities. Many factors
influence offloading strategies, such as the location [64],
energy [67], and different optimization objectives. We classify
this work on offloading into two categories, (a) traditional
optimization techniques, that mostly focus on management
plane decisions, and (b) machine learning techniques that focus
on control plane decisions.

A. Traditional Optimization
Table IV lists the earlier research on traditional

optimization-based offloading, according to the direction
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TABLE IV: Analysis of Recent Research on Offloading in the Federated Systems with Traditional Optimization

Metrics

References Offloading Types C
ost

E
nergy

C
apacity

L
atency

Approach Method Evaluation Application

[64]
D2D

‡ Exact Convex optimization Simulation Offloading in realistic
human mobility scenario

[65] ‡ ‡ Analysis Lyapunov optimization Simulation Fogging framework
[66] ‡ ‡ Scheme Tree search algorithm Simulation Face recognition
[67] D ) C ‡ No approach Real test-bed Experimental MCC application
[68]

D ) E

‡ ‡ Analysis Lyapunov optimization Simulation Face recognition
[69] ‡ ‡ Heuristic ODLOO Simulation Generic user applications
[70] ‡ ‡ Analysis Branch and bound Simulation Smart mobile device (SMD)
[71] ‡ ‡ Analysis EPCO algorithm, Simulation Data partitioned in SMD

LPCO algorithm
[72] ‡ ‡ Policy One-dimensional Simulation MEC systems

search algorithm
[73] ‡ ‡ Analysis Lyapunov optimization Simulation Energy harvesting for

devices
[74] ‡ ‡ Policy Lyaponuv optimization Simulation Multi-user multi-tasking
[75] D ) F ‡ ‡ Scheme Aura architecture Experimental Prototype design
[89]

F ) E
‡ ‡ Analysis Ant colony optimization Simulation Smart city

[91] ‡ ‡ Scheme EECO scheme Simulation 5G heterogeneous networks
[92]

E ) C
‡ ‡ Analysis Game theory Simulation Payment strategy in edge

computing
[93] ‡ ‡ Analysis KKT conditions Simulation Augmented reality
[63]

E + F
‡ ‡ Heuristic Iterative greedy Simulation Intelligent transportation

systems
[96] ‡ ‡ Heuristic Iterative greedy, Simulation Intelligent transportation

DOCP systems
[76]

D ) E, E ) C

‡ ‡ ‡ Scheme Game theory Simulation FiWi networks
[77] ‡ ‡ No approach LEAD algorithm Simulation MCC application
[78] ‡ ‡ Analysis Simulated annealing Experimental, Traffic engineering
[80] ‡ Heuristic Iterative search algorithm Simulation Generic user applications
[81]

D ) F , F ) C
‡ ‡ Analysis Simulated annealing Simulation Industrial IoT

[82] ‡ ‡ Heuristic LTS-AQW Simulation Real-time applications
[83] ‡ Heuristic DPTO Simulation IoT applications
[87] D ) F , F ) E ‡ Analysis Iterative greedy Simulation Generic user applications

E ) C

[88] D ) F , D ) E ‡ ‡ Analysis Subgradient iterative Simulation MCC applications and ITS
E ) C method

[94] F ) E, E ) C ‡ ‡ Scheme Iterative search algorithm Simulation Multi-cell MEC networks
[98] V � V , V ) F ‡ Heuristic Iterative searching Simulation Multimedia applications
[99] V ) F , F ) E ‡ Analysis Branch-and-bound and Simulation Traffic management system

E ) C Edmonds–Karp
[84]

D ) E, E � E
‡ ‡ ‡ Heuristic Bisection method Simulation Multi-cell wireless network

[85] ‡ ‡ Heuristic Two-phases iterative Simulation URLLC, eMBB, and MMTC
optimization

[86] D ) E, E � E ‡ ‡ ‡ Analysis Branch and bound Simulation Traffic engineering
E ) C

[95] E ) C, E � E ‡ ‡ Scheme Dynamic algorithm Experimental Traffic engineering
[58] E ) C, C � E ‡ ‡ No approach Architecture Osmotic computing
[97] E � E, E ) C ‡ ‡ ‡ Analysis Simulated annealing Simulation Traffic engineering

C + E, C � E

D: Device; D2D: Device to Device; MCC: Mobile Cloud Computing; MEC: Multi-access Edge Computing; IoT: ; EPCO: Energy-Optimal
Partial Computation Offloading; LPCO: Latency-Optimal Partial Computation Offloading; LEAD: Latency-Aware workloAd offloaDing;
EECO: Energy-Efficient Computing Offloading; KKT: Karush-Kuhn-Tucker; DOCP: Decentralized Offloading Configuration Protocol
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and destination of offloading.
1) Device-to-Device (D2D) Offloading. Some research pa-

pers focus on device-to-device (D2D) offloading [64]� [66].
Wang et al. [64] investigated the mobility-assisted opportunis-
tic computation offloading problem focusing on the patterns
of contacts between mobile devices. They used the convex
optimization method to determine the amount of computation
tasks that can be offloaded from one device to another. Pu et al.
[65] proposed a device-to-device (D2D) fogging framework,
where mobile users can dynamically and beneficially share
computation and communication resources between them-
selves. The objective of D2D fogging is to achieve optimal
energy conservation for executing the tasks of network-wide
users. Yu et al. [66] proposed a hybrid multicast-based task
execution framework for multi-access edge computing (MEC).
In this framework, multiple devices can collaborate at the
edge of a network for wireless distributed computing (MDC)
and outcome sharing. Such a framework is socially aware of
building effective D2D links with the objective of achieving an
energy-efficient task assignment policy for mobile users. They
used the Monte-Carlo search tree-based algorithm to achieve
their objective.

2) Device-to-Fog (D2F), Device-to-Edge (D2E) and Device-
to-Cloud (D2C) Offloading. Two papers, [67] and [75], focused
on device-to-cloud and device-to-fog offloading, respectively,
while device-to-edge offloading was discussed in [68]–[74].
Barbera et al. [67] tested the feasibility of mobile computation
offloading in real-life scenarios. They considered an architec-
ture where each real device is associated with a software clone
on the cloud. Huang et al. [68] proposed a dynamic offloading
algorithm based on the Lyapunov optimization that maximizes
energy efficiency while preserving the required latency with
face recognition applications. Zhang et al. [69] investigated the
trade-off between energy consumption and latency for an MEC
system with energy harvesting technology. They formulated
the weighted sum of energy consumption and computation
latency minimization of mobile device with the stability of
queues and battery level, and used the Lyapunov function to
ensure system stability.

Zhao et al. [70] proposed a multi-mobile-user MEC system,
where multiple smart mobile devices (SMDs) can offload their
tasks to an MEC server, with the objective of minimizing
the energy consumption of SMDs. To optimize this, they
coordinated the offloading selection, radio resource alloca-
tion, computational resource allocation, and used the branch
and bound method to solve the optimization problem. Wang
et al. [71] investigated partial computation offloading with
dynamic voltage scaling (DVS) technology, in mobile edge
computing, where devices can partially offload their tasks.
They formulated an optimization problem with two objectives:
energy consumption of SMD minimization (ECM) and latency
minimization of application execution (LM). They proposed
two optimal algorithms named Energy Optimal Partial Com-
putation Offloading (EPCO), and Latency Optimal Partial
Computation Offloading (LPCO) to solve the ECM, and LM
problems, respectively.

To achieve minimum average delay, Liu et al. [72] adopted
the Markov decision model for computational task scheduling.

They proposed a searching algorithm to determine optimal
scheduling. Such task scheduling is unique, as the computation
tasks are scheduled based on the queuing state of the task
buffer, the execution state of the local processing unit, and
the state of the transmission unit. Mao et al. [73] devel-
oped a Lyapunov Optimization-based Dynamic Computation
Offloading (LODCO) algorithm to minimize the execution
delay and addressed task failure as the performance metric.
This algorithm determines the offloading decision, the CPU-
cycle frequencies for mobile execution, and the transmission
power for computation offloading. However, without requiring
distribution information such as computation task requests,
wireless channel, energy harvesting (EH) processes, etc., these
decisions depend only on the system’s current state.

Chen et al. [74] formulated a multi-user, multi-task com-
putation offloading problem for green Mobile Edge Cloud
Computing (MECC), and used the Lyaponuv Optimization
approach to determine an energy harvesting policy. This policy
determines how much energy is harvested from each wireless
device (WD) in the task offloading schedule – the set of
computation offloading requests that can be admitted into the
mobile edge cloud, the set of WDs that can be assigned to
each accepted offloading request, and the amount of workload
that can be processed at the assigned WDs. In [75], Hasan et
al. present the Aura architecture, a highly localized and mobile
ad-hoc cloud computing model using IoT devices present in
the ubiquitous environment for task offloading schemes and
enhancing applications. They implemented the Aura on the
Contiki platform and a simplified Map-Reduce port, which
demonstrates such architecture’s feasibility.

3) Device-Fog-Cloud and Device-Edge-Cloud Vertical Up-
ward Offloading. The offloading scenarios adopted in papers
[76]–[78], [80]–[83] were vertical upward, which included
from device to any entity offloading, and one entity to another
entity offloading. Gou et al. [76] presented an architecture
for collaborative computation offloading over FiWi networks.
They addressed the problem of cloud-MEC collaborative
computation offloading to minimize the energy consumption
of all the MDs, while satisfying the computation execution
time constraint. They proposed a distributed collaborative
computation offloading scheme by adopting game theory and
analyzing the Nash equilibrium.

Sun et al. [77] addressed the latency-aware workload of-
floading (LEAD) problem, where they formulated a task
offloading problem to minimize the average response time for
mobile users. They designed the LEAD strategy, and offloaded
the workloads to suitable cloudlets to reduce average response
times. Tong et al. [78] proposed a hierarchical edge cloud
architecture to improve the performance of mobile comput-
ing by leveraging cloud computing, and offloading mobile
workloads for remote execution at the cloud. For the efficient
utilization of resources and workload placement, they used
simulated annealing (SA) [79] to determine which programs
are placed on which edge cloud servers, and how much
computational capacity is available to execute that program.
They implemented the proposed architecture in small-scale,
conducted a simulation experiment over a larger topology, and
evaluated the performance of a proposed workload placement
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algorithm.
Rodrigues et al. [80] proposed a heuristic offloading algo-

rithm to determine whether tasks should be processed locally,
in nearby cloudlets, or in a remote cloud, which would
initially be determined by a UE. The UE would then choose
a different location to process the task, and calculate the
latency difference between the new location and the previous
location. Each UE could make this distinction, and leverage
the chosen location when bidding for an offloading decision.
The offloading decision with the highest bid is then chosen.

Chekired et al. [81] introduced a new scheduling model
for the industrial Internet of things (IIoT) data processing,
and proposed a two-tier cloud-fog architecture for IIoT ap-
plications, by deploying multiple servers at the fog tier. The
objective of this architecture was to minimize the communi-
cation and data processing delays in IIoT systems. Resource
allocation and offloading optimization for heterogeneous real-
time tasks were carried out by means of an adaptive queuing
weight (AQW) resource allocation policy in [82]. A trade-
off between throughput and task completion ratio optimization
was also achieved by taking laxity and completion times into
account when designing the offloading policy. Adhikari et al.
[83] designed a novel delay-dependent Priority-Aware Task
Offloading (DPTO) algorithm for scheduling and handling
IoT device tasks in an appropriate computing server. The
computing locations were chosen based on the types of task
deadlines, which were classified as soft and hard-deadline
tasks.

4) Device-Edge-Cloud Hybrid Offloading. Hybrid offload-
ing was discussed in [84]–[86] which included device-edge
vertical offloading. Tran and Pompili [84] formulated a math-
ematical model for the joint optimization of task offloading
and resource allocation in MEC. In this work, they did not
only account for the allocation of computing resources but
also for the allocation of the transmission power of mobile
users.

The two-tier MEC architecture proposed by yahya et al.
[85] comprises an access network MEC (AN-MEC) and a core
network MEC (CN-MEC). CN-MEC has greater capacity, but
is less wide spread than AN-MEC. Two-phase optimization
was used to achieve capacity optimization by modifying the
offloading ratio and capacity iteratively. For hot-spot traffic,
offloading and scaling were merged into short-term and long-
term solutions. They considered both vertical, device-edge, and
horizontal offloading between edges. In a comparison between
pre-CORD and CORD, shown in Fig. 7, a trade-off between
computing and communication latency was introduced for
different distances of the CN-MEC, which affected the task
processing distribution. Thai et al. [86] proposed workload and
capacity optimization to minimize computation and communi-
cation costs for cloud-edge federated systems, by taking into
consideration vertical and horizontal offloading. They designed
a branch and bound algorithm with parallel multi-start search
points to solve this problem.

Villar et al. [58] introduced osmotic computing, a new
paradigm for edge and cloud integration. In their research, they
developed the concept of reverse offloading, where not only
can an edge offload its tasks to the cloud, but the cloud can

Fig. 6: Simulated Annealing-based offloading illustration

also reverse offload time-sensitive tasks to edges. A two-tier
cloud-edge federated architecture was proposed by Kar et al.
[97], who considered edge-to-edge horizontal offloading and
edge-to-cloud vertical offloading, together with cloud-to-edge
reverse offloading. They formulated an optimization problem
with the objective of minimizing costs where latency was the
key constraint, and used simulated annealing to solve it. As
shown in Fig. 6, the simulated annealing technique gathers
system information and carries out an exhaustive search into
acquiring the best offloading decision.

5) Fog-Edge-Cloud Vertical Upward Offloading. Some pa-
pers [87], [89], [91]- [92] focus on entity to entity upward
offloading, and some adopt hybrid offloading scenarios [94]-
[95]. Fantacci and Picano [87] carried out queuing analysis
of cloud-fog-edge computing infrastructure, and proposed a
heuristic to determine offloading ratios and computing capac-
ities at fog, edge, and cloud. Kar et al. [88] considered a
federated architecture with mobile device, edge, cloud, and
vehicular-fog together. They used the queuing theory to ana-
lyze the performance to minimize QoS violation probability,
and used a subgradient searching algorithm to determine the
optimal probabilities.

An intelligent offloading method (IOM) for smart cities,
conserving privacy, improving offloading efficiency, and pro-
moting edge utility, was proposed to address the privacy
disclosure in Xu et al. [89]. The authors used the ant colony
optimization (ACO) [90] method to achieve the trade-offs be-
tween minimizing service response time, energy optimization,
and maintain load balance, while ensuring privacy preservation
during service offloading. An energy-efficient computation
offloading mechanism for MEC in 5G heterogeneous networks
was proposed in [91]. They formulated the energy mini-
mization problem of an offloading system, where both task
computing and file transmission energy costs were considered.

Lu et al. [92] addressed the problem of computation offload-
ing by using edge computing. They formulated the problem
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Fig. 7: Ratio-based of�oading: pre-CORD vs. CORD

as a two-stage Stackelberg game problem and show that it
achieves a Nash equilibrium. Their objective was to maximize
cloud service operators' and edge server owners' utilities
by obtaining optimal payment and computation of�oading
strategies with low delay. Ma et al. [93] proposed a cloud-
assisted framework in MEC, termed Cloud Assisted Mobile
Edge computing (CAME), to minimize resource costs by
combing queuing network and convex optimization theories.
They solved the convex problem by using Karush-Kuhn-
Tucker (KKT) conditions, and augmented reality to represent
delay-sensitive and computation-intensive mobile applications.

Jiao et al. [94] presented an integrated framework for com-
putation of�oading and resource allocation in MEC networks,
where both single and multi-cell networks were taken into con-
sideration. To minimize energy consumption and delay, they
proposed an energy-aware of�oading scheme that considers
both computation and communication resource allocation. In
[95], a horizontal edge federation was proposed together with
UE to edge, and edge to cloud vertical of�oading scenarios.
They experimentally showed that an edge federation model
improves the quality of experience (QoE) of end-users and
saves on the costs of edge infrastructure providers (EIPs).

6) Vehicular-Fog and V2X Of�oading.The single edge to
vehicular-fog task of�oading problem was addressed in [63],
where an iterative greedy algorithm was used to solve the
optimization problem. Yen et al. [96] proposed a decentralized
of�oading con�guration protocol (DOCP) for single edge to
vehicular-fog of�oading, with a matching protocol between
multiple edge systems to resolve the resource contention,
when resources from the same vehicular-fog were requested
simultaneously.

Of�oading optimization for vehicular-to-everything (V2X)
systems was addressed in [98], [99]. Zhang et al. [98] con-
sidered hybrid of�oading between vehicles and fogs, and
formulated a mixed-integer, nonlinear programming (MINLP)
solution for optimizing both user association, and radio re-
source allocation in vehicular networks (VNET). To obtain

a globally optimal solution, this MINLP problem was trans-
formed by applying norm theory to non-convex nonlinear
fraction optimization, and then showed to be equivalent to
convex optimization using weighted minimum mean square
error (WMMSE) and Perron-Frobenius theory. Wang et al. [99]
proposed a real-time traf�c management algorithm for fog-
based Internet-of-Vehicle (IoV) systems. This consisted of a
three-tier architecture of fog, cloudlet, and cloud for providing
computing resources to traf�c management systems. They
also looked into vertical of�oading optimization between fog,
cloudlet, and cloud. Some modeled the of�oading optimiza-
tion problem into convex optimization and used exhaustive
searching to �nd the optimal solution. The global optimum is
easier to get in such a convex problem than in a non-convex
problem.

D2D, V2X, and vehicular-fog of�oading optimization in-
corporate dynamic resource capacity and network topology,
which are dif�cult to handle using traditional optimization
techniques. A heuristic approach such as the previously stated
Monte-Carlo search tree could be utilized. The heuristic tech-
niques are the most commonly utilized algorithm in of�oading
optimization, as shown in Table IV. This heuristic, however,
may get stuck in local minima/optima. Another method for
obtaining optimal of�oading decisions, is simplifying the
problem, for example, determining how much traf�c to be
of�oaded or where to of�oad (one dimension), and creating
a convex problem. Choosing where and how much to of�oad
introduces a large continuous action space that is challenging
to solve with classical optimization.

A summary of the above-discussed literature is given in
Table IV. The organization of the comparison table is as
follows. We discussed different core of�oading methods used
in the papers, including device-to-device (D2D) and device
to other entities. Four standard metrics, i.e., cost, energy,
capacity, and latency, are considered that are commonly used
in most literature. Although, there are other factors such as
QoS, load balance, intensive, etc., that are not presented in the
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TABLE V: Comparisons of Machine Learning Algorithms for Of�oading in Federations

ML Approaches Paper Online
learning Supervisor Learning

object
Model dependence Learning direction

Performance Adaptability
Model based Model free Value based Policy based

Supervised ML [100], [102],
[103] Yes Dataset ³ ³ Depend on data and

learning algorithm No

DL [108], [112],
[116], [117]

MAB [121]

³ No Environment ³

³
Depend on the
experience

Through
exploration

(RL)Q-Learning [107], [111]

(DRL)DQN [104], [110],
[114], [118],
[133]

(DRL)E2D [105]
³

(DRL)DDPG [101], [103],
[106], [109],
[115], [120]

table, but are already addressed in descriptions. Each paper has
a different approach such as exact, analysis, scheme, policy,
heuristic, and evaluation method presented in the table.

B. Machine Learning

In federation architecture, an of�oading module which
distributes tasks from one entity to other entities or tiers, is
part of the control plane. The decision of task of�oading in
an extensive federated system must be carried out quickly,
usually in seconds. Traditional optimization, such as a non-
convex algorithm, carries out an exhaustive search that takes
a long time to converge, and violates the delay require-
ments of tasks [123]. Furthermore, a traditional optimization
algorithm needs complete system information to determine
of�oading, which some federations may not provide. Intensive
system monitoring, that provides complete information for
determining of�oading action in a federation, is not trivial
because each provider uses different devices, protocols, and
operating systems. Some applications provided by federation,
may also have different requirements [100], [101], [103],
[109]. Machine learning is a suitable approach to address such
of�oading problems in a highly dynamic system with some
unknown information.

Machine learning-based (ML) of�oading can automatically
improve its actions by learning from the collected data
(dataset), or interacting with the environment. Some ML
approaches are compared in Table V. Supervised ML and Deep
Learning (DL) update their model's weight in order to execute
the best of�oading decision by learning from previous data,
which is categorized as of�ine learning. A well-labelled data-
set has �rst to be constructed before being provided to the
ML algorithms. Gathering comprehensive data and labelling
the data in such a dynamic network system are costly. Even
more, some providers may restrict the details of their data-
sets because of security. Another way to train an of�oading
model is through online interaction between a learning agent
and the environment, which is termed Reinforcement Learning
(RL). The learning agent observes an environment's conditions
to determine an of�oading action. An environment will then
give positive and negative feedback on the taken action, termed
reward and punishment. In essence, an agent memorizes this
interaction in the form of a table to decide the best action

to take in the future. In a large system, such as a federation,
maintaining agent interactions in a table leads to a scalability
problem. Deep Reinforcement Learning exchanges the table
with a neural network which can predict the reward of an
action for given environment's state. RL basically use a
random action at the beginning of the iteration. Even it can
produce the of�oading decision quickly, but relying on the
random action in the beginning induces long convergence
times.

These concepts are classi�ed into 11 types in Table VI,
depending on their of�oading direction and destination in the
federated fog, edge, and cloud.

1) Device-Edge-Cloud Of�oading.Junior et al. [100] con-
sidered cloud capacity to provide an external computation
capacity to UE applications, such as image editors, face
detection, and online games. They proposed a device appli-
cation architecture that consists of middle-ware, a pro�ler,
and a decision engine to determine of�oading policy. The
decision engine employs multiple classi�ers to decide the
of�oading action for each incoming task, with the objectives of
minimizing latency and energy ef�ciency. This classi�cation
relies on the characteristics of applications and the system
conditions. When the number of applications increases and
the system conditions change dynamically, creating labels for
this classi�cation will be expensive.

There are some studies [101]–[112] that dealt with the
device to edge of�oading. Other than of�oading policy, Saguil
and Azim [101] also considered caching strategy to locate
the application codes and data. Q-learning and DQN-based
algorithms solved this joint optimization problem. Li et al.
[102] considered task deadline time in determining task of-
�oading policy. They proposed an E2D DRL to derive the
best of�oading policy and solve the scalability problem of
DQN action space. Wang et al. [103] optimized a UAV
trajectory and of�oading decision, which included discrete
and continuous variables, by using multi-agent reinforcement
learning. The previously mentioned DQN approach is only
applicable to discrete action space problems. DDPG technique
was chosen because it solved the overestimation problem of
RL and worked in high-dimensional action spaces (continuous
action space). Fig. 8 shows the DDPG algorithm overview.
This is implemented on an agent that determines the optimal
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TABLE VI: Analysis of Recent Research on Of�oading in the Federated Systems with Machine Learning

References Of�oading Types
Metrics

Method Agent Evaluation Application

C
ost

E
nergy

C
apacity

Latency

[100] D ) C ³ ³ ML supervised 1 Experimental Multimedia apps.

[101]

D ) E

³ ³ (DRL)DQN 1 Simulation Real-time video analytic

[102] ³ ³ (DRL)E2D 1 Simulation Video, smart home, and AI apps

[103] ³ ³ (MADRL)DDPG n Simulation UAV based application

[104] ³ ³ (MARL)Q-Learning n Simulation Generic user applications

[105] ³ ³ (DRL)DQN 1 Simulation Generic user application

[106] ³ (DRL)DQN 1 Simulation Generic user applications

[107] ³ ³ ³ (DRL)DDPG+ TADPG n Simulation Generic user applications

[108] ³ ML supervised 1 Simulation Resource-hungry IoT apps.

[109] ³ ³ (MADRL)DDPG n Simulation IIoT

[110] ³ ³ DL 1 Simulation Generic user applications

[111] ³ ³ (DRL)DQN & DDPG 1 Simulation Generic user applications

[112] ³ (DRL)DDPG+ Optimization 1 Simulation Generic user applications

[113]
D 2D , D ) E

³ (DRL)DDPG 1 Simulation Resource-hungry applications

[133] ³ ³ (DRL)DQN 1 Simulation Generic user applications

[114]
D ) E , E ) C

³ DL 1 Simulation IIoT

[115] ³ (MARL)DDPG n Simulation IoT applications

[116] C + E , C + D ³ (MARL)Q-Learning n Simulation Generic user applications

[117]
D ) F

³ ³ ML supervised 1 Experimental IoT with ML jobs

[118] ³ ³ (DRL)DQN 1 Simulation Generic user applications

[119] D ) F , F ) C ³ ³ (MADRL) DQN n Simulation IIoT applications

[120] D ) F , F � F , F ) C ³ DL-unsupervised 1 Simulation Mobile applications

[121]

V ) E

³ DL + Pareto optimization 1 Simulation V2X applications

[122] ³ ³ (DRL) DQN 1 Simulation V2X applications

[123] ³ ML, MAB 1 Emulation V2X applications

[124] V � V , V ) E ³ MAB 1 Simulation IoT application

[125]
V ) E , E ) C

³ (DRL) DQN 1 Simulation Generic user applications

[126] ³ ³ (MARL)DDPG+LSTM n Simulation Payment application

of�oading decision based on federated system data, such as
channel status, arrival traf�c information, computation, and
networking capacity. DDPG makes use of Actor and Critic
neural networks. Actor networks predict the optimal action
for a given state, whereas Critic networks predict the value of
state-action pairs. The Q-value provides the discounted total
future reward for the current state-action pair. By satisfying
Bellman's equation, the critic network learns this value.

Joint of�oading and resources allocation optimization was
carried out by Yang et al. [104], who applied single and
multi-agent reinforcement learning to optimize caching and
of�oading decisions, and LSTM to predict task popularity in
pre-processing. Ale et al. [105] addressed the computation
of�oading problem of a multi-server MEC system by using
DRL. Reformatting the features and storing in a tree-like data
structure were carried out to accelerate the DRL's convergence
time.

DRL was used in [106] to group NOMA's UEs to minimize
of�oading energy, by minimizing multiple access interference.

Chen et al. [107] extended DDPG with a temporal feature
extraction network (TFEN), and a rank-based Prioritized Expe-
rience Replay (rPER) to achieve training stability, and reduce
the convergence time. Guo et al. [108] used a binary-tree-
based supervised ML to construct an intelligent of�oading
task with high accuracy and low complexity. Multichannel
access problems arise in multi-user of�oading when some
mobile users utilize the same channel, which then results
in longer transmission latency due to interference. Cao et
al. [109] used multi-agent reinforcement learning to derive
the best of�oading policy. The user device plays the role
of an agent that observes channels condition to determine
the of�oading policy. Yang et al. [110] combined of�ine
learning based on a feed-forward neural network and online
inference to derive an of�oading strategy in near real-time.
Zhang et al. [133] enhanced the DQN algorithm with a
heuristic of�oading technique, in order to reduce both latency
and energy consumption. The objective of using a heuristic
algorithm was to minimize convergence time. DQN and DDPG
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were compared in optimizing of�oading decisions by [111].
DDPG outperforms DQN in terms of convergence time and
performance in minimizing system latency. Li et al. [112]
integrated a Lyapunov optimization with DDPG to achieve
a long-term objective in online of�oading.

Other than vertical of�oading from UE devices to edge,
He et al. [113] also considered horizontal of�oading between
UE devices. They applied QoE in determining of�oading
policy, and de�ned task priority assignment, redundant task
elimination, and de�ned task scheduling to achieve optimum
QoE. Since the of�oading decision involved continuous action
space, the DDPG-based method of DRL was used.

The edge and cloud federation was considered in [114]–
[116]. Sun et al. [114] proposed a machine learning model
that cooperatively trained the two-tier edge-cloud architecture.
The Industrial Internet of Things (IIoT) devices were used to
determine whether to of�oad their tasks to an edge or cloud,
depending on which would satisfy the tasks in terms of latency.
This is categorized as upward vertical of�oading. If both edge
and cloud could not meet the latency requirements, the IIoT
device processed the task locally. Hou et al. [115] applied
Cybertwin to coordinate resources between end-edge-cloud.
Cybertwin functions as an intelligent agent that makes the
of�oading decisions necessary to accomplish the objectives of
maximizing processing ef�ciency and task completion rate.
They classi�ed IoT applications into either delay-sensitive
or delay-tolerant. To maximize processing ef�ciency, a joint
optimization of hierarchical task of�oading and resource allo-
cation based on MADDPG was proposed. The of�oading agent
was trained in a federated fashion. These approaches share
only a trained model during the training process, avoiding the
sharing of local data, which could jeopardize privacy. Zhang et
al. [116] discussed downward vertical of�oading, which was
carried out by multi-cloud systems to edge servers or mobile
devices. Multiple clouds compete with each other to access
network and MEC resources. A distributed of�oading problem
arises in a system with no centralized control, such as a multi-
cloud system. They also proposed multi-agent Q-learning to
determine the optimum of�oading policy, which minimizes the
system latency.

2) Device-Fog-Cloud Of�oading.Devices-to-fog of�oading
was discussed in [117]–[119]. Saguil and Azim [117] con-
sidered worst-case execution time in determining of�oading
policy to fog nodes. Their objective was to minimize the
execution time of time-consuming ML tasks generated by
an embedded system. Li et al. [118] considered time-varying
task characteristics and fog node capability in determining the
of�oading policy of a DQN-based algorithm. Alelaiwi et al.
[120] also considered a fog and cloud federation, particularly
horizontal of�oading between fogs. DL was used to predict
the response times at multi-tier fog, edge, and cloud, which
were task-of�oading destinations. They applied Deep Belief
Network (DBN) and logistic regression layer, which accepted
processing, memory and link capacity as inputs. Ren et al.
[119] used MADRL-based DQN to determine the best fog
access point (F-AP) to serve as an IIoT node request. Because
of the capacity constraints of the F-AP, some IIoT device
requests have to be of�oaded to the cloud, a decision made

Fig. 8: DRL-based of�oading in the fog-edge-cloud federation

using a low-complexity greedy algorithm.
3) V2X Of�oading. A federation which included a V2X

system were considered in [121]–[126]. The papers [121]–
[123] optimized vertical of�oading from vehicles to edge
servers. Online and of�ine learning were used by Fan et
al. [121], to maximize user and access network throughput.
Pareto optimization mapped the vehicles and access points,
and the optimal results were used to construct a data set for
DNN model training. An online stage used the output of the
trained DNN model, to predict the optimal association between
vehicles and access points.

Ning et al. [122] optimized of�oading decisions and re-
source allocations jointly in a vehicular edge system, with
the objective of maximizing QoE. DQN-based of�oading task
scheduling, which also considers user mobility, was proposed.
Sonmez et al. [123] proposed an ML-based task orchestrator
for vehicular edge systems, including LAN, MAN, and WAN
networks. An ML-based task orchestrator guarantees a task
being served successfully (in time) and in the lowest service
time, and Xie et al. [124] considered not only vertical of�oad-
ing between vehicles and edge, but also considered horizontal
of�oading between vehicles. Vehicles, which have tasks to
of�oad, learned the environment with the multi-armed bandit
(MAB) method to determine of�oading policy, which resulted
in lower average latency than the Greedy algorithm.

The papers [125], [126] considered a fog and cloud federa-
tion to accommodate of�oading tasks from vehicles. Khayyat
et al. [125] used deep-Q learning, which has multiple DNN
that can work in parallel to obtain the optimal of�oading
decision. In their environment, �ve DNNs would outperform
a single DNN. Gao et al. [126] addressed the task dependency
of�oading problem by using multi-agent reinforcement learn-
ing. Their objective was minimizing energy and latency of the
of�oading task. LSTM was integrated into an RL to alleviate
an incomplete environment's state.

A summary of ML-based of�oading literature is shown in
Table VI. The comparisons are classi�ed based on the of�oad-
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TABLE VII: Imitation Learning: Traditional and Machine Learning Approaches

Paper Target network Objective ML-based Heuristic/optimization Reason of heuristic

[127] V ) E Minimize energy and latency DL Branch and bound Minimize convergence time

[128] V � V Minimize average age critical information DRL Heuristic searching Minimize convergence time

[129] V ) R Minimize latency ML Branch and bound Minimize training samples

[130] D ) E Minimize tasks execution time DL Ehaustive search Minimize of�oading cost

[131] D � D Minimize task completion time DL ACKTR Minimize convergence time

[132] D ) E Minimize task completion time A3C Heuristic Minimize convergence time

ing types in the federation. Like traditional optimization-based
of�oading, the commonly used metrics in the literature are
cost, energy, capacity, and latency. The ML-based of�oading
methods are supervised ML, DL, RL, and DRL. Each ML
algorithm has different characteristics discussed in Table V.

C. Imitation Learning: Online ML Imitating Of�ine Tradi-
tional Optimization.

Supervised and unsupervised machine learning-based of-
�oading rely on labeled, and unlabeled datasets, respectively.
Of�oading actions can be used as data labels in a federated
system of�oading. Given the system information, an expert or
conventional optimization algorithm can be used to determine
the optimal of�oading action (label), which leads to an ob-
jective such as minimizing latency experienced by the arrival
traf�c. In RL, the agent derives the label through interaction
with the environment. RL approaches initially rely on random
actions. This slows the RL's convergence to the optimal value.

Some of the researchers create labeled datasets by combin-
ing heuristic and conventional optimization, shown in Table
VII. This dataset is then used to train the ML/RL model
of�ine, before applying it to the real system. This method
is called imitation learning, in which the agent model imitates
an expert's execution of a task to rapidly converge on the
optimal solution. In addition to accelerating the convergence
time, imitation learning can be used to reduce the training
cost by creating an arti�cial dataset, labeled by conventional
optimization, and applying it to a live testbed.

VEC networks are distributed systems characterized by
expansive state and action spaces. Applying RL to optimize
the of�oading decisions in such large and dynamic systems,
results in a slow convergence time, due to RL's reliance on
random actions at the beginning. Wang et al. [127] utilized
imitation learning, which trains the DL network with the
dataset created using branch-and-bound, to achieve the optimal
result (of�ine), and then applies the model to the running
system (online). Through this mechanism, the online model
converges more quickly than the model without pre-training.
Imitation learning can be used to overcome the dif�culties
brought on by RL exploration, when deciding to of�oad
actions with vast input and action spaces. Nei at al. [128]
observed that the initial 1000 iterations of DRL performance
were poor. The DRL model was pre-trained using a heuristic
search-obtained dataset as an expert, in order to achieve good
performance at system startup.

Initially, Ning et al. [129] optimized of�oading and caching
decisions with the branch-and-bound (B&B) algorithm. Due
to the complexity of the B&B algorithm, they minimized the
B&B decision tree by labeling each node prune or preserve.
The nodes that do not lead to the optimal solution will
be pruned, while those that do, will be maintained. For a
number of iterations with various states, pruning behaviors
were recorded and used to train a binary classi�er (SVM).
This classi�er was utilized to optimize (prune or maintain)
the B&B branches to determine the optimal of�oading and
caching decisions.

Yu et al. in [130] solved of�oading optimization of�ine
using several traditional optimization problems such as ex-
haustive search, CPLEX, and optimal approximation algo-
rithms. The state and optimal of�oading action were recorded
and used to train a neural network (NN) that was set up
to perform multi-class classi�cation. As a result, the trained
model used in the online system had the lowest of�oading cost
and execution time, compared to other ML- and RL-based
of�oading approaches. The authors did not investigate the
effect of the dynamic environment on of�oading performance
in this study.

Wang et al. [131] optimized the decision for decentralized
of�oading for pervasive edge computing. In of�ine learning,
multiple agents use global system information to obtain opti-
mal of�oading decisions using natural gradient policies, such
as ACKTR. Experts train policy and value networks, which are
then used for online training. Because expert demonstrations
can only be collected in a few samples, GAIL was used to
model the expert's distribution of states and actions. GAIL
aims to obtain good policies through adversarial generated
training. Zeng et al. [132] considered the trustworthiness of
devices. Of�oaded traf�c to untrusted devices leads to task
failure. The designed of�oading scheme evaluated the trust
level of devices using a heuristic trust evaluation algorithm.
The agents then mimicked the heuristic to evaluate the trust
of the device, and for of�oading action, the agents with the
A3C algorithm mimicked the heuristic algorithm.

D. Traditional Optimization vs. Machine Learning

Three reasons why machine learning is required for of-
�oading federated MEC systems are summarized in Table
VIII. First, a control plane module must make an immediate
choice about of�oading. Traditional optimization, with its high
computational complexity and exhaustive searching, is not
capable of meeting a control plane's latency requirement.
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TABLE VIII: Traditional Optimization vs. Machine Learning for Of�oading in Federation.

References ML Approach Traditional Optimization Reason of using ML Conclusion

[110] DL Branch and bound

Computation complexity

ML-based of�oading has lower cost

[133] DRL Greedy and Heuristic ML-based of�oading has the lowest convergence time
with better latency and energy usage

[112] DRL Relaxation-based, and local-
search-based approaches

ML-based of�oading has the lowest convergence time
with near-optimum result in terms of computation rate

[121] DL Heuristic CTO

Unknown information in
dynamic Environtment

ML-based of�oading has higher throughput

[126] MAB Greedy ML-based of�oading has lower latency

[105] DRL Greedy ML-based of�oading has more completed task

[109] MADDPG Greedy ML-based has lower latency and has higher channel
access success rate

[122] DQN Greedy, Brute force ML-based of�oading has higher system utilities than
greedy and a little bit lower than Brute force

[123] ML, MAB Game theory optimization
Heterogenous environment

ML-based of�oading has fewer failed task

[113] Double DDPG Greedy ML-based of�oading has lower latency

Second, monitoring dynamic MEC environments is not trivial
and can introduce unknown information into the control plane
module, that is responsible for determining of�oading policy.
Third, modelling a heterogeneous MEC system precisely is
challenging. Some researchers carried out traditional optimiza-
tion in federated of�oading using a system snapshot.

There are some studies [110], [112], [115], [133] that
employed ML to achieve fast of�oading decisions in a complex
federated system. These of�oading decisions and resource
allocations were modelled as mixed-integer nonlinear pro-
gramming (MINLP), that would take a long time to solve
by conventional optimization. Yang et al. [110] used DL
approaches that solved the MINLP problem in near-real-
time. DL also outperforms a conventional branch-and-bound
algorithm, in terms of system costs. A mobile device in a
MEC system should take an online of�oading decision in a
complex and dynamic system which makes relaxation-based
and local-search-based approaches to rerun in every change
to the environment. These traditional optimization algorithms
carry out exhaustive searching, which is not suitable for online
decisions. Zhang et al. [133] extended a heuristic algorithm to
the DQN, resulting in a fast-convergence algorithm suitable
for real-time application of�oading, and Huang et al. [112]
proposed a Lyapunov-aided DRL framework to determine the
of�oading policy in near-real-time with a near-optimum result
compared to the exhaustive searching approaches.

Of�oading in dynamic federated systems with unknown in-
formation was considered by proposing ML-based approaches
in the papers [105], [109], [121], [122], [126]. Fan et al. [121]
extended an SDN-controller with DL to learn a dynamic V2X
system and carried out optimum of�oading. This approach
outperformed conventional traf�c of�oading (CTO), which
uses heuristic algorithms, in terms of network throughput.
Gao et al. [126] modelled of�oading problem of V2X systems
into Multi-Armed Bandit (MAB) and solved it by Probability-
Based V2X Communication (PBVC), and adaptive learning-
based task of�oading (ALTO). Ale et al. [105] proposed
DRL to address dynamic MEC systems for IoT. The current
optimization techniques only take a snapshot of a system and

cannot address the dynamic environment. In their previous
work, Ale et al. [134] predicted traf�c conditions and updated
the cache by using DL. However, DL needs a large, labeled
dataset to train models.

Channel conditions, available communication, and compu-
tation resources change dynamically over time. Such changes
may render some information unknown to the IIoT agents,
which determines the of�oading policy. Guo et al. [109]
used a multi-agent DDPG approach to tackle an of�oading
problem with some unknown or incomplete information. To
ensure that a conventional algorithm, such as Greedy, works
in this scenario, assumptions such as requiring agents to be
aware of the channel and resource conditions in real-time
were made. In terms of the success rate in utilizing available
channels, the results showed that MADDPG outperforms the
Greedy algorithm. Zhaolong et al. [122] addressed of�oading
and resource allocation problems by using a DRL approach.
The proposed DRL approach had higher system utilities than
a Greedy algorithm and a little lower than the Brute-force.
However, Brute-force carried out exhaustive searching, which
is not suitable for a control plane.

A heterogeneous federated system is dif�cult to model
precisely, which makes the traditional of�oading optimization
dif�cult to implement. The papers [113], [123] used ML
to carry out of�oading in such a heterogeneous system. In
Sonmez et al. [123], the ML-based approach outperformed
the Game-theory-based optimization in terms of the success
of tasks. Quality of experience (QoE)-aware task of�oading
in a Mobile Edge Network (MEN), which has heterogeneous
computation and communication resources, is dif�cult to
model for conventional optimization. He et al. [113], therefore,
proposed Double DDPG with which, its learning agents could
automatically update its model according to its experiences
in interacting with the environment. This proposed method
outperformed Greedy in terms of latency.

The references in Table VIII do not speci�cally compare the
traditional optimizations with the ML-based approaches. Most
of them used model-free reinforcement learning approaches,
such as DQN and DDPG, because these can directly adopt a
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model from the environment and do not need to provide the en-
vironment's model to the learning agent. The Greedy algorithm
is the preferred traditional algorithm because, with incomplete
information from the environment, Greedy can still converge,
although it may become stuck in local optima/minima. ML-
based approaches can converge faster than traditional opti-
mization with near-optimum results. Nonetheless, traditional
optimization, which applies an extensive procedure, can ensure
that the global optimum is found because it visits all feasible
solutions. In contrast, machine learning is dependent on the
data utilized in the training phase.

V. L ESSONSLEARNED

We categorize the lessons learned from this survey on the
approaches that were used in the survey, such as traditional
optimization and machine learning.

A. Traditional Optimization-Based Of�oading

Some understanding comes from the survey of papers on
traditional optimization-based of�oading which explore the
basic idea of carrying out of�oading in a cloud-edge-fog
system.

1) Traf�c of�oading is a short-term solution to the dynamic
arrival traf�c rate, while capacity allocation is a long-term
solution.Traf�c or task of�oading in a MEC system is a part
of control plane problems, for which a quick decision must
be taken in response to traf�c �uctuations. The control plane
determines the of�oading policy upon the arrival of traf�c or a
task, leading to an objective such as minimizing latency. The
control plane reacts to incoming traf�c within seconds. On
the other hand, the management plane forecasts future traf�c
or task arrival rates based on historical data. The system's
capacity is then scaled to accommodate the predicted of�oaded
traf�c. By integrating the control and management plane mod-
ules, it is possible to meet the arrival traf�c or task's latency
requirements while allocating the fewest possible resources.

2) There are two of�oading decisions to be made– where to
of�oad, and how much to of�oad.An of�oading decision could
be a binary decision, which is a decision to of�oad or not,
or a ratio-based of�oading decision, which determines how
much and where to of�oad tasks or traf�c. Binary of�oading
is usually carried out by UEs, as UEs lack complete knowledge
of external system resources. Each UE measures its capacity
to compute a task locally or to of�oad to external resources.
Ratio-based of�oading is carried out by network devices
controlled by an orchestrator, which has global information
to determine where and how much to of�oad. To reduce
computation latency, this of�oading is performed from an
overloaded federation entity to an idle federation entity. The
ratio-based of�oading is better suited for the network control
plane than per-packet/task of�oading, as the latter requires
large control plane computations due to millions of network
packets.

3) Hierarchical of�oading– application of�oading by UE
and traf�c/task of�oading by the federation network control
plane. UEs carry out of�oading to extend their computation
capacity and extend their battery life since UEs are equipped

with limited computation and battery capacity. UEs sense
environmental conditions such as signal strength, battery level,
and resource utilization (local information) to determine where
a task is to be executed. Network devices of�oad their task to
another network device with the least load to avoid overloading
and minimize latency. These network devices could be a router,
traf�c dispatchers, MEC servers, or fog servers with a data
plane function. Network device of�oading is determined by an
orchestrator which has access to global system information.

4) Infrastructure capacity expands UE capacity, while
non-infrastructure capacity extends UE connections.Traf-
�c or tasks can be of�oaded to infrastructure and/or non-
infrastructure. Infrastructure comprises all entities that belong
to providers or organizations, such as base stations, MEC
servers, fog nodes, and the cloud. Such infrastructure entities
are used to extend a mobile device and UEs' capacity. Some
areas may, however, not be covered by infrastructure entities.
UEs of�oad traf�c or tasks to another UE or mobile device
(non-infrastructure) in such an area, called an opportunistic
network. A UE or mobile device can share its computing
capacity as a server or share its communication capability as
a relay to infrastructure in an opportunistic network.

5) Horizontal of�oading boosts east-west traf�c while keep-
ing traf�c at the lower tier with low-latency services. Vertical
of�oading, on the other hand, minimizes capacity allocation
and simpli�es management by centralizing the upper tier.A
federation of cloud-edge-fog is a hierarchical system in which
the cloud is at the top, the edge is in the middle, and the
fog is at the bottom. Furthermore, each tier may include some
providers. This system has two of�oading directions, which
can be bottom-up (vertical) or east-west (horizontal).

Vertical of�oading occurs between the customer and
provider or between tiers within a provider, such as of�oading
in two-tier MEC architecture. In customer-provider (upward)
vertical of�oading, a customer will be charged for each
resource used, and minimizing costs will be of concern in
such cases. On the other hand, an upper-tier provider may
of�oad a service to a lower-tier provider in order to meet
the required latency (downward of�oading). The upper tier
provider pays an incentive to a lower tier provider for every
served task. The upper-tier provider minimizes of�oading costs
while maintaining the required latency.

Vertical of�oading can also be carried out within a provider
and is typically used to move tasks from a lower, more
dispersed, tier to a higher, more centralized, tier with larger
capacity. The upper tier provides greater coverage and shares
its capacity with a couple of bottom-tier sites, in order to
handle high arrival traf�c or task rates that would overwhelm
some bottom-tier sites.

Horizontal of�oading is carried out to distribute traf�c or
tasks to the same tier �rst, rather than of�oading them to
a higher tier. Keeping tasks on the bottom tier, such as fog
or edge, might help reduce communication latency due to
their proximity to the UE or MD. While horizontal of�oading
keeps traf�c on the bottom tier, the decision to of�oad must
be made on the neighboring side, otherwise, the traf�c will
encounter prolonged communication latency, and a trade-off
between minimizing computing and communication latency

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3239579

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 31,2023 at 06:58:38 UTC from IEEE Xplore.  Restrictions apply. 



20

takes place.
6) Service chaining of�oading is unavoidable, given that

modern services are composed of multiple microservices.In
task of�oading, a task can be a single task or consists of
several sub-tasks. Full of�oading is carried out for a single task
which can be processed at the local device (UE) or remotely
(cloud, edge, or fog). While in partial of�oading, some sub-
tasks can be processed locally, and others are of�oaded to
a remote server. Sub-task synchronization may be needed if
some sub-tasks depend on other sub-task outputs.

7) Different providers have different of�oading objectives,
such as minimizing cost or latency, and they might compete
with each other.Optimizing of�oading decisions in a federated
system with some providers is challenging because each
provider has its own objective. A collaborative of�oading
approach by adopting game theory and analyzing Nash equi-
librium is carried out. In the Nash equilibrium, the of�oading
strategy of each provider is optimal when taking another
providers' decisions into account. Each provider ends up
winning since everyone gets the result they expect.

B. Machine Learning-Based Of�oading

Some insights were gained from a survey of ML-based
of�oading in a cloud-edge-fog federation. An of�oading de-
cision in a cloud-edge-fog federation is made by the control
plane and applied in the data plane of the networking de-
vices. This control plane decision must be carried out quickly
(fast response time). Making a quick decision in a federated
system with high complexity is very challenging. Traditional
optimization, which uses exhaustive searching, may violate the
latency requirements of a control plane decision. ML-based
of�oading is a promising method that automatically maps a
given system settings to arrive at the best of�oading decision.

1) Of�ine and online learning of ML-based of�oading
optimization approaches.Unsupervised-based ML is used to
predict future system conditions by using earlier/older data.
The label of the data is not essential in unsupervised learning.
The predicted results are used by the control plane to make the
best of�oading decisions. Unlike unsupervised learning, super-
vised learning trains the model directly, based on collected data
that an expert has labelled. The label is an of�oading decision
that leads to an objective such as minimizing delay or costs
for a given current system condition.

While supervised learning can derive an optimal solution,
deriving a well-labelled dataset is not easy; extensive mon-
itoring is required. Some monitoring mechanisms that carry
out costly broadcast data are required to obtain information in
distributed edge-fog systems. A label of data must be updated
frequently in a dynamic system because an of�oading decision
must be carried out quickly.

Both unsupervised and supervised learning are categorized
as of�ine learning because they learn from previous data, and
not directly from the environment. Reinforcement learning is
one of the ML-based approaches which learns directly from
the environment, to determine the best action. In a cloud-
edge-fog federation, an of�oading decision is produced by
a learning agent. In the beginning, the agent will perform

poorly; it will remember previous successful actions taken in
a given environment state condition and forget failure action.
With such trial-and-error attempts, the agent will improve after
several attempts.

2) Machine learning approaches are a panacea for opti-
mizing of�oading decisions with some missing information.
Some providers in a federation may hide some information
from others. However, traditional optimization requires all
information to calculate optimal of�oading. Some researchers
made assumptions about such hidden information because the
calculation could otherwise not have been carried out. By
contrast, ML-based of�oading will map any given input that
may also be incomplete to determine the best of�oading deci-
sion. This learning process can be carried out with incomplete
information. However, in order to converge, ML relies on
datasets obtained from the environment. Experts are needed to
label the data so that it can converge on an optimal solution.
The RL algorithm begins with trial and error and has a slow
convergence time.

3) Retraining is more ef�cient than recalculation for control
plane problems, such as of�oading optimization.In terms of
the cost to obtain an optimal decision, traditional optimization
recalculates the decision for each new given input before de-
riving a new of�oading decision. The ML-based solution will
retrain the model to obtain an optimal decision. Without the
retraining process, the model could still come up with a sub-
optimal result. ML-based approaches can thus decide quickly,
without waiting for the training process to be completed; and
ML models can also be reused and transferred.

4) Federated systems are a type of multi-agent environment.
A learning agent, a control plane module, can be a single agent
placed in a central location or a multi-agent distributed over
some areas. A single agent determines the of�oading decisions
for all devices in a federation. An agent's model is trained by
a centralized dataset. The size of the federation system will
affect the dataset's dimensions and raise a scalability problem
because of the very large dimensions of the observations and
decisions. Single-agent learning is unrealistic because a feder-
ation consists of many providers who have different of�oading
policies. Multi-agent learning is suitable in a federated system
for two reasons. The �rst reason is scalability. A provider
may have agents in some areas which produce of�oading
decisions based on local observations. Having multi-agents,
which calculate of�oading decisions in parallel, can reduce
convergence times. The second reason is the federation itself
because the federation is a kind of multi-agent environment
where each agent belongs to each provider.

5) Federated learning sharing model weights is a promising
approach to obtain global optimum of�oading decisions with
low communication cost.A cloud-edge-fog federation may
consist of millions of devices scattered over a large area.
A learning agent that produces of�oading decisions can be
trained by a centralized dataset with global information, or
trained by a local dataset consisting of local information; being
trained by local dataset results in a local optimum of�oading
decision. Although, using a centralized dataset with global
information results in a globally optimum of�oading decision,
but generates extensive communication costs.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3239579

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 31,2023 at 06:58:38 UTC from IEEE Xplore.  Restrictions apply. 



21

C. Imitation Learning: Online ML Imitating Of�ine Tradi-
tional Optimization

1) Traditional optimization as an expert on the ML model.
A well-labeled dataset is required for machine learning to
reach the best decision. Given environmental information, a
human expert could not directly create the label for of�oading
actions. To properly label the data, they require formulas or
experiments. By using simulations and prede�ned scenarios,
traditional optimization could be utilized to determine the
optimal of�oading decision (label). The collected data from
this simulation could then be used to train the ML model prior
to its application to the live system. Using this method, the ML
model mimics the performance of conventional optimization.
Even though the traditional optimization, during the creation
of datasets, could not account for every possible scenario, RL
algorithms can retrain the model using direct feedback and
interaction data from the environment. In contrast, supervised
learning requires additional of�ine training to cover new
scenarios.

2)Traditional optimization accelerates machine learning
convergence, and vice versa.ML has a faster decision time
than traditional optimization because, unlike traditional opti-
mization, it does not wait for convergence before deciding on
an action. The convergence of these RL algorithms, which rely
on random action and direct environment feedback, requires
numerous iterations. Using conventional optimization to gener-
ate a preliminary dataset for training a machine learning (ML)
model, could accelerate the ML model's convergence, as the
of�oading action obtained by conventional optimization could
serve as initial labels for the optimal solution.

3) Of�ine learning could minimize the training cost of
online learning. Applying an untrained model to a real-
world system will require numerous iterations to arrive at
the optimal solution. Users of the system will experience
signi�cant performance degradation. Model transferability is
one of the bene�ts of of�oading based on machine learning.
Before applying to the existing system, the model could be
trained of�ine with various potential scenarios. Consequently,
when the model is applied to the system, users may still
experience optimal or suboptimal of�oading decisions.

D. Traditional vs. Machine Learning Based Of�oading

1) While traditional optimization determines the optimum
of�oading action based on a snapshot of the system, machine
learning-based of�oading would make use of continuous
system information.Because a system snapshot may not
accurately represent future system behavior, of�oading
becomes obsolete in traditional optimization. ML-based
techniques, particularly RL-based of�oading, can be trained
on batches of collected data without waiting for complete or
a large amount of collected data from the environment.

2) Traditional optimization techniques are suitable for
management plane problems, while machine learning-based
approaches are best suited for control plane problems.
A management plane, which is in control of resource
allocation in a federated system, makes decisions in minutes

or hours, and so generates long-term solutions for hot-spot
traf�c. A management plane problem is well-suited to
traditional optimization, which has a long decision time.
While the short-term solution to hot-spot traf�c is of�oading,
which is part of the control plane problem. Of�oading
using machine learning has a short decision time, since it
produces a sub-optimal solution after only a few training
processes, making it appropriate for the control plane problem.

3) Transitioning from traditional optimization to machine
learning-based approaches can minimize the assumptions of
unknown information in modeling federated systems.Channel,
network, and server settings are dif�cult for a learning agent
to obtain completely. Certain pieces of information, such as
the relationship between tasks and the processing capacity
required to do those tasks, may be unknown to the learning
agent. To deal with unknown information in traditional op-
timization, some researchers make assumptions such as the
computing and networking capacity is homogeneous and able
to collect system information completely. Because machine
learning-based techniques can map any input to a desired
output, they can be utilized to minimize the assumptions of
unknown information.

VI. RESEARCHOPPORTUNITIES ANDCHALLENGES

A. Research Opportunities

1) Fog-Fog Federation.The development of fog computing,
creates several bene�ts for application developers, applica-
tions, and different industries by distributing functions [135].
A fog-fog federation helps to monitor, process, analyze, react,
and distribute computation, communication, storage, control,
and decision-making closer to the users. However, such a
federation also results in challenges for individual fogs. When
fogs are closer to each other than to edge or cloud, the
federation between fogs allows them to enhance their data
aggregation, processing, and storage capabilities, and requires
cooperation between these fogs to ensure the proper coordi-
nation for the necessary interactions. However, because the
fog is a collection of mobile devices, it poses a signi�cant
dif�culty regarding resource management, capacity discovery,
authentication, etc.

2) V2X.In the past few years, Internet usage has continued
to increase with the development of advanced technologies.
The gradual increase of smart vehicle applications has pro-
duced computation-intensive tasks for vehicles, and thus, the
internet of vehicles (IoV) improves traf�c conditions [136].
However, these vehicles are independently unable to meet
the demands of their limited computing resources. Vehicle-to-
everything (V2X) communication is an emerging technology,
that supports vehicles to of�oad their tasks across vehicles
[137]. With vehicle-to-infrastructure communication (V2I), a
vehicle can of�oad to infrastructures such as RSU, edge, or
cloud, and with vehicle-to-vehicle communication (V2V), one
vehicle can of�oad its tasks to other vehicles. As an alternative,
this technology also facilitates multiple vehicles forming a fog
by sharing their resources, popularly known as a vehicular-
fog, to provide services to others. Furthermore, the dynamic
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cluster establishment must be considered in of�oading traf�c
to a disbanded cluster that will result in packet loss.

3) Mobility of a Vehicular-Fog.Intelligent transport systems
(ITS) [138] exchange information for safe V2V and V2I
communication. In a V2V environment, vehicles communicate
directly with each other, and with services that support safe
driving and provide information. However, in a dynamic
environment, some applications of the moving nodes require
high computing power, and the computational resources of
each vehicle may not be able to meet such a requirement. We
address this issue of V2I communication, by using MECs or
RSUs that are closer to the vehicles. However, in a certain dy-
namic environment, vehicles can move out of communication
range during task of�oading. In such a case, either the task
cannot be of�oaded to the infrastructure, or, if of�oaded, the
vehicle cannot receive the results. In an environment where
vehicles are on the move, the rate of movement of vehicles is
usually fast, and the change of the topology is intense, and
it is here, where the V2V task of�oading is a matter that
needs to be investigated. Recent vehicular-fog research has
focused mostly on the static vehicle scenario [63], whereas
in a vehicular-fog set-up, vehicles are mostly managed by a
fog manager like RSUs, which is part of the infrastructure.
In a dynamic vehicular-fog with mobility, management of the
federation is a matter of concern.

4) Scaling.Auto-scaling [139] can be classi�ed into differ-
ent categories. First, manual scaling, where we specify only
the maximum, minimum, or desired capacity changes to auto-
scaling groups, and auto-scaling maintains the instances with
updated capacity. Second, scaling is based on a schedule,
where one can scale an application ahead of known load
changes. For example, on some particular day, in peak loads
or on a limited offer, one can scale an application based on
scheduled scaling in such cases. Third, for scaling based on
demand or dynamic or reactive scaling, resources are adjusted
in real-time based on the number of incoming requests.
Finally, predictive scaling predicts future arrival traf�c rates
by learning past arrival traf�c information, and the learning
outcomes are then used to make scaling decisions. In a
federated system, service providers can scale resources up or
down by adopting different scaling methods. It is also essential
for a service provider to make decisions based on different
performance metrics, whether to scale up its resources to
accommodate more incoming requests or of�oad the request to
others. So, it remains challenging to decide when the resources
need to be scaled up to avoid of�oading and when to be
encouraged to of�oad to avoid scaling [140]. Scaling in a
container/virtual machine-based system could be �ne-grained,
such as increasing the capacity of the VM (vertical scaling) or
adding more containers/VM to the available servers (horizontal
scaling). The of�oading controller must account for the time
required for scaling to avoid packet loss due to incomplete
computing resources scaling.

5) Centralized vs. Distributed Federation.Various factors
affect a federation, such as the services available from service
providers, the type of services, their capacity and capabilities,
their geographical location, number of customers, type of
customers, etc. A federation between the service provider

can be centralized or distributed. A centralized federation
has a single federation manager between multiple federated
entities, and that manager manages the federation. In such
cases, there is a joint federation agreement between all the
entities, based on which of�oading decisions will be taken
[141]. In a distributed scenario, a federation is formed between
two individual entities or a group of entities of a system.
In such cases, a separate agreement is made based on what
communications take place. Following the establishment of the
agreement, decisions on service discovery, authentication, and
service migration can be made centrally or distributively.

6) Resource Allocation.When the number of resources in a
system is large, some may remain underutilized. If the number
of resources is small, of�oading may be triggered too often.
Hence, one of the key challenges of of�oading is to determine
the right amount of resources required at the location where the
tasks will be executed, otherwise, after of�oading, if there is
any shortage of resources, tasks will be of�oaded further away
[142]. This may increase the communication latency, and an
increase in the number of of�oading hops may also trigger
a breach of data privacy [143]. Again, most applications and
services in the system that require intensive computation and
high processing are incompatible with devices because of their
limited resources.

7) Energy Consumption.Although task of�oading is largely
inevitable in a federated system, it is still a highly energy-
consuming process. One of the challenges is to estimate the
energy consumed in communication activities of task of�oad-
ing to make task of�oading ef�cient [144]. As a result, it is
sometimes a challenge whether to of�oad or not. An ef�cient
energy estimation model would help to decide whether to
perform task of�oading, based on the energy cost of the
communication activities.

8) Task Of�oading in Different Application Scenarios.Task
of�oading can take place at different locations of different
federated systems, depending on the type of service required,
and based on different criteria. This section is an overview
of different application scenarios where task of�oading has
recently played a key role. In ITS, automatic traf�c monitoring
and management systems [145], edges, and RSUs can assist
drivers by providing traf�c updates, emergency alerts, etc. In
fog-to-fog of�oading scenarios, one vehicle can assist another
by caching data if required [136]. Emergency help alert mobile
cloud (E-HAMC) can provide a quick way of notifying the
relevant emergency authorities by utilizing the services of
fog for of�oading and pre-processing purposes [146]. When
an alert message is sent, these services can automatically
transmit the location of an incident and the emergency contact
information.

New of�oading schemes can improve privacy levels, reduce
computation latency, and save the energy of healthcare IoT
devices [147]. Exploiting fog and cloud computing paradigms
in health monitoring reduces the hospital's capital expenditures
for patient data processing and storage. The fog can be used
for simple data analytics, whereas the cloud is used for big
data analytics [148]. Edge Computing also offers intriguing
possibilities for smart agriculture [150]. For example, sus-
tainable water management is a common issue at the farm
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level. By of�oading sensible data from the sensor devices
to the edge server, appropriate action can be taken. Edge
and fog computing enables intelligent surveillance with real-
time video stream processing. Processing large amounts of
data to the cloud will result in long communication latency,
consume massive network resources, and jeopardize video
privacy [149].

B. Research Challenges

1) Interoperability.Interoperability is closely related to both
standards and lock-in [151]. Internet service providers use
multiple networks so that the failure of a single provider will
not disrupt communications entirely. Here we will focus on
interoperability between cloud, edge, and fog providers. In a
federated system, an application's execution can be carried out
with its components spread over different service providers.
From an architectural perspective, appropriate signaling, data,
and control interfaces are needed to ensure interoperabil-
ity at the architectural level, or more precisely, to support
an application's life-cycle, the control interfaces are needed
for interactions between the different domains. A provider
should design control interfaces to allow other providers to
federate and utilize their resources safely, without exposing
the architecture's details. Furthermore, a federation interface
standard could be developed to support federation and make
task of�oading between providers easier and safer.

2) Service Level Agreement.Every user wants assurances
that their service provider will remain reliable because service
interruptions can cause signi�cant �nancial harm. Service
Level Agreements (SLAs) [152] are contractual agreements for
certain levels of reliability, which would then be compensated
in various ways, if there was any breach of the contract. The
same kind of agreement is applicable between the service
providers who federate with each other to provide services
to their respective subscribers. There must be a contract, a
federation agreement, to provide a certain level of reliability.
Such provisions may include monetary compensation, if the
level of service offered is below the contractually speci�ed
level.

3) Redundancy.Redundancy is crucial in numerous sce-
narios to ensure the system's high availability. Obviously,
redundancy is more critical at the cloud level as compared to
edge and fog, as a cloud has multiple data centers, redundant
networking, backup power, data backup plans, and other
redundancy resources.

4) Fault Tolerance.In a federated system, of�oading grad-
ually becomes automated, and where heterogeneous entities
are involved, the risks of failure increases. Some common
examples are connectivity failure, use of faulty devices, com-
munication delays, etc. Of�oading processes must be robust,
and capable of not only detecting, but also handling faults
on time. The accuracy and timeliness of the fault detection
algorithm to detect the faults are thus of signi�cant importance.

5) Security.In a federated architecture, multiple systems
communicate with each other, and when of�oading occurs,
there is a risk of data theft and misuse. The misuse of data
can be a serious threat to security systems such as of the

military, healthcare, etc. It may also compromise the privacy of
individuals. Hence, ef�cient and robust data security measures
would be required so that of�oading decisions are precise,
because security breaches are something that may not be
publicly disclosed by service providers, unless compelled to
do so by particular regulations [153].

Cloud, edge, and fog can be federated in several different
ways in which a subscriber can move from using the services
of one (cloud, edge, or fog) to using the services of another.
There is a need for authentication when a subscriber moves
between two entities that are federated, directly or indirectly
via some hops in between. This leads to 3rd-party [154] and
4th-party authentication.

6) Geo-Diversity.The location and geographical diversity
of a service provider might be of concern to some users.
Compared to centralized cloud systems, widely spread geo-
graphical distribution of fogs and edges can be considered
as one of the key enablers of the Internet of Things (IoT),
and big data applications [155]. These offer low latency and
location awareness due to the proximity of the computing
devices. Controlling a distributed area's forwarding devices
with a centralized network control plane causes control traf�c
to travel a long distance, and has scalability and high avail-
ability issues. The use of multiple network control planes in
edge computing should be investigated to reduce latency and
achieve high availability.

7) Reliability. The reliability track record of a service
provider is just as crucial as contractual guarantees. Big cloud
providers are likely to have signi�cantly better reliability than
relatively small, self-maintained IT infrastructures, as they
have massive computing capabilities. Edge and fog computing
systems are closer to a user and improve user experience by
providing low latency and highly ef�cient computing. When
computationally intensive components are of�oaded to edge
servers or distributed to fog nodes, various constraints such
as power limitations, limited computing resources, inevitable
server failure, etc. come into play. In such a scenario, how is
the reliability of of�oaded computing [156] to be guaranteed?
How then does one �nd an appropriate of�oading point that
can guarantee completing a task at a low cost, with minimal
energy consumption for communication? What is achievable
minimal latency for the completion of the task?

8) Performance.In federated systems, many customers
may share common physical computer hardware and network
infrastructure. However, sharing can also cause performance
problems. As providers use statistical multiplexing, excessive
levels of over-subscription may degrade services. Poor re-
source scheduling and poor management could also degrade
performance, even if there is no over-subscription. If any
service provider in a federated system misrepresents their
available capacity or capability, it may cause performance
degradation. A real-time benchmarking service for federated
edge resources is required in this case.

VII. C ONCLUSION

Network communication relies on the coexistence of a
variety of architectures of different services. The coexistence
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of such distinct architectures and complementary technologies
opens up new issues in resource, latency and storage limitation,
type of services, etc., which can emerge with federation
architectures and cannot be addressed individually.

We have discussed various federation architectures for
cloud, edge, and fog systems. These each have their own tier
within a federation, as top, middle, and bottom tiers. Such a
federation can be classi�ed as vertical, horizontal, or hybrid.
Horizontal federation is between providers of the same tier,
vertical federation is a federation at different levels that can
result in a 2-tier or 3-tier architecture, and a hybrid federation
is a term used to describe the combination of vertical and
horizontal federations.

We also give an overview of the various of�oading tech-
niques in such cloud-edge-fog federated systems and classify
them according to the federation relationship and direction
of of�oading, i.e. horizontal of�oading occurs in a horizontal
federation, and so on. Most of the works we have considered
have focused exclusively on vertical of�oading within a fed-
eration. Horizontal of�oading should also be considered, as
there are multiple providers within the same federation tier
that can provide resources.

We also reviewed the literature on various recently pro-
posed of�oading approaches, categorizing them as traditional
optimization and machine learning-based approaches. In a
federated system, the high dimension and dynamic input
with unknown input parameters complicate the calculation of
of�oading decisions. Of�oading decisions in the control plane
module must be made quickly. The traditional optimization
approach, which relies on exhaustive searching, may violate a
control plane's latency requirements. Machine learning-based
approaches that map any input parameters (even with unknown
ones) to a desired output, have emerged as a solution to the
limitations of traditional optimization. The machine learning
model can also be used to generate immediate of�oading
decisions without waiting for all training processes to be
�nalized, which would result in an optimal solution. Because
reinforcement learning approaches can derive an of�oading de-
cision directly from the environment without requiring a well-
labelled data set, they become the most preferred approach.
Finally, we discussed some future research directions for
such of�oading scenarios and highlighted some key challenges
associated with task of�oading.
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