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Abstract—The huge amount of data generated by the Internet
of things (loT) devices needs the computational power and
storage capacity provided by cloud, edge, and fog computing
paradigms. Each of these computing paradigms has its own
pros and cons. Cloud computing provides enhanced data storage
and computing power but causes high communication latency.
Edge and fog computing provide similar services with lower
latency but limited capacity, capability, and coverage. A single
computing paradigm cannot fulfill all the requirements of loT
devices and a federation between them is needed to extend their
capacity, capability, and services. This federation is beneficial
to both subscribers and providers and also reveals research
issues in traffic offloading between clouds, edges, and fogs.
Optimization has traditionally been used to solve the problem of
traffic offloading. However, in such a complex federated system,
traditional optimization cannot keep up with the strict latency
requirements of decision-making, ranging from milliseconds to
sub-seconds. Machine learning approaches, especially reinforce-
ment learning, are consequently becoming popular because they
could quickly solve offloading problems in dynamic environments
with some unknown information. This study provides a novel
federal classification between cloud, edge, and fog and presents
a comprehensive research roadmap on offloading for different
federated scenarios. We survey the relevant literature on the
various optimization approaches used to solve this offloading
problem and compare their salient features. We then provide
a comprehensive survey on offloading in federated systems with
machine learning approaches and the lessons learned as a result
of these surveys. Finally, we outline several directions for future
research and challenges that have to be faced in order to achieve
such a federation.

Index Terms—Offloading, cloud computing, edge computing,
fog computing, federation, optimization, machine learning

I. INTRODUCTION

HERE are many computing paradigms which provide
computational power and storage services for the huge
amounts of data generated by an ever-increasing number of
heterogeneous devices. Three of the most well-known and
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Fig. 1: Integrated cloud, edge, and fog systems

widely adopted computing paradigms are cloud, edge, and fog
computing. The terms cloud, edge, and fog represent three
computing tiers of cloud, edge, and fog computing systems.
Fig. 1 shows the cloud-edge-fog system that consists of
three tiers. (a) Cloud tier: the top tier is a cloud system [1],
that encompasses the cloud computing paradigm which is the
most well-known and widely adopted computing paradigm for
more than a decade because of its attractive features such as
scalability, rapid elasticity, resource pooling, cost saving, and
easy maintenance. This tier consists of different clouds, such
as Google and Amazon. These basically deal with industrial
big data, business logic, analytical databases, data “warehous-
ing,” and so on. (b) Edge tier: the middle tier is an edge
system [2], that comprises the edge computing paradigm. Edge
computing has its origins in the European Telecommunication
Standards Institute (ETSI), which proposed virtualizing the
capabilities of cloud computing into mobile network operators.
An edge server can be deployed behind a cellular system’s
base station and central office, which re-architects the central
office as a data center (CORD) to provide more computing
resources close to the user equipment (UE). This tier includes
different service providers such as Verizon, T-Mobile, AT&T,
Chunghwa telecom, and so on, and consists of local network
assets, micro data centers, central offices, base stations, etc.
(c) Fog tier: the bottom tier is a fog system [3] or loT
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system consisting of mobile users (e.g., smartphones, tablets,
and laptops), smart vehicles forming vehicular fogs, and loT
devices, such as industrial actuators, wearable devices, and
smart sensors. Fog nodes are located close to the data source
and extend the infrastructures like cloud and edge. The fog
computing resource aggregates some fog nodes at a given time
and location. The computational node capacity can change
over time [4]. It covers real-time data processing on industrial
PCs, process-specific applications and autonomous equipment,
a group of local computing devices, electronic vehicles, etc.
Since most vehicles are now equipped with sensors and
computing to ensure safety and comfort, vehicular fog is
gaining popularity [5].

A. Cloud, Edge, and Fog Computing Paradigms

The Internet of Things (loT) devices, that have taken
the world by storm, need computational power and storage
capacity for the huge amounts of data generated by them,
to provide services to their subscribers [6]. Cloud, edge and
fog computing are the potential paradigms that could fulfill
the demand of subscribers [7]. Cloud computing is the on-
demand availability of computer system resources, especially
data storage and computing power, without the need for direct
active management by a user [1]. However, cloud computing
introduces high communication latency in the hundreds of
milliseconds because its servers are far from end-users or
subscribers. A cloud computing paradigm is not suitable for
some applications with stringent communication latency limi-
tations, such as Ultra Reliable Low Latency Communications
(URLLC) and enhanced Mobile Broadband (eMBB) services,
which have a unit millisecond latency constraint. This is
where edge and fog computing models play a crucial role in
providing similar services with lower latency [8] [9].

Again, all these computing paradigms, i.e., cloud, edge, and
fog, have limitations regarding capacity, capability, coverage,
storage, and latency. A single computing paradigm cannot,
by itself, fulfill the diverse requirements of a vast number
of traditional and heterogeneous loT devices. For example,
a user might need to use two different applications at the
same time, and one of them is latency sensitive, while the
other is computation sensitive. In this case, the user would
require the services provided by both cloud and edge or fog
[10]. Also, if a cloud customer needs some extra service
that is not available in that cloud, then the cloud must try
to arrange that service for the customer without a delay to
provide satisfaction. The cloud may otherwise lose the trust
of the customer and, in some cases, may lose the customer,
which may affect its business financially and reputation. This
is where a federation between multiple computing paradigms
can play a key role in resolving these issues. Such a federation
is not only suitable for subscribers but also for providers. A
subscriber will be able to access the services provided by
different computing paradigms without having to buy multiple
subscriptions. On the other hand, providers would be able to
extend their capacity, capability, and coverage without having
to lose subscribers to other providers.
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B. Offloading in Federated Fog-Edge-Cloud Systems

A federation between multiple computing paradigms gives
rise to many opportunities and challenges such as authentica-
tion, access control, resource sharing, and traffic offloading.
Traffic offloading is an important challenge as the federation
among multiple computing paradigms is a distributed system
with dispersed computing capacity. In this work, we focus on
offloading in a federated environment where cloud, edge, and
fog offload traffic to each other. Such offloading is basically
a transfer of tasks that are resource intensive to a separate
platform in order to perform a task in a better way. Such
offloading becomes necessary when a task assigned to a
service provider exceeds its computing resources and has to
be offloaded to another service provider that can provide the
required computing power. Thus, offloading is required in
order to fulfill different constraints under different situations.
Some important constraints are latency, load balancing, pri-
vacy, storage constraints, guarantees, SLAs, etc.

There can be two types of offloading In a federated system,
intra-domain and inter-domain offloading, as there are mul-
tiple domains in such a federation. Intra-domain offloading
involves the traffic offloaded between the entities belonging to
the same tier i.e., cloud-to-cloud, edge-to-edge, or fog-to-fog,
while inter-domain offloading involves the entities belonging
to different tiers, such as cloud-to-edge, cloud-to-fog, or edge-
to-fog, etc. Intra-domain and inter-domain offloading can
occur between two providers.

Optimization has traditionally been used effectively to of-
fload traffic in single networks [11] or in a federation, because
a single network provides the optimal offloading ratio that
reduces the overall cost of the network. Although traditional
optimization has been used for years, it takes much time
to generate decisions because of a network’s complexity
and the large number of variables involved. The non-convex
algorithms in traditional optimization perform an exhaustive
search to find an optimal solution, which takes much time
to converge [12]. Modern applications are latency sensitive
and cannot afford such delays in offloading decisions, as the
control and data planes need a decision in milliseconds to sub-
seconds. In the current era, optimization solutions for quick
offloading decisions are becoming obsolete and machine learn-
ing approaches are taking the place of traditional optimization
in complex network systems because of their faster response
times.

The machine learning approach has an advantage over
the traditional optimization approach in such complicated
federated systems, because machine learning does not require
complete knowledge of the system compared to the traditional
optimization, and it can quickly solve offloading problems
with various bits of unknown information. In the various
machine learning approaches, reinforcement learning (RL) is
the most suitable for offloading decisions because RL does
not need a well-labeled dataset, and can learn directly from
the environment [13]. This makes RL suitable for offloading
decisions in a dynamic environment with much unknown
information. This also shows that the RL is better than the
traditional optimization approach because, in such complex
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systems, traditional optimization may not be able to converge
to an optimal solution and may preferably rely on heuristics.
Traditional optimization would take much more time for
decision-making compared to the RL because of exhaus-
tive searching. When we consider offloading in a complex
federated environment together with traditional optimization,
machine learning, and reinforcement learning, many research
opportunities and challenges arise.

We summarize these various research opportunities such as
V2X, fog-fog federation, mobility in vehicular-fog, scaling,
resource allocation, centralized vs. distributed federation, etc.
We also provide some insight into the important challenges
that will be faced by the operators to deploy this kind
of federation, such as redundancy, fault tolerance, service-
level agreement (SLA), reliability, geo-diversity, performance,
security, and interoperability between entities of the different
domains in a federated environment.

C. Survey on Surveys

In this section, we discuss some recent studies that survey
offloading in federated systems, as well as the importance
of our survey. Table | compares offloading surveys which
are divided into coverage, federation models, optimization
approaches, and what the focus of that survey is.

The authors of [14]-[18] discussed traffic and data offload-
ing between cellular, Wi-Fi, and opportunistic networks, but
did not consider the computation offloading in a federated
system such as an edge-cloud system. Rebecchi et al. [14]
reviewed data offloading approaches in cellular systems with
Wi-Fi environments and categorized them based on their
latency requirements. Maallawi et al. [15] surveyed offloading
and management approaches in wireless access and in core
networks. Their objective was to address providers’ problems
such as radio access scheduling, revenue per user decrease,
and coverage. Chen et al. [18] surveyed traffic offloading in
heterogeneous cellular networks, including small cells, Wi-Fi
networks, and opportunistic networks, and [16] focused on the
algorithm for selecting the optimal subset of offloading nodes
in an opportunistic network, which would allow a node to of-
fload traffic and computation tasks to another node. This kind
of D2D offloading is beneficial to cellular operators and users
in terms of monetary cost. Huan et al. [17] surveyed mobile
data offloading, which involves small cells, Wi-Fi networks,
opportunistic networks, and heterogeneous networks. The pros
and cons of each of these networks are also detailed.

Computation offloading between mobile devices and the
cloud is discussed in [19]-[21]. Kumar et al. [19] categorized
offloading techniques based on the decision characteristics and
applications. The security and privacy challenges in mobile
cloud computing are discussed in [20]. The offloading tech-
niques with environmental variation which included applica-
tions, networks, execution platforms, and cloud management,
are summarized in [21].

Edge-cloud system offloading was surveyed in [10], [13],
[22]-[28]. Mach et al. [22] discussed mobile edge-cloud
system architectures and considered computation offloading
resources allocation, and mobility management. Wu et al. [24]
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discussed multi-objective offloading, which was initiated by a
large heterogeneous system such as mobile edge computing.
Response time and energy consumption were their two main
objectives. Offloading criteria were categorized into what,
when, where, and how to offload. The taxonomy of edge-cloud
offloading was categorized in [26], based on the task type,
offloading scheme, objectives, device mobility, and multi-hop
cooperation. De et al. [27] presented a classified taxonomy of
V2X system offloading, based on a communication standard,
problem, and experiment.

Fog-edge-cloud offloading was discussed in [10], [13], [23],
[25], [28]. Jiang et al. [10] surveyed and discussed state-of-
the-art computational offloading in mobile edge computing.
Aazam et al. [23] discussed the offloading technologies in
fog computing for I0T. The survey of Zhou et al. [25]
focused on vehicular offloading, which included vehicle-to-
vehicle, vehicle-to-infrastructure, and vehicle-to-everything,
with a brief discussion of the architecture design, algorithm,
and problem formulation. Lin et al. [28] focused on offloading
modeling, which included communication, computation, en-
ergy harvesting, and channel modeling. Shakarami et al. [13]
classified machine learning-based offloading into approaches
such as supervised ML, unsupervised ML, and reinforcement
learning (RL).

None of these surveys details a federation between cloud,
edge, fog, and vehicular-fog. Each combination of such a
federation has different characteristics and offloading direc-
tions which leads to complex issues. In most of the surveys,
traditional optimization was used to optimize the offloading
decision in a federation. Traditional optimization takes a long
time to converge in such a complex federation system. By
contrast, an offloading decision must be rapidly determined by
the control plane. ML-based approaches have recently become
popular to solve offloading optimization problems in such
a complex federation system with fast response times. This
survey focuses on edge-cloud federation offloading and covers
state-of-the-art offloading approaches that use ML.

D. Survey Methodology

The survey methodology is outlined in this Section. Fog,
edge, cloud, V2X, and vehicular-fog were the terms we
searched for in articles published between 2012 and 2022 that
pertain to offloading optimization for these edge systems. The
cited publications study one or more computing paradigms,
constituting a federated system. The majority of the selected
papers are from IEEE journals and conferences. Some other
journals are published in Science Direct, ACM, Springer, and
MDPI. We selected articles based on their relevance to the
survey topic and their citation count.

E. Contributions

The major contributions in this paper are as follows. First,
we discuss the classification of federation between cloud,
edge, and fog systems. Each federation scheme has different
characteristics which affect the offloading directions. Second,
we discuss the current research status of different federated
architectures and offloading techniques and classify them.
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TABLE I: Survey on Surveys on Offloading in the Federated Systems
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[14] v Data offloading techniques in cellular networks
[15] v Offload techniques and management in wireless access and core networks
[18] v Traffic offloading in heterogeneous cellular network
[16] v Opportunistic Offloading
[17] v Mobile data offloading technologies
[19] v Computation offloading for mobile systems
[20] v Security and privacy challenges in mobile cloud computing
[21] v T Adaptation techniques in computation offloading
[22] Single Architecture and Computation Offloading
[24] Multi-objective decision-making for mobile cloud offloading
[26] v A Survey and taxonomy on task offloading for edge-cloud computing
[27] 4 v Computation offloading for vehicular environments
[10] v Computation offloading in edge-cloud systems
[23] v Offloading in fog computing: Enabling technologies
[25] v v Data offloading techniques in V2X networks
[28] v Computation offloading modeling for edge computing
[13] v ML Machine learning-based approaches in mobile edge computing
Ours v | v/ | Multiple | T/ML | Offloading in federated cloud-edge-fog systems

T: Traditional; ML: Machine Learning

Third, we survey offloading based on traditional optimization
and machine learning approaches and make a comparative
study of both approaches. Finally, we discuss some key
research challenges associated with the task offloading and
point to possible future research directions. To the best of our
knowledge, this is the first work to discuss computing system
federation, offloading optimization, and the offloading opti-
mization approaches, i.e., traditional optimization and machine
learning.

The rest of this paper is organized as follows. Section
Il describes a federation of cloud-edge-fog systems and the
classification of such a federation. Section Ill presents the
offloading, classification of the offloading, and the current
research status of federated architecture and offloading. The
survey on offloading is detailed in Section IV, which also
classifies the approaches into traditional optimization and ma-
chine learning. Lessons learned from the survey are discussed
in Section V. The research opportunities and challenges are
presented in Section VI and the conclusions of this survey are
discussed in Section VII.

Il. A FEDERATION

A federation can be defined as the collection of clouds
that cooperate to provide resources requested by users [29].
Stated another way, a cloud can provide computing resources
wholesale or rent to another cloud provider [30]. A federation
can render the cloud a user and resource provider at the same
time [33]. A customer’s request submitted to one cloud can be
fulfilled by another. A cloud provides capacity and coverage,
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but for latency reduction and fault tolerance, a cloud needs
edge and fog. Likewise, fog and edge need a cloud service
to increase their capacity and coverage. The federation could
be realized if an agreement is established between service
providers to develop cooperation that benefits them and their
customers. All federation possibilities are depicted in Fig. 3,
and federation agreements can be made between 1-to-1, 1-to-
many, and many-to-many.

T-system is an example of the federation of clouds that cov-
ers cloud services supported by a number of cloud providers,
including Open Telecom Cloud, AWS, Azure, and Google
Cloud. They also federate edge and the mentioned public
clouds to support rich services [31]. They deliver industry-
specific, end-to-end IT systems and digital transformation
solutions for all businesses and the public sector at the lowest
possible cost and with the least amount of complexity. They
provide extensive coverage in over twenty countries. Another
federation example is Google’s Fi project, which allows feder-
ation across Wi-Fi and cellular networks. This project includes
T-mobile and U.S. cellular service provider federation. This
federation is, nonetheless, a type of communication service
federation [32].

Cloud, edge, and fog computing paradigms provide different
services to users or subscribers, depending on their limitations
and capacity [37]. Since subscribers have different demands
and service requirements, each paradigm may not have all
kinds of services to fulfill all users’ needs because each com-
puting paradigm has its limitations [38]. Thus there is a need
for a “federation” between different service providers to cope
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TABLE II: Federation Framework

Federation type Framework - Fea_\tures _ Enterprise | Academia
Slicing | Scaling | Offloading

E-C Zadara [34] ¥ + ¥

c-C BEACON [35] | + + +

F-C Kubefed [36] * +

with the users’ heterogeneous requirements and to increase the
capacity, coverage, capability, and fault tolerance of the service
providers. For example, in a smart city environment, different
users or 10T devices have different requirements that a single
service provider may not address. A federation then comes
into the picture to fulfill the various demands. The benefits
of the federation are twofold, i.e., from both a subscriber’s
and provider’s perspectives. A subscriber would not have to
subscribe to the services of all providers but will get the
services of all by just subscribing to one of them. Subscribers
do not have to keep multiple accounts and do not have to pay
multiple providers. On the other hand, a provider will not lose
a customer just because it cannot provide a particular service.
Table Il presents several federation frameworks developed
by enterprises or academic institutions. The federated program
of Zadara [34] enables hosting providers or managed service
providers to manage dispersed clouds and enable edge com-
puting fully. Involving cloud and edge providers from around
the world to deliver computing resources in proximity to users
with low propagation latency. BEACON [35] manages cross-
site virtual networks for federated cloud infrastructures in
order to facilitate the automatic deployment of applications
and services across various clouds and data centers. The
overlay layer-2 and layer-3 network concepts are employed
to interconnect services hosted by multiple cloud providers.
These overlay networks are developed using OpenDOVE,
which provides network virtualization. Kubefed [36] facilitates
the management of several Kubernetes clusters via a central-
ized API. The goal is to facilitate the deployment of multi-geo
applications. Kubernetes is an open-source container manage-
ment, deployment, and scalability platform that may also be
used to create fog, edge, and cloud. None of these frameworks
specifically explain the offloading mechanisms that are used.
Only Zadara provides load balancing to distribute the traffic
in some instances but does not specify the action taken for
incoming traffic in case an edge/cloud site is overloaded.

A. Federation vs. Non-federation

A non-federated scenario is one where a service provider
cannot share its resources with other service providers, and
it can neither lend nor rent its surplus resources to others. In
such a scenario, it is difficult to handle the dynamic demands
of users, and the service provider may face issues like Lock-
in [39] [40] [41] and single point failure [42] [43]. Lock-in is
one of the most cited and controversial obstacles to widespread
cloud computing adopted by enterprises [44]. It is also risky
for a customer to be tied to a single vendor because that vendor
might raise prices, go out of business, become unreliable, or
fail to keep up with technological progress.

Different service providers, such as cloud, edge, or fog,
provide different services to their subscribers depending on
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Fig. 2: Computing paradigms characteristics

their limitations and capacity [45]. Again, a subscriber of a
service provider may have different demands at different times,
which may not be fulfilled by the service provider always.
This can also be understood with the help of an example of a
perfect smart city where there would be different types of l1oT
devices, and each type would have its own requirements that
a single 10T service provider cannot fulfill. In such a scenario,
the provider will be able to provide all sorts of 10T services
after federating with other providers. When acquiring loT
deployment, a federated environment is thus more beneficial
than a non-federated scenario.

Federated fog-edge-cloud encounters several challenges due
to the varied characteristics and administration complexities of
fog-edge-cloud systems. Fig. 2 depicts the differences across
computing paradigms regarding network locations, comput-
ing resource capacity, dispersion, dynamism, and ownership.
The cloud has more computing power with less dispersion
and volatility. Low dispersion indicates that the cloud has
a centralized location. Edge and fog are both examples of
distributed systems. Since fog comprises user equipment,
which includes vehicular-fog, it has the highest computing
resource dynamism.

In [46], Cominardi et al. listed some challenges of the
federated system that also pertain to the challenges of feder-
ated offloading, including trust management, dynamic resource
discovery, multi-tenancy, multi-virtualization technology co-
existence, application placement, dynamic service placement
and migration, dynamic resource management, and security.
We introduce offloading as a federation challenge because, in
a distributed system, incoming traffic must be spread across
available resources. The challenges mentioned are the costs
that must be considered during the federation. Maintaining
trust between entities is also not trivial. The federated systems
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address the aforementioned challenges by outsourcing to a
trusted company (broker) or maintaining them distributively
by the entities (peer-to-peer). This paper focuses on multi-
direction offloading optimization in federated systems, which
include a large distributed and dynamic system.

B. Classification of Federation

With federation technology, different users or subscribers
of different service providers get different benefits. With this
technology, different service providers can federate with each
other to provide a better service to their users. A federation
between these service providers can be divided into three
categories, horizontal, vertical, and hybrid federations. These
federations are all based on the cloud, edge, and fog integrated
architecture; the classification of all possible federation scenar-
ios is shown in Fig. 3. To the best of our knowledge, such a
classification has not been dealt with in any of the studies we
reviewed.

1) Horizontal Federation. A horizontal federation consists
of two federated entities in the same tier, such as a cloud-
cloud federation [47]. A horizontal federation can be cloud-
cloud C C orCy,edge-edge E E or Ep, or Fog-Fog

F F orFy.

2) Vertical Federation. A vertical federation is a federa-
tion between entities in different tiers [33] as in a cloud-
edge federation. Since a cloud-edge-fog system is a three-
tier system, we can classify a vertical federation into two and
three-tier federations, such as cloud-edge C E , edge-fog

E F ,andcloud-fog C F federations, or a cloud-edge-
fog C E F federation.

3) Hybrid Federation. A hybrid federation is a federation
that combines both horizontal and vertical combinations [61],
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where entities can simultaneously federate horizontally with
another entity in the same tier, as well as vertically with an
entity in another tier. For example, in an edge-edge-cloud

Ey C federation, an edge is federated with another edge
in tier-2 and also federated with a cloud in tier-3. Such a
hybrid federation can be classified into two-tier and three-tier
federations.

1) A two-tier hybrid federation consists of all possible com-
binations of horizontal and two-tier vertical federations.
For example, in Cyx E federation, one cloud C;
will federate with another cloud C, horizontally, and
with an edge E; vertically. Similarly, in Cy Ep ,
two clouds C; and C, become federated with each
other, two edges E; and E, are federated with each
other horizontally, and are simultaneously also federated
vertically E; and C; . All nine possible two-tier
hybrid federation combinations are shown in Fig. 3.

2) A three-tier hybrid federation consists of all possible
combinations of a horizontal federation and three-tier
vertical federation; all seven possible federation com-
binations are also shown in Fig. 3. For example, in

Cy Egy Fpg ,twoclouds C; and C, in tier-3,
are federated with each other, two edges E; and E,
in tier-2 are federated with each other, and two fogs

F, and F, in tier-2 are federated with each other. At
the same time, C; with E;, and E; with F; also become
federated vertically.

The three federation schemes discussed above give new
computing systems with varying characteristics, objectives,
offloading directions, and complexity. Section 111 describes the
concept of offloading, and classifies some offloading schemes
required by some federated systems. This offloading scheme is
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associated with the federation scheme. For example, horizontal
offloading is employed between entities in the same tier,
whereas vertical offloading is employed during federation
between entities in different tiers.

I1l. OFFLOADING

When an entity or service provider (say SP1) with a
federated architecture receives requests from its subscribers
or customers, and needs another entity (say SP2) to execute
tasks on behalf of the SP1 and return the results. This is
called offloading [48]. Again, there are various criteria that are
used when deciding whether to offload certain tasks. A few
examples of this are as follows. To meet a resource constraint:
when a task requires more computing resources than the local
system’s available capacity, it must be offloaded to another
system with the required capacity [49]. To address latency: as
distance affects time-sensitive applications, the node closest to
the receiving node must be involved in the task of offloading to
provide the services faster [50]. Load balancing: when a server
has reached its capacity for executing tasks, additional tasks
need to be distributed between other entities in the service
provider’s ecosystem [51]. Storage: small computing devices
with limited storage facilities may require offloading to another
that has a large storage capacity [52]. To maintain privacy,
confidentiality, and security: depending on the sensitivity of
data, they may be offloaded to more secure cloud storage [53].

A. Renting vs. Scaling vs. Offloading

In an offloading scenario, resources are used based on the
requests from customers. These may vary from time to time,
based on demand. Here, the use of resources can be scaled
up or down based on the demand, and a customer will pay
according to the use. This is called autoscaling. However, in
renting, a customer will reserve the required resources for a
predetermined duration for the future use. The customer may
or may not utilize the entire resources that were reserved,
but will pay according to the reservation. Offloading is a
method where a service provider passes the request to another
service provider to provide the service to its own customer. For
example, a client of Amazon sends a request to Amazon, but
Amazon passes the request to Google, and Google provides
the service, provided there is a federation agreement between
the two service providers.

B. Classification of Offloading

Based on the federation agreement between entities, one
entity can offload its tasks to another entity for service. This
offloading can be classified into Horizontal, Vertical, or Hybrid
offloading, based on different federation agreements. Our
offloading classification focuses on the computation capacity
and communication time perspective. However, an offloading
classification can also be applied to other criteria such as
storage, security, etc.

1) Horizontal Offloading. Horizontal offloading always
takes place between two entities in the same tier with a hori-
zontal federation agreement. As with a horizontal federation,
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horizontal offloading also comes in three types, shown as #1
to #3 in Fig. 4.

1) In cloud-to-cloud C C horizontal offloading, two
federated clouds can offload to each other [54]. Google
can offload to Amazon or vice versa.

2) In edge-to-edge E E horizontal offloading, two
service providers in edge tiers can offload to each other
[95].

3) In fog-to-fog F F horizontal offloading, two
computing resources in two different fogs can offload
to each other [55]

2) \ertical Offloading. Vertical offloading always takes
place between two entities in different tiers, for example,
edge-to-cloud. There are fifteen different vertical offloading
combinations from #4 to #18 in Fig. 4, which can be classified
into four different categories: upward (#4 to #6), downward
(#7 to #9), reverse (#7 to #9), and bi-directional (#10 and #11).

1) Vertical offloading occurs upward from the lower to the
higher tier, which is more centralized, covers a bigger
area, and has a greater computing capacity than the
lower tier [78]. The possible upward offloading scenarios
are edge-to-cloud E ) C fog-to-edge F ) E , and
fog-to-cloud F ) C offloading.

2) When an upper tier offloads its task to a lower layer
entity that is closer to the user and has lower network
latency than the upper tier, it is known as downward
vertical offloading. [63], [96]. The possible downward
offloading scenarios are cloud-to-edge C + E , cloud-
to-fog C + F , and edge-to-fog E + F offloading.
These scenarios are triangular, i.e., the user requests
are given to an upper-tier entity and then offloaded
to a lower-tier entity. For example, in cloud-to-edge
offloading, the cloud user gives its request to the cloud,
then the cloud will offload the task to the edge with
which it has a federation agreement.

3) Reverse offloading is a special type of downward vertical
offloading, where the distance between two entities is
relatively far, and to overcome latency and data transfer
costs associated with highly time-sensitive tasks, an
entity in the upper tier can reverse offload its task
to a lower-tier entity [58]. These are non-triangular
offloading scenarios, i.e., if there is a federation between
two entities in two different tiers, and if a subscriber of
an entity in an upper tier is closer to an entity in a lower
tier, then a user’s requests are given directly to the lower
tier entity, instead of to the entity in the upper tier. For
example, cloud-to-edge reverse offloading: if there is a
federation between cloud and edge, the subscriber to the
cloud is closer than to an edge, it can directly send the
request to the edge instead of to the cloud. Cloud-to-
edge C E and cloud-to-fog C F are the two
reverse offloading scenarios for our system. Since edge
and fog are very close to each other, we do not consider
the reverse offloading scenario between them.

4) Bidirectional offloading is a combination of all possible
scenarios of upward with downward offloading, upward
reverse offloading, or a combination of all three, i.e.,
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Fig. 4: Classification of offloading based on federation

TABLE IlI; Saturation Level of Federated Systems and Different Offloading Scenarios

Saturation Level Federation Types Offloading Types

Saturated CcC C c C

Semi-saturated C F,E F,E E E)C,F)C,F)E,E E

New F F F F,C+E,C+F,E+F,C E,C F

upward with both downward and reverse offloading. For
example, the offloading scenario #12 in Fig. 4 is a
combination of offloading scenario #4 and #8; similarly,
#14 is a combination of #4, #8 and #10. All possible
bidirectional vertical offloading scenarios are shown in
Fig. 4.

3) Omni-directional Offloading. Omni-directional offloading
is the combination of all possible horizontal and bidirectional
offloading scenarios. For example, the #22 offloading scenario
in Fig. 4 is the combination of offloading scenarios #1 and
#13 (a combination of #4 and #10). There are twenty-one
different omni-directional offloading scenarios from #19 to
#39 as shown in Fig 4.

However, these scenarios are only limited to two-tier archi-
tectures. They can be further extended to three-tier architecture
by combining two two-tier architectures. To the best of our
knowledge, such classification of the offloading scenarios has
not previously been considered and is here set out.

C. Current Research Status of Federated Architectures and
Offloading

Before doing the survey, we consider the current status
of different federated architectures and offloading scenarios,
which are divided into three categories, as shown in Table Il1.
Fig. 4 shows 39 different offloading scenarios. However, out of
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these scenarios, 11 are core offloading scenarios that are con-
sidered for this categorization based on a one-to-one federation
and offloading. Some scenarios have been addressed in many
papers, which we consider as a saturated scenario—for exam-
ple, a C C federation. In [59], Mashayekhy et al. proposed
a game-theoretical model to reshape the business structure
between cloud providers, which could improve their dynamic
resource scaling capabilities by establishing cooperation with
the federation method. They proposed a cloud federation
mechanism to maximize the profit of cloud providers, by
reducing the utilization of computing resources. Hassan et
al. [60] presented a capacity-sharing mechanism using game
theory in a federated cloud environment. This mechanism may
lead to a global energy sustainability policy for federated
systems and can encourage such systems to cooperate. The
main goal of the paper is to minimize the overall energy cost
by means of a capacity sharing technique, that will promote
the long-term individual profit of cloud providers.

The integration of vertical and horizontal cloud federations
is discussed in [61]. In this integration, private clouds are
known as secondary clouds, and are federated with each
other horizontally, which become federated vertically with
the public clouds, termed primary clouds. The objective of
[61] is to establish stable cooperative partnerships for the
federation to improve efficiency. In [62], a distributed resource
allocation problem is discussed in a horizontally dynamic
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Fig. 5: Task offloading in the fog-edge-cloud federation

cloud federation (HDCF) platform. These authors used a game
theoretical solution to address this problem, to ensure mutual
benefits to encourage cloud providers (CPs) to form an HDCF
platform.

Similarly, cloud-to-cloud offloading is very rare as the
clouds lack capacity, capability, etc. One cloud may not
have something that another one can cover, and it is then
considered saturated. There are some federation architectures
and offloading scenarios which have been addressed by some
researchers, but there is still much to address. These scenarios
are termed semi-saturated; the rest are called new scenarios,
in which hardly any research has been done. These three
categories are shown in Table I11. Note that the fog used in this
paper includes any static or dynamic fog, including vehicular-
fog that may have mobility.

Fig. 5 illustrates offloading in a three-tier fog-edge-cloud
federation. The fog system comprises a variety of devices,
such as smartphones, laptops, automobiles, and roadside units
(RSUs), all of which interact with one another and can even
collaborate on some tasks. Between fog and cloud lies a two-
tier MEC system with computing capacity behind the base
stations (AN-MEC) and in a central office with core network
functions (CN-MEC). Cloud computing is the top tier, with
massive computing capacity but is geographically remote from
UEs or data sources.

Fig. 5 shows three different offloading scenarios based on
task sources. The first scenario (1) involves a heavy task or
hotspot traffic at a stadium that is hosting a sporting event
or music concert. The task will be offloaded from the UEs
to the nearest AN-MEC. Because of the AN- MEC’s limited
computational capabilities, the task can be offloaded to a
less loaded AN-MEC or CN-MEC, and computing delay can
thus be minimized. In the second scenario (2), the vehicle
generates tasks from its sensors or multimedia applications for
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safety and comfort. Some vehicle tasks are latency-sensitive
that are part of the navigation, autopilot, accident, or alert
systems. A nearby server must serve those kinds of tasks with
low propagation and computing latencies. The tasks can be
offloaded either horizontally to other vehicles or vertically to
an RSU. If the RSU is overloaded, it will vertically offload
the tasks to an AN-MEC, and the overloaded AN-MEC can
offload the tasks downward to vehicular fog. The third scenario
(3) describes the traffic generated by industrial 10T sensors,
with some operations requiring low latency, such as robotic
process automation, danger alerts, and suspicious activity
alerts, and can be vertically offloaded to AN-MEC. Large
amounts of sensor data from industrial 10T can be offloaded
to a cloud for future analysis.

1V. SURVEY ON OFFLOADING

This section provides a summary of the literature that
deals with the federated environment with different offloading
scenarios. Some papers discuss current surveys on cloud
federation [56] [57] with cloud-to-cloud offloading, some edge
federation [95], some edge-to-cloud offloading [23], some
edge-to-vehicular-fog offloading [63], and some cloud to edge
reverse offloading [58]. The major purpose of a federation is
to enhance storage and processing capabilities. Many factors
influence offloading strategies, such as the location [64],
energy [67], and different optimization objectives. We classify
this work on offloading into two categories, (a) traditional
optimization techniques, that mostly focus on management
plane decisions, and (b) machine learning techniques that focus
on control plane decisions.

A. Traditional Optimization

Table IV lists the earlier research on traditional
optimization-based offloading, according to the direction
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in the Federated Systems with Traditional Optimization

Metrics
References | Offloading Types o m Q 5 Approach Method Evaluation Application
@ @ © =
AR
<
[64] ¥ Exact Convex optimization Simulation Offloading in realistic
D2D human mobility scenario
[65] i i Analysis Lyapunov optimization Simulation Fogging framework
[66] T | * Scheme Tree search algorithm Simulation Face recognition
[67] D)C ¥ No approach | Real test-bed Experimental MCC application
[68] ¥ ¥ | Analysis Lyapunov optimization Simulation Face recognition
[69] ¥ + | Heuristic ODLOO Simulation Generic user applications
[70] ¥ I | Analysis Branch and bound Simulation Smart mobile device (SMD)
[71] D)E T F | Analysis EPCO algorithm, Simulation Data partitioned in SMD
LPCO algorithm
[72] ¥ I | Policy One-dimensional Simulation MEC systems
search algorithm
[73] ¥ F | Analysis Lyapunov optimization Simulation Energy harvesting for
devices
[74] ¥ | * Policy Lyaponuv optimization Simulation Multi-user multi-tasking
[75] D)F ¥ | *F Scheme Aura architecture Experimental Prototype design
[89] FYE * ¥ | Analysis Ant colony optimization Simulation Smart city
[91] ¥ + | Scheme EECO scheme Simulation 5G heterogeneous networks
[92] Eyc ¥ ¥ Analysis Game theory Simulation Payment strategy in edge
computing
[93] * = Analysis KKT conditions Simulation Augmented reality
[63] E+E * F | Heuristic Iterative greedy Simulation Intelligent transportation
systems
[96] ¥ T | Heuristic Iterative greedy, Simulation Intelligent transportation
DOCP systems
[76] ¥ | £ | ¥ | Scheme Game theory Simulation FiWi networks
[77] D)E, E)C ¥ | & | Noapproach | LEAD algorithm Simulation MCC application
[78] ¥ | &£ | Analysis Simulated annealing Experimental, | Traffic engineering
[80] I | Heuristic Iterative search algorithm | Simulation Generic user applications
[81] DYF.F)C ¥ | & | Analysis Simulated annealing Simulation Industrial loT
[82] ¥ | ¥ | Heuristic LTS-AQW Simulation Real-time applications
[83] T | Heuristic DPTO Simulation loT applications
[87] D)F,F)E I | Analysis Iterative greedy Simulation Generic user applications
E)C
[88] D)F,D)E ¥ | & | Analysis Subgradient iterative Simulation MCC applications and ITS
E)C method
[94] F)E,E)C ¥ I | Scheme Iterative search algorithm | Simulation Multi-cell MEC networks
[98] V. V,V)F F | Heuristic Iterative searching Simulation Multimedia applications
[99] VYF,F)E I | Analysis Branch-and-bound and Simulation Traffic management system
E)C Edmonds-Karp
[84] DYE.E E ¥ | ¥ | £ | Heuristic Bisection method Simulation Multi-cell wireless network
[85] ¥ I | Heuristic Two-phases iterative Simulation URLLC, eMBB, and MMTC
optimization
[86] D)E,E E ¥ T | & | Analysis Branch and bound Simulation Traffic engineering
E)C
[95] E)C,E E * * Scheme Dynamic algorithm Experimental | Traffic engineering
[58] E)C,C E F¥ | ¥ | Noapproach | Architecture Osmotic computing
[97] E EE)C * ¥ | * | Analysis Simulated annealing Simulation Traffic engineering
C+E,C E

D: Device; D2D: Device to Device; MCC: Mobile Cloud Computing; MEC: Multi-access Edge Computing; 10T: ; EPCO: Energy-Optimal
Partial Computation Offloading; LPCO: Latency-Optimal Partial Computation Offloading; LEAD: Latency-Aware workloAd offloaDing;
EECO: Energy-Efficient Computing Offloading; KKT: Karush-Kuhn-Tucker; DOCP: Decentralized Offloading Configuration Protocol
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and destination of offloading.

1) Device-to-Device (D2D) Offloading. Some research pa-
pers focus on device-to-device (D2D) offloading [64] [66].
Wang et al. [64] investigated the mobility-assisted opportunis-
tic computation offloading problem focusing on the patterns
of contacts between mobile devices. They used the convex
optimization method to determine the amount of computation
tasks that can be offloaded from one device to another. Pu et al.
[65] proposed a device-to-device (D2D) fogging framework,
where mobile users can dynamically and beneficially share
computation and communication resources between them-
selves. The objective of D2D fogging is to achieve optimal
energy conservation for executing the tasks of network-wide
users. Yu et al. [66] proposed a hybrid multicast-based task
execution framework for multi-access edge computing (MEC).
In this framework, multiple devices can collaborate at the
edge of a network for wireless distributed computing (MDC)
and outcome sharing. Such a framework is socially aware of
building effective D2D links with the objective of achieving an
energy-efficient task assignment policy for mobile users. They
used the Monte-Carlo search tree-based algorithm to achieve
their objective.

2) Device-to-Fog (D2F), Device-to-Edge (D2E) and Device-
to-Cloud (D2C) Offloading. Two papers, [67] and [75], focused
on device-to-cloud and device-to-fog offloading, respectively,
while device-to-edge offloading was discussed in [68]-[74].
Barbera et al. [67] tested the feasibility of mobile computation
offloading in real-life scenarios. They considered an architec-
ture where each real device is associated with a software clone
on the cloud. Huang et al. [68] proposed a dynamic offloading
algorithm based on the Lyapunov optimization that maximizes
energy efficiency while preserving the required latency with
face recognition applications. Zhang et al. [69] investigated the
trade-off between energy consumption and latency for an MEC
system with energy harvesting technology. They formulated
the weighted sum of energy consumption and computation
latency minimization of mobile device with the stability of
queues and battery level, and used the Lyapunov function to
ensure system stability.

Zhao et al. [70] proposed a multi-mobile-user MEC system,
where multiple smart mobile devices (SMDs) can offload their
tasks to an MEC server, with the objective of minimizing
the energy consumption of SMDs. To optimize this, they
coordinated the offloading selection, radio resource alloca-
tion, computational resource allocation, and used the branch
and bound method to solve the optimization problem. Wang
et al. [71] investigated partial computation offloading with
dynamic voltage scaling (DVS) technology, in mobile edge
computing, where devices can partially offload their tasks.
They formulated an optimization problem with two objectives:
energy consumption of SMD minimization (ECM) and latency
minimization of application execution (LM). They proposed
two optimal algorithms named Energy Optimal Partial Com-
putation Offloading (EPCO), and Latency Optimal Partial
Computation Offloading (LPCO) to solve the ECM, and LM
problems, respectively.

To achieve minimum average delay, Liu et al. [72] adopted
the Markov decision model for computational task scheduling.
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They proposed a searching algorithm to determine optimal
scheduling. Such task scheduling is unique, as the computation
tasks are scheduled based on the queuing state of the task
buffer, the execution state of the local processing unit, and
the state of the transmission unit. Mao et al. [73] devel-
oped a Lyapunov Optimization-based Dynamic Computation
Offloading (LODCO) algorithm to minimize the execution
delay and addressed task failure as the performance metric.
This algorithm determines the offloading decision, the CPU-
cycle frequencies for mobile execution, and the transmission
power for computation offloading. However, without requiring
distribution information such as computation task requests,
wireless channel, energy harvesting (EH) processes, etc., these
decisions depend only on the system’s current state.

Chen et al. [74] formulated a multi-user, multi-task com-
putation offloading problem for green Mobile Edge Cloud
Computing (MECC), and used the Lyaponuv Optimization
approach to determine an energy harvesting policy. This policy
determines how much energy is harvested from each wireless
device (WD) in the task offloading schedule — the set of
computation offloading requests that can be admitted into the
mobile edge cloud, the set of WDs that can be assigned to
each accepted offloading request, and the amount of workload
that can be processed at the assigned WDs. In [75], Hasan et
al. present the Aura architecture, a highly localized and mobile
ad-hoc cloud computing model using 10T devices present in
the ubiquitous environment for task offloading schemes and
enhancing applications. They implemented the Aura on the
Contiki platform and a simplified Map-Reduce port, which
demonstrates such architecture’s feasibility.

3) Device-Fog-Cloud and Device-Edge-Cloud Vertical Up-
ward Offloading. The offloading scenarios adopted in papers
[76]-[78], [80]-[83] were vertical upward, which included
from device to any entity offloading, and one entity to another
entity offloading. Gou et al. [76] presented an architecture
for collaborative computation offloading over FiWi networks.
They addressed the problem of cloud-MEC collaborative
computation offloading to minimize the energy consumption
of all the MDs, while satisfying the computation execution
time constraint. They proposed a distributed collaborative
computation offloading scheme by adopting game theory and
analyzing the Nash equilibrium.

Sun et al. [77] addressed the latency-aware workload of-
floading (LEAD) problem, where they formulated a task
offloading problem to minimize the average response time for
mobile users. They designed the LEAD strategy, and offloaded
the workloads to suitable cloudlets to reduce average response
times. Tong et al. [78] proposed a hierarchical edge cloud
architecture to improve the performance of mobile comput-
ing by leveraging cloud computing, and offloading mobile
workloads for remote execution at the cloud. For the efficient
utilization of resources and workload placement, they used
simulated annealing (SA) [79] to determine which programs
are placed on which edge cloud servers, and how much
computational capacity is available to execute that program.
They implemented the proposed architecture in small-scale,
conducted a simulation experiment over a larger topology, and
evaluated the performance of a proposed workload placement
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algorithm.

Rodrigues et al. [80] proposed a heuristic offloading algo-
rithm to determine whether tasks should be processed locally,
in nearby cloudlets, or in a remote cloud, which would
initially be determined by a UE. The UE would then choose
a different location to process the task, and calculate the
latency difference between the new location and the previous
location. Each UE could make this distinction, and leverage
the chosen location when bidding for an offloading decision.
The offloading decision with the highest bid is then chosen.

Chekired et al. [81] introduced a new scheduling model
for the industrial Internet of things (lloT) data processing,
and proposed a two-tier cloud-fog architecture for IloT ap-
plications, by deploying multiple servers at the fog tier. The
objective of this architecture was to minimize the communi-
cation and data processing delays in 11oT systems. Resource
allocation and offloading optimization for heterogeneous real-
time tasks were carried out by means of an adaptive queuing
weight (AQW) resource allocation policy in [82]. A trade-
off between throughput and task completion ratio optimization
was also achieved by taking laxity and completion times into
account when designing the offloading policy. Adhikari et al.
[83] designed a novel delay-dependent Priority-Aware Task
Offloading (DPTO) algorithm for scheduling and handling
0T device tasks in an appropriate computing server. The
computing locations were chosen based on the types of task
deadlines, which were classified as soft and hard-deadline
tasks.

4) Device-Edge-Cloud Hybrid Offloading. Hybrid offload-
ing was discussed in [84]-[86] which included device-edge
vertical offloading. Tran and Pompili [84] formulated a math-
ematical model for the joint optimization of task offloading
and resource allocation in MEC. In this work, they did not
only account for the allocation of computing resources but
also for the allocation of the transmission power of mobile
users.

The two-tier MEC architecture proposed by yahya et al.
[85] comprises an access network MEC (AN-MEC) and a core
network MEC (CN-MEC). CN-MEC has greater capacity, but
is less wide spread than AN-MEC. Two-phase optimization
was used to achieve capacity optimization by modifying the
offloading ratio and capacity iteratively. For hot-spot traffic,
offloading and scaling were merged into short-term and long-
term solutions. They considered both vertical, device-edge, and
horizontal offloading between edges. In a comparison between
pre-CORD and CORD, shown in Fig. 7, a trade-off between
computing and communication latency was introduced for
different distances of the CN-MEC, which affected the task
processing distribution. Thai et al. [86] proposed workload and
capacity optimization to minimize computation and communi-
cation costs for cloud-edge federated systems, by taking into
consideration vertical and horizontal offloading. They designed
a branch and bound algorithm with parallel multi-start search
points to solve this problem.

Villar et al. [58] introduced osmotic computing, a new
paradigm for edge and cloud integration. In their research, they
developed the concept of reverse offloading, where not only
can an edge offload its tasks to the cloud, but the cloud can
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Fig. 6: Simulated Annealing-based offloading illustration

also reverse offload time-sensitive tasks to edges. A two-tier
cloud-edge federated architecture was proposed by Kar et al.
[97], who considered edge-to-edge horizontal offloading and
edge-to-cloud vertical offloading, together with cloud-to-edge
reverse offloading. They formulated an optimization problem
with the objective of minimizing costs where latency was the
key constraint, and used simulated annealing to solve it. As
shown in Fig. 6, the simulated annealing technique gathers
system information and carries out an exhaustive search into
acquiring the best offloading decision.

5) Fog-Edge-Cloud Vertical Upward Offloading. Some pa-
pers [87], [89], [91]- [92] focus on entity to entity upward
offloading, and some adopt hybrid offloading scenarios [94]-
[95]. Fantacci and Picano [87] carried out queuing analysis
of cloud-fog-edge computing infrastructure, and proposed a
heuristic to determine offloading ratios and computing capac-
ities at fog, edge, and cloud. Kar et al. [88] considered a
federated architecture with mabile device, edge, cloud, and
vehicular-fog together. They used the queuing theory to ana-
lyze the performance to minimize QoS violation probability,
and used a subgradient searching algorithm to determine the
optimal probabilities.

An intelligent offloading method (IOM) for smart cities,
conserving privacy, improving offloading efficiency, and pro-
moting edge utility, was proposed to address the privacy
disclosure in Xu et al. [89]. The authors used the ant colony
optimization (ACO) [90] method to achieve the trade-offs be-
tween minimizing service response time, energy optimization,
and maintain load balance, while ensuring privacy preservation
during service offloading. An energy-efficient computation
offloading mechanism for MEC in 5G heterogeneous networks
was proposed in [91]. They formulated the energy mini-
mization problem of an offloading system, where both task
computing and file transmission energy costs were considered.

Lu et al. [92] addressed the problem of computation offload-
ing by using edge computing. They formulated the problem

plore. Restrictions apply.

publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3239579

13

Fig. 7: Ratio-based of oading: pre-CORD vs. CORD

as a two-stage Stackelberg game problem and show thaa iglobally optimal solution, this MINLP problem was trans-
achieves a Nash equilibrium. Their objective was to maximiZermed by applying norm theory to non-convex nonlinear
cloud service operators' and edge server owners' utilitiggeaction optimization, and then showed to be equivalent to
by obtaining optimal payment and computation of oadingonvex optimization using weighted minimum mean square
strategies with low delay. Ma et al. [93] proposed a cloudkrror (WMMSE) and Perron-Frobenius theory. Wang et al. [99]
assisted framework in MEC, termed Cloud Assisted Mobilgroposed a real-time traf c management algorithm for fog-
Edge computing (CAME), to minimize resource costs blgased Internet-of-Vehicle (loV) systems. This consisted of a
combing queuing network and convex optimization theoriethree-tier architecture of fog, cloudlet, and cloud for providing
They solved the convex problem by using Karush-Kuhrcomputing resources to traf c management systems. They
Tucker (KKT) conditions, and augmented reality to represeatso looked into vertical of oading optimization between fog,
delay-sensitive and computation-intensive mobile applicatiordoudlet, and cloud. Some modeled the of oading optimiza-

Jiao et al. [94] presented an integrated framework for corion problem into convex optimization and used exhaustive
putation of oading and resource allocation in MEC networksséarching to nd the optimal solution. The global optimum is
where both single and multi-cell networks were taken into cofasier to get in such a convex problem than in a non-convex
sideration. To minimize energy consumption and delay, th&joblem.
proposed an energy-aware of oading scheme that consider2D, V2X, and vehicular-fog of oading optimization in-
both computation and communication resource allocation. ¢drporate dynamic resource capacity and network topology,
[95], a horizontal edge federation was proposed together withhich are dif cult to handle using traditional optimization
UE to edge, and edge to cloud vertical of oading scenariogchniques. A heuristic approach such as the previously stated
They experimentally showed that an edge federation mod@bnte-Carlo search tree could be utilized. The heuristic tech-
improves the quality of experience (QOE) of end-users amgtjues are the most commonly utilized algorithm in of oading
saves on the costs of edge infrastructure providers (EIPSs). optimization, as shown in Table IV. This heuristic, however,

6) Vehicular-Fog and V2X Of oadingThe single edge to may get stuck in local minima/optima. Another method for
vehicular-fog task of oading problem was addressed in [63pbtaining optimal of oading decisions, is simplifying the
where an iterative greedy algorithm was used to solve theoblem, for example, determining how much trafc to be
optimization problem. Yen et al. [96] proposed a decentralizéd oaded or where to of oad (one dimension), and creating
of oading con guration protocol (DOCP) for single edge toa convex problem. Choosing where and how much to of oad
vehicular-fog of oading, with a matching protocol betweerintroduces a large continuous action space that is challenging
multiple edge systems to resolve the resource contentié®,solve with classical optimization.

when resources from the same vehicular-fog were requestegy summary of the above-discussed literature is given in
simultaneously. Table IV. The organization of the comparison table is as
Of oading optimization for vehicular-to-everything (V2X) follows. We discussed different core of oading methods used
systems was addressed in [98], [99]. Zhang et al. [98] coim the papers, including device-to-device (D2D) and device
sidered hybrid of oading between vehicles and fogs, an other entities. Four standard metrics, i.e., cost, energy,
formulated a mixed-integer, nonlinear programming (MINLPgapacity, and latency, are considered that are commonly used
solution for optimizing both user association, and radio réa most literature. Although, there are other factors such as
source allocation in vehicular networks (VNET). To obtaiiQoS, load balance, intensive, etc., that are not presented in the
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TABLE V: Comparisons of Machine Learning Algorithms for Of oading in Federations

i i Model d d L ing directi
ML Approaches Paper IOnIm_e Supervisor LEarmng odel dependence earning direction Performance Adaptability
earning object Model based | Model free | Value based | Policy based
S ised ML 100], [102
upervise [100], [102], Yes Dataset 3 3 Depend on data and
[103] learning algorithm
DL [108], [112],
[116], [117]
MAB [121]
(RL)Q-Learning | [107], [111] 3 o donth Thioudh
. epend on the roug
(DRL)DQN [104], [110], 3 No Environment 3 : :
[14], [118] experience exploration
[133]
(DRL)E2D [105] s
(DRL)DDPG [101], [103],
[106], [109],
[115], [120]

table, but are already addressed in descriptions. Each papertbaske in the future. In a large system, such as a federation,
a different approach such as exact, analysis, scheme, poliogintaining agent interactions in a table leads to a scalability
heuristic, and evaluation method presented in the table. problem. Deep Reinforcement Learning exchanges the table
with a neural network which can predict the reward of an
action for given environment's state. RL basically use a
random action at the beginning of the iteration. Even it can
In federation arChiteCture, an of Oading module WhiCl’produce the of Oading decision quick|y, but re'ying on the

distributes tasks from one ent|ty to other entities or tierS, f’éndom action in the beginning induces |Ong convergence
part of the control plane. The decision of task of oading iRjmes.

an extensive federated system must be carried out quickly
usually in se_conds. Tr_adltlonal optlmlzat|_on, such as a nole ending on their of oading direction and destination in the
convex algorithm, carries out an exhaustive search that taifgéjerate d fog, edge, and cloud
a long time to converge, and violates the delay require- Y ' " )
ments of tasks [123]. Furthermore, a traditional optimization 1) Device-Edge-Cloud Of oadinglunior et al. [100] con-
algorithm needs complete system information to determifilered cloud capacity to provide an external computation
of oading, which some federations may not provide. Intensive@pacity to UE applications, such as image editors, face
system monitoring, that provides complete information fd#€tection, and online games. They proposed a device appli-
determining of oading action in a federation, is not triviaication architecture that consists of middle-ware, a pro ler,
because each provider uses different devices, protocols, &4 @ decision engine to determine of oading policy. The
operating systems. Some applications provided by federatié§cision engine employs multiple classiers to decide the
may also have different requirements [100], [101], [103}?f_ogd_|n_g action for each incoming tqsk, with t_he objegtlve§ of
[109]. Machine learning is a suitable approach to address siBilimizing latency and energy ef ciency. This classi cation
of oading problems in a highly dynamic system with somdelies on the characteristics of applications and the system
unknown information. conditions. When the number of applications increases and
Machine learning-based (ML) of oading can automaticall;}h? system cqnditiqns change d_ynamically, creating labels for
improve its actions by learning from the collected datiis classi cation will be expensive.
(dataset), or interacting with the environment. Some ML There are some studies [101]-[112] that dealt with the
approaches are compared in Table V. Supervised ML and Dabgvice to edge of oading. Other than of oading policy, Saguil
Learning (DL) update their model's weight in order to executand Azim [101] also considered caching strategy to locate
the best of oading decision by learning from previous datdhe application codes and data. Q-learning and DQN-based
which is categorized as of ine learning. A well-labelled dataalgorithms solved this joint optimization problem. Li et al.
set has rst to be constructed before being provided to thi#02] considered task deadline time in determining task of-
ML algorithms. Gathering comprehensive data and labellingading policy. They proposed an E2D DRL to derive the
the data in such a dynamic network system are costly. Eveest of oading policy and solve the scalability problem of
more, some providers may restrict the details of their datBQN action space. Wang et al. [103] optimized a UAV
sets because of security. Another way to train an of oadinmgajectory and of oading decision, which included discrete
model is through online interaction between a learning ageamid continuous variables, by using multi-agent reinforcement
and the environment, which is termed Reinforcement Learnitgarning. The previously mentioned DQN approach is only
(RL). The learning agent observes an environment's conditioapplicable to discrete action space problems. DDPG technique
to determine an of oading action. An environment will therwas chosen because it solved the overestimation problem of
give positive and negative feedback on the taken action, ternfeld and worked in high-dimensional action spaces (continuous
reward and punishment. In essence, an agent memorizes #uson space). Fig. 8 shows the DDPG algorithm overview.
interaction in the form of a table to decide the best actiorhis is implemented on an agent that determines the optimal

B. Machine Learning

These concepts are classied into 11 types in Table VI,

. . © 2023 IEEE. Personal use is permitted, but re_}lpublicatiqn/redistribution requires IEEE permission. See https://www.ieee.org/publications/ri hts/index.html for more information.
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 31,2023 at 06:58:38 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3239579

15
TABLE VI: Analysis of Recent Research on Of oading in the Federated Systems with Machine Learning
References Of oading Types Metrics Method Agent | Evaluation Application
< g 2
[100] D)C 3 3 ML supervised 1 Experimental | Multimedia apps.
[101] 3 3 (DRL)DQN 1 Simulation Real-time video analytic
[102] 3 3 (DRL)E2D 1 Simulation Video, smart home, and Al apps
[103] 3 3 (MADRL)DDPG n Simulation UAV based application
[104] 3 3 (MARL)Q-Learning n Simulation Generic user applications
[105] 3 3 (DRL)DQN 1 Simulation Generic user application
[106] D)E 3 (DRL)DQN 1 Simulation Generic user applications
[107] 3 3 3 (DRL)DDPG+ TADPG n Simulation Generic user applications
[108] 3 ML supervised 1 Simulation Resource-hungry 10T apps.
[109] 3 3 (MADRL)DDPG n Simulation lloT
[110] 3 3 DL 1 Simulation Generic user applications
[111] 3 3 (DRL)DQN & DDPG 1 Simulation Generic user applications
[112] 3 (DRL)DDPG+ Optimization 1 Simulation Generic user applications
[113] D2D.D) E 3 (DRL)DDPG 1 Simulation Resource-hungry applications
[133] 3 3 (DRL)DQN 1 Simulation Generic user applications
[114] D)E.E)C 3 DL 1 Simulation lloT
[115] 3 (MARL)DDPG n Simulation 0T applications
[116] C+E,C+D 3 (MARL)Q-Learning n Simulation Generic user applications
[117] D)F 3 3 ML supervised 1 Experimental | 10T with ML jobs
[118] 3 3 (DRL)DQN 1 Simulation Generic user applications
[119] D)F,F)C 3 3 (MADRL) DON n Simulation lloT applications
[120] D)F,F F,.F)C 3 DL-unsupervised 1 Simulation Mobile applications
[121] 3 DL + Pareto optimization 1 Simulation V2X applications
[122] V)E 3 3 (DRL) DQN 1 Simulation V2X applications
[123] 3 ML, MAB 1 Emulation V2X applications
[124] vV V,V)E 3 MAB 1 Simulation 10T application
[125] V)E.E)C 3 (DRL) DQN 1 Simulation Generic user applications
[126] 3 3 (MARL)DDPG+LSTM n Simulation Payment application

of oading decision based on federated system data, suchGisen et al. [107] extended DDPG with a temporal feature
channel status, arrival traf ¢ information, computation, anéxtraction network (TFEN), and a rank-based Prioritized Expe-
networking capacity. DDPG makes use of Actor and Critidence Replay (rPER) to achieve training stability, and reduce
neural networks. Actor networks predict the optimal actiothe convergence time. Guo et al. [108] used a binary-tree-
for a given state, whereas Critic networks predict the value based supervised ML to construct an intelligent of oading

state-action pairs. The Q-value provides the discounted totatk with high accuracy and low complexity. Multichannel

future reward for the current state-action pair. By satisfyingccess problems arise in multi-user of oading when some
Bellman's equation, the critic network learns this value. mobile users utilize the same channel, which then results

Joint of oading and resources allocation optimization wa¥ 10nger transmission latency due to interference. Cao et
carried out by Yang et al. [104], who applied single andl- [109] used mulu—agent relnforcementilearnmg to derive
multi-agent reinforcement learning to optimize caching arfi® best of oading policy. The user device plays the role
of oading decisions, and LSTM to predict task popularity irpf an agent that _observes channels condltlon_ to det_ermlne
pre-processing. Ale et al. [105] addressed the computatifilf ©f 0ading policy. Yang et al. [110] combined of ine
of oading problem of a multi-server MEC system by usindearnlng based on a feed-forward neural network and online
DRL. Reformatting the features and storing in a tree-like dafaférence to derive an of oading strategy in near real-time.

structure were carried out to accelerate the DRL's convergerfc®nd et al. [133] enhanced the DQN algorithm with a
time. heuristic of oading technique, in order to reduce both latency

, , _._.__and energy consumption. The objective of using a heuristic
DRL was used in [106] to group NOMASs UES to minimize | qvithm was to minimize convergence time. DQN and DDPG

of oading energy, by minimizing multiple access interference.
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were compared in optimizing of oading decisions by [111].
DDPG outperforms DQN in terms of convergence time and
performance in minimizing system latency. Li et al. [112]
integrated a Lyapunov optimization with DDPG to achieve
a long-term objective in online of oading.
Other than vertical of oading from UE devices to edge,
He et al. [113] also considered horizontal of oading between
UE devices. They applied QoE in determining of oading
policy, and de ned task priority assignment, redundant task
elimination, and de ned task scheduling to achieve optimum
QoE. Since the of oading decision involved continuous action
space, the DDPG-based method of DRL was used.
The edge and cloud federation was considered in [114]-
[116]. Sun et al. [114] proposed a machine learning model
that cooperatively trained the two-tier edge-cloud architecture.
The Industrial Internet of Things (IloT) devices were used to
determine whether to of oad their tasks to an edge or cloud,
depending on which would satisfy the tasks in terms of latency.
This is categorized as upward vertical of oading. If both edgEig. 8: DRL-based of oading in the fog-edge-cloud federation
and cloud could not meet the latency requirements, the lloT
device processed the task locally. Hou et al. [115] applied
Cybertwin to coordinate resources between end-edge-clouging a low-complexity greedy algorithm.
Cybertwin functions as an intelligent agent that makes the3) V2X Of oading. A federation which included a V2X
of oading decisions necessary to accomplish the objectives gffstem were considered in [121]-[126]. The papers [121]-
maximizing processing ef ciency and task completion ratd123] optimized vertical of oading from vehicles to edge
They classied IoT applications into either delay-sensitivéervers. Online and ofiine learning were used by Fan et
or delay-tolerant. To maximize processing ef ciency, a joindl. [121], to maximize user and access network throughput.
optimization of hierarchical task of oading and resource alloPareto optimization mapped the vehicles and access points,
cation based on MADDPG was proposed. The of oading ageand the optimal results were used to construct a data set for
was trained in a federated fashion. These approaches sHaNN model training. An online stage used the output of the
only a trained model during the training process, avoiding ttieained DNN model, to predict the optimal association between
sharing of local data, which could jeopardize privacy. Zhang eghicles and access points.
al. [116] discussed downward vertical of oading, which was Ning et al. [122] optimized of oading decisions and re-
carried out by multi-cloud systems to edge servers or mobgeurce allocations jointly in a vehicular edge system, with
devices. Multiple clouds compete with each other to accew objective of maximizing QoE. DQN-based of oading task
network and MEC resources. A distributed of oading problerscheduling, which also considers user mobility, was proposed.
arises in a system with no centralized control, such as a mufienmez et al. [123] proposed an ML-based task orchestrator
cloud system. They also proposed multi-agent Q-learning fiar vehicular edge systems, including LAN, MAN, and WAN
determine the optimum of oading policy, which minimizes thenetworks. An ML-based task orchestrator guarantees a task
system latency. being served successfully (in time) and in the lowest service
2) Device-Fog-Cloud Of oadingDevices-to-fog of oading time, and Xie et al. [124] considered not only vertical of oad-
was discussed in [117]-[119]. Saguil and Azim [117] corihg between vehicles and edge, but also considered horizontal
sidered worst-case execution time in determining of oadingf oading between vehicles. Vehicles, which have tasks to
policy to fog nodes. Their objective was to minimize thefoad, learned the environment with the multi-armed bandit
execution time of time-consuming ML tasks generated H{MAB) method to determine of oading policy, which resulted
an embedded system. Li et al. [118] considered time-varyitg lower average latency than the Greedy algorithm.
task characteristics and fog node capability in determining theThe papers [125], [126] considered a fog and cloud federa-
of oading policy of a DQN-based algorithm. Alelaiwi et al.tion to accommodate of oading tasks from vehicles. Khayyat
[120] also considered a fog and cloud federation, particulary al. [125] used deep-Q learning, which has multiple DNN
horizontal of oading between fogs. DL was used to predidhat can work in parallel to obtain the optimal of oading
the response times at multi-tier fog, edge, and cloud, whickecision. In their environment, ve DNNs would outperform
were task-of oading destinations. They applied Deep Belief single DNN. Gao et al. [126] addressed the task dependency
Network (DBN) and logistic regression layer, which accepteaf oading problem by using multi-agent reinforcement learn-
processing, memory and link capacity as inputs. Ren et &lg. Their objective was minimizing energy and latency of the
[119] used MADRL-based DQN to determine the best fogf oading task. LSTM was integrated into an RL to alleviate
access point (F-AP) to serve as an lloT node request. Becaasgncomplete environment's state.
of the capacity constraints of the F-AP, some lloT device A summary of ML-based of oading literature is shown in
requests have to be of oaded to the cloud, a decision madiable VI. The comparisons are classi ed based on the of oad-
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TABLE VII: Imitation Learning: Traditional and Machine Learning Approaches

Paper | Target network | Objective ML-based | Heuristic/optimization | Reason of heuristic

[127] | V) E Minimize energy and latency DL Branch and bound Minimize convergence time
[128] | V \% Minimize average age critical information DRL Heuristic searching Minimize convergence time
[129] | V)R Minimize latency ML Branch and bound Minimize training samples
[130] | D) E Minimize tasks execution time DL Ehaustive search Minimize of oading cost
[131] | D D Minimize task completion time DL ACKTR Minimize convergence time
[132] | D) E Minimize task completion time A3C Heuristic Minimize convergence time

ing types in the federation. Like traditional optimization-based Initially, Ning et al. [129] optimized of oading and caching
of oading, the commonly used metrics in the literature ardecisions with the branch-and-bound (B&B) algorithm. Due
cost, energy, capacity, and latency. The ML-based of oadirtg the complexity of the B&B algorithm, they minimized the
methods are supervised ML, DL, RL, and DRL. Each MIB&B decision tree by labeling each node prune or preserve.
algorithm has different characteristics discussed in Table VThe nodes that do not lead to the optimal solution will
be pruned, while those that do, will be maintained. For a
number of iterations with various states, pruning behaviors
C. Imitation Learning: Online ML Imitating Ofine Tradi- \vere recorded and used to train a binary classier (SVM).
tional Optimization. This classi er was utilized to optimize (prune or maintain)

Supervised and unsupervised machine learning-based B B&B branches to determine the optimal of oading and
oading rely on labeled, and unlabeled datasets, respectivefching decisions. . S _
Of oading actions can be used as data labels in a federated't €t al. in [130] solved of oading optimization of ine
system of oading. Given the system information, an expert 519 several traditional optimization problems_ SUQh as ex-
conventional optimization algorithm can be used to determiff@ustive search, CPLEX, and optimal approximation algo-
the optimal of oading action (label), which leads to an oblithms. The state_ and optimal of oading action were recorded
jective such as minimizing latency experienced by the arriv@"d used to train a neural network (NN) that was set up
traf c. In RL, the agent derives the label through interactiof® Perform multi-class classi cation. As a result, the trained
with the environment. RL approaches initially rely on randorf’odel used in the online system had the lowest of oading cost
actions. This slows the RL's convergence to the optimal valu@d €xecution time, compared to other ML- and RL-based

Some of the researchers create labeled datasets by comBfifading approaches. The authors did not investigate the
ing heuristic and conventional optimization, shown in Tablgfféct of the dynamic environment on of oading performance

VII. This dataset is then used to train the ML/RL model" this study. . i .
ofine, before applying it to the real system. This method Wang et al. [131] optimized the decision for decentralized

is called imitation learning, in which the agent model imitate®f 02ding for pervasive edge computing. In ofine learning,

an expert's execution of a task to rapidly converge on tHaultiple agents use global system information to obtain opti-

optimal solution. In addition to accelerating the convergen&8@! of oading decisions using natural gradient policies, such

time, imitation learning can be used to reduce the traini%S ACKTR. Experts train policy and value networks, which are

cost by creating an arti cial dataset, labeled by convention en used for online training. Because expert demonstrations
optimization, and applying it to a live testbed. can only be collected in a few samples, GAIL was used to

VEC networks are distributed systems characterized oF del thebex.pert's S'Str'lt,’“,t'on r?f star:es dand a9t||c>ns. GAIL q
expansive state and action spaces. Applying RL to optimi S o obtain good policies through adversarial generate

the of oading decisions in such large and dynamic system ?ining. Zeng et al. [132] considered the trustworthiness of
results in a slow convergence time, due to RLs reliance vices. Of oaded traf c to untrusted devices leads to task

random actions at the beginning. Wang et al. [127] utilizef(i“lure' The_de3|gn.ed of oadnjg. scheme evalu.ated the.trust
imitation learning, which trains the DL network with thel€vel of devices using a heuristic trust evaluation algorithm.
dataset created using branch-and-bound, to achieve the opti agent; then mimicked the heuns’uc to evaluate the trust
result (ofine), and then applies the model to the runnin the dev_lce, an_d _for of oading ?Ct_'O”' the_ agents with the
system (online). Through this mechanism, the online mo pC algorithm mimicked the heuristic algorithm.

converges more quickly than the model without pre-training. N o ) )

Imitation learning can be used to overcome the dif cultie®- Traditional Optimization vs. Machine Learning

brought on by RL exploration, when deciding to ofoad Three reasons why machine learning is required for of-
actions with vast input and action spaces. Nei at al. [128Jading federated MEC systems are summarized in Table
observed that the initial 1000 iterations of DRL performanc¥lll. First, a control plane module must make an immediate
were poor. The DRL model was pre-trained using a heuristibioice about of oading. Traditional optimization, with its high
search-obtained dataset as an expert, in order to achieve goohputational complexity and exhaustive searching, is not
performance at system startup. capable of meeting a control plane's latency requirement.
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TABLE VIII: Traditional Optimization vs. Machine Learning for Of oading in Federation.

References| ML Approach | Traditional Optimization Reason of using ML Conclusion

[110] DL Branch and bound ML-based of oading has lower cost

[133] DRL Greedy and Heuristic Computation complexity | ML-based of oading has the lowest convergence time

with better latency and energy usage

[112] DRL Relaxation-based, and local- ML-based of oading has the lowest convergence time
search-based approaches with near-optimum result in terms of computation rate

[121] DL Heuristic CTO ML-based of oading has higher throughput

[126] MAB Greedy ML-based of oading has lower latency

Unknown information in

[105] DRL Greedy dynamic Environtment ML-based of oading has more completed task

[109] MADDPG Greedy ML-based has lower latency and has higher channel
access success rate

[122] DQN Greedy, Brute force ML-based of oading has higher system utilities than
greedy and a little bit lower than Brute force

[123] ML, MAB Game theory optimization ) ML-based of oading has fewer failed task

Heterogenous environment
[113] Double DDPG | Greedy ML-based of oading has lower latency

Second, monitoring dynamic MEC environments is not trivisdannot address the dynamic environment. In their previous
and can introduce unknown information into the control plangork, Ale et al. [134] predicted traf ¢ conditions and updated
module, that is responsible for determining of oading policythe cache by using DL. However, DL needs a large, labeled
Third, modelling a heterogeneous MEC system precisely dataset to train models.
challenging. Some researchers carried out traditional optimizaChannel conditions, available communication, and compu-
tion in federated of oading using a system snapshot. tation resources change dynamically over time. Such changes
There are some studies [110], [112], [115], [133] thanay render some information unknown to the IloT agents,
employed ML to achieve fast of oading decisions in a complewhich determines the of oading policy. Guo et al. [109]
federated system. These of oading decisions and resoumsed a multi-agent DDPG approach to tackle an of oading
allocations were modelled as mixed-integer nonlinear prproblem with some unknown or incomplete information. To
gramming (MINLP), that would take a long time to solveensure that a conventional algorithm, such as Greedy, works
by conventional optimization. Yang et al. [110] used Dlin this scenario, assumptions such as requiring agents to be
approaches that solved the MINLP problem in near-reasiware of the channel and resource conditions in real-time
time. DL also outperforms a conventional branch-and-bounere made. In terms of the success rate in utilizing available
algorithm, in terms of system costs. A mobile device in ahannels, the results showed that MADDPG outperforms the
MEC system should take an online of oading decision in &reedy algorithm. Zhaolong et al. [122] addressed of oading
complex and dynamic system which makes relaxation-basaid resource allocation problems by using a DRL approach.
and local-search-based approaches to rerun in every chambe proposed DRL approach had higher system utilities than
to the environment. These traditional optimization algorithn&s Greedy algorithm and a little lower than the Brute-force.
carry out exhaustive searching, which is not suitable for onlirdowever, Brute-force carried out exhaustive searching, which
decisions. Zhang et al. [133] extended a heuristic algorithm iy not suitable for a control plane.
the DQN, resulting in a fast-convergence algorithm suitable A heterogeneous federated system is dif cult to model
for real-time application of oading, and Huang et al. [112}recisely, which makes the traditional of oading optimization
proposed a Lyapunov-aided DRL framework to determine th#f cult to implement. The papers [113], [123] used ML
of oading policy in near-real-time with a near-optimum resulto carry out of oading in such a heterogeneous system. In
compared to the exhaustive searching approaches. Sonmez et al. [123], the ML-based approach outperformed
Of oading in dynamic federated systems with unknown inthe Game-theory-based optimization in terms of the success
formation was considered by proposing ML-based approactfstasks. Quality of experience (QoE)-aware task of oading
in the papers [105], [109], [121], [122], [126]. Fan et al. [121jn @ Mobile Edge Network (MEN), which has heterogeneous
extended an SDN-controller with DL to learn a dynamic V2)omputation and communication resources, is difcult to
system and carried out optimum of oading. This approacfodel for conventional optimization. He et al. [113], therefore,
outperformed conventional trafc of oading (CTO), which proposed Double DDPG with which, its learning agents could
uses heuristic algorithms, in terms of network throughpigutomatically update its model according to its experiences
Gao et al. [126] modelled of oading problem of V2X systemdn interacting with the environment. This proposed method
into Multi-Armed Bandit (MAB) and solved it by Probability- outperformed Greedy in terms of latency.
Based V2X Communication (PBVC), and adaptive learning- The references in Table VIII do not speci cally compare the
based task ofoading (ALTO). Ale et al. [105] proposedraditional optimizations with the ML-based approaches. Most
DRL to address dynamic MEC systems for IoT. The currenf them used model-free reinforcement learning approaches,
optimization techniques only take a snapshot of a system aguwth as DQN and DDPG, because these can directly adopt a
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model from the environment and do not need to provide the emith limited computation and battery capacity. UEs sense
vironment's model to the learning agent. The Greedy algorithemvironmental conditions such as signal strength, battery level,
is the preferred traditional algorithm because, with incompletend resource utilization (local information) to determine where
information from the environment, Greedy can still converga, task is to be executed. Network devices of oad their task to
although it may become stuck in local optima/minima. MLanother network device with the least load to avoid overloading
based approaches can converge faster than traditional ogtid minimize latency. These network devices could be a router,
mization with near-optimum results. Nonetheless, traditiontthf ¢ dispatchers, MEC servers, or fog servers with a data
optimization, which applies an extensive procedure, can ensptane function. Network device of oading is determined by an

that the global optimum is found because it visits all feasiblerchestrator which has access to global system information.

solutions. In contrast, machine learning is dependent on the4) Infrastructure capacity expands UE capacity, while

data utilized in the training phase. non-infrastructure capacity extends UE connectiofisaf-
c or tasks can be of oaded to infrastructure and/or non-
V. LESSONSLEARNED infrastructure. Infrastructure comprises all entities that belong

We categorize the lessons learned from this survey on % providers or organizations, such as _base stations, MEC
vers, fog nodes, and the cloud. Such infrastructure entities

approaches that were used in the survey, such as traditiongl gt rend bile devi 4 UEs i, S
optimization and machine learning. are used to extend a mobile device an s' capacity. Some

areas may, however, not be covered by infrastructure entities.
N o _ UEs of oad traf ¢ or tasks to another UE or mobile device
A. Traditional Optimization-Based Of oading (non-infrastructure) in such an area, called an opportunistic
Some understanding comes from the survey of papers mgtwork. A UE or mobile device can share its computing
traditional optimization-based of oading which explore theapacity as a server or share its communication capability as
basic idea of carrying out of oading in a cloud-edge-fog relay to infrastructure in an opportunistic network.
system. 5) Horizontal of oading boosts east-west traf ¢ while keep-
1) Traf ¢ of oading is a short-term solution to the dynamicing traf c at the lower tier with low-latency services. Vertical
arrival traf ¢ rate, while capacity allocation is a long-term of oading, on the other hand, minimizes capacity allocation
solution. Traf ¢ or task of oading in a MEC system is a part and simpli es management by centralizing the upper ther.
of control plane problems, for which a quick decision mudederation of cloud-edge-fog is a hierarchical system in which
be taken in response to traf ¢ uctuations. The control planéhe cloud is at the top, the edge is in the middle, and the
determines the of oading policy upon the arrival of traf ¢ or afog is at the bottom. Furthermore, each tier may include some
task, leading to an objective such as minimizing latency. Thoviders. This system has two of oading directions, which
control plane reacts to incoming traf ¢ within seconds. Oran be bottom-up (vertical) or east-west (horizontal).
the other hand, the management plane forecasts future traf cVertical of oading occurs between the customer and
or task arrival rates based on historical data. The systerpiovider or between tiers within a provider, such as of oading
capacity is then scaled to accommodate the predicted of oadedtwo-tier MEC architecture. In customer-provider (upward)
traf c. By integrating the control and management plane modertical of oading, a customer will be charged for each
ules, it is possible to meet the arrival traf ¢ or task's latencyesource used, and minimizing costs will be of concern in
requirements while allocating the fewest possible resourcesuch cases. On the other hand, an upper-tier provider may
2) There are two of oading decisions to be made— where tuf oad a service to a lower-tier provider in order to meet
of oad, and how much to of oadAn of oading decision could the required latency (downward of oading). The upper tier
be a binary decision, which is a decision to of oad or notprovider pays an incentive to a lower tier provider for every
or a ratio-based of oading decision, which determines hogerved task. The upper-tier provider minimizes of oading costs
much and where to of oad tasks or traf c. Binary of oading while maintaining the required latency.
is usually carried out by UEs, as UEs lack complete knowledgeVertical of oading can also be carried out within a provider
of external system resources. Each UE measures its capaaitd is typically used to move tasks from a lower, more
to compute a task locally or to of oad to external resourceslispersed, tier to a higher, more centralized, tier with larger
Ratio-based of oading is carried out by network devicesapacity. The upper tier provides greater coverage and shares
controlled by an orchestrator, which has global informatioits capacity with a couple of bottom-tier sites, in order to
to determine where and how much to of oad. To reduckandle high arrival traf ¢ or task rates that would overwhelm
computation latency, this of oading is performed from arsome bottom-tier sites.
overloaded federation entity to an idle federation entity. The Horizontal of oading is carried out to distribute trafc or
ratio-based of oading is better suited for the network contrabsks to the same tier rst, rather than of oading them to
plane than per-packet/task of oading, as the latter requirashigher tier. Keeping tasks on the bottom tier, such as fog
large control plane computations due to millions of networér edge, might help reduce communication latency due to
packets. their proximity to the UE or MD. While horizontal of oading
3) Hierarchical of oading— application of oading by UE keeps traf c on the bottom tier, the decision to of oad must
and traf c/task of oading by the federation network controlbe made on the neighboring side, otherwise, the traf c will
plane. UEs carry out of oading to extend their computatiorencounter prolonged communication latency, and a trade-off
capacity and extend their battery life since UEs are equippkdtween minimizing computing and communication latency
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takes place. poorly; it will remember previous successful actions taken in
6) Service chaining of oading is unavoidable, given thaa given environment state condition and forget failure action.
modern services are composed of multiple microserviltes. With such trial-and-error attempts, the agent will improve after
task of oading, a task can be a single task or consists eéveral attempts.
several sub-tasks. Full of oading is carried out for a single task 2) Machine learning approaches are a panacea for opti-
which can be processed at the local device (UE) or remotethjizing of oading decisions with some missing information.
(cloud, edge, or fog). While in partial of oading, some subSome providers in a federation may hide some information
tasks can be processed locally, and others are of oadedftom others. However, traditional optimization requires all
a remote server. Sub-task synchronization may be needeéhfbrmation to calculate optimal of oading. Some researchers
some sub-tasks depend on other sub-task outputs. made assumptions about such hidden information because the
7) Different providers have different of oading objectivesgalculation could otherwise not have been carried out. By
such as minimizing cost or latency, and they might competentrast, ML-based of oading will map any given input that
with each otherOptimizing of oading decisions in a federatedmay also be incomplete to determine the best of oading deci-
system with some providers is challenging because easihn. This learning process can be carried out with incomplete
provider has its own objective. A collaborative of oadinginformation. However, in order to converge, ML relies on
approach by adopting game theory and analyzing Nash eqidtasets obtained from the environment. Experts are needed to
librium is carried out. In the Nash equilibrium, the of oadinglabel the data so that it can converge on an optimal solution.
strategy of each provider is optimal when taking anothdhe RL algorithm begins with trial and error and has a slow
providers' decisions into account. Each provider ends wwnvergence time.
winning since everyone gets the result they expect. 3) Retraining is more ef cient than recalculation for control
plane problems, such as of oading optimizatidn.terms of
the cost to obtain an optimal decision, traditional optimization
recalculates the decision for each new given input before de-
Some insights were gained from a survey of ML-basedling a new of oading decision. The ML-based solution will
of oading in a cloud-edge-fog federation. An of oading de-retrain the model to obtain an optimal decision. Without the
cision in a cloud-edge-fog federation is made by the contr@training process, the model could still come up with a sub-
plane and applied in the data plane of the networking deptimal result. ML-based approaches can thus decide quickly,
vices. This control plane decision must be carried out quickiyithout waiting for the training process to be completed; and
(fast response time). Making a quick decision in a federat®l. models can also be reused and transferred.
system with high complexity is very challenging. Traditional 4) Federated systems are a type of multi-agent environment.
optimization, which uses exhaustive searching, may violate thdearning agent, a control plane module, can be a single agent
latency requirements of a control plane decision. ML-basgghced in a central location or a multi-agent distributed over
of oading is a promising method that automatically maps some areas. A single agent determines the of oading decisions
given system settings to arrive at the best of oading decisiofor all devices in a federation. An agent's model is trained by
1) Ofine and online learning of ML-based of oading a centralized dataset. The size of the federation system will
optimization approachedJnsupervised-based ML is used taaffect the dataset's dimensions and raise a scalability problem
predict future system conditions by using earlier/older dateecause of the very large dimensions of the observations and
The label of the data is not essential in unsupervised learninigcisions. Single-agent learning is unrealistic because a feder-
The predicted results are used by the control plane to make thin consists of many providers who have different of oading
best of oading decisions. Unlike unsupervised learning, supgelicies. Multi-agent learning is suitable in a federated system
vised learning trains the model directly, based on collected déta two reasons. The rst reason is scalability. A provider
that an expert has labelled. The label is an of oading decisionay have agents in some areas which produce of oading
that leads to an objective such as minimizing delay or cosiscisions based on local observations. Having multi-agents,
for a given current system condition. which calculate of oading decisions in parallel, can reduce
While supervised learning can derive an optimal solutiogpnvergence times. The second reason is the federation itself
deriving a well-labelled dataset is not easy; extensive mopecause the federation is a kind of multi-agent environment
itoring is required. Some monitoring mechanisms that carwyhere each agent belongs to each provider.
out costly broadcast data are required to obtain information in5) Federated learning sharing model weights is a promising
distributed edge-fog systems. A label of data must be updatggbroach to obtain global optimum of oading decisions with
frequently in a dynamic system because an of oading decisiétmw communication costA cloud-edge-fog federation may
must be carried out quickly. consist of millions of devices scattered over a large area.
Both unsupervised and supervised learning are categoriZedearning agent that produces of oading decisions can be
as of ine learning because they learn from previous data, atrdined by a centralized dataset with global information, or
not directly from the environment. Reinforcement learning isained by a local dataset consisting of local information; being
one of the ML-based approaches which learns directly frotrained by local dataset results in a local optimum of oading
the environment, to determine the best action. In a cloudecision. Although, using a centralized dataset with global
edge-fog federation, an of oading decision is produced bynformation results in a globally optimum of oading decision,
a learning agent. In the beginning, the agent will perforfout generates extensive communication costs.

B. Machine Learning-Based Of oading
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C. Imitation Learning: Online ML Imitating Of ine Tradi- or hours, and so generates long-term solutions for hot-spot
tional Optimization trafc. A management plane problem is well-suited to

1) Traditional optimization as an expert on the ML modefraditional optimization, which has a long decision time.
A well-labeled dataset is required for machine learning thile the short-term solution to hot-spot traf ¢ is of oading,
reach the best decision. Given environmental information,"{1ich is part of the control plane problem. Ofoading
human expert could not directly create the label for of oadin§SiNg machine learning has a short decision time, since it
actions. To properly label the data, they require formulas Bfoduces a sub-optimal solution after only a few training
experiments. By using simulations and prede ned scenarid¥§0cesses, making it appropriate for the control plane problem.
traditional optimization could be utilized to determine the o . o _
optimal of oading decision (label). The collected data from 3) Transitioning from traditional optimization to machine
this simulation could then be used to train the ML model pridf@ming-based approaches can minimize the assumptions of
to its application to the live system. Using this method, the MEnNknown information in modeling federated syste@tsannel,
model mimics the performance of conventional optimizatioR€tWwork, and server settings are dif cult for a learning agent
Even though the traditional optimization, during the creatiof® obtain completely. Certain pieces of information, such as
of datasets, could not account for every possible scenario, 1€ relationship between tasks and the processing capacity
algorithms can retrain the model using direct feedback afAuired to do those tasks, may be unknown to the learning

interaction data from the environment. In contrast, supervis@g€nt- To deal with unknown information in traditional op-
learning requires additional ofine training to cover newlimization, some researchers make assumptions such as the

scenarios. computing and networking capacity is homogeneous and able

2)Traditional optimization accelerates machine Iearnin%}O collect system information completely. Because machine
convergence, and vice vershlL has a faster decision time [€arning-based techniques can map any input to a desired
than traditional optimization because, unlike traditional optRUtPUL, they can be utilized to minimize the assumptions of
mization, it does not wait for convergence before deciding ¢fknown information.

an action. The convergence of these RL algorithms, which rely

on random action and direct environment feedback, requires VI. RESEARCHOPPORTUNITIES ANDCHALLENGES
numerous iterations. Using conventional optimization to gen&{- rasearch Opportunities

ate a preliminary dataset for training a machine learning (ML)

model, could accelerate the ML model's convergence, as thel) Fog-Fog FederationThe development of fog computing,
of oading action obtained by conventional optimization coul§€ates several bene ts for application developers, applica-
serve as initial labels for the optimal solution. tions, and different industries by distributing functions [135].

3) Ofine learning could minimize the training cost ofA fog-fog federation helps to monitor, process, analyze, react,
online learning. Applying an untrained model to a real-2nd distribute computation, communication, storage, control,

world system will require numerous iterations to arrive #nd decision-making closer to the users. However, such a

the optimal solution. Users of the system will experienc@deraﬂon also results in challenges for individual fogs. When

signi cant performance degradation. Model transferability i&9S aré closer to each other than to edge or cloud, the
one of the bene ts of of oading based on machine |eaminét_aderatlon between fogs allows them to enhance their data
Before applying to the existing system, the model could t§eggregat!0n, processing, and storage capabilities, and requires
trained of ine with various potential scenarios. ConsequentifO0Peration between these fogs to ensure the proper coordi-
when the model is applied to the system, users may shption for the necessary interactions. However, because the

experience optimal or suboptimal of oading decisions. fog is a collection of mobile devices, it poses a signi cant
dif culty regarding resource management, capacity discovery,

N ) ) . authentication, etc.
D. Traditional vs. Machine Learning Based Of oading 2) V2X.In the past few years, Internet usage has continued
1) While traditional optimization determines the optimunto increase with the development of advanced technologies.
of oading action based on a snapshot of the system, machinke gradual increase of smart vehicle applications has pro-
learning-based of oading would make use of continuouduced computation-intensive tasks for vehicles, and thus, the
system information.Because a system snapshot may ndatternet of vehicles (IoV) improves traf ¢ conditions [136].
accurately represent future system behavior, of oadingowever, these vehicles are independently unable to meet
becomes obsolete in traditional optimization. ML-basetthe demands of their limited computing resources. Vehicle-to-
techniques, particularly RL-based of oading, can be traineslerything (V2X) communication is an emerging technology,
on batches of collected data without waiting for complete d@hat supports vehicles to of oad their tasks across vehicles
a large amount of collected data from the environment.  [137]. With vehicle-to-infrastructure communication (V2I), a
vehicle can of oad to infrastructures such as RSU, edge, or
2) Traditional optimization techniques are suitable forcloud, and with vehicle-to-vehicle communication (V2V), one
management plane problems, while machine learning-baseehicle can of oad its tasks to other vehicles. As an alternative,
approaches are best suited for control plane problemthis technology also facilitates multiple vehicles forming a fog
A management plane, which is in control of resourcky sharing their resources, popularly known as a vehicular-
allocation in a federated system, makes decisions in minufeg, to provide services to others. Furthermore, the dynamic
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cluster establishment must be considered in of oading traf can be centralized or distributed. A centralized federation
to a disbanded cluster that will result in packet loss. has a single federation manager between multiple federated

3) Mobility of a Vehicular-Foglntelligent transport systems entities, and that manager manages the federation. In such
(ITS) [138] exchange information for safe V2V and V2Icases, there is a joint federation agreement between all the
communication. In a V2V environment, vehicles communicatntities, based on which of oading decisions will be taken
directly with each other, and with services that support safe41]. In a distributed scenario, a federation is formed between
driving and provide information. However, in a dynamidwo individual entities or a group of entities of a system.
environment, some applications of the moving nodes require such cases, a separate agreement is made based on what
high computing power, and the computational resources @immunications take place. Following the establishment of the
each vehicle may not be able to meet such a requirement. ¥geement, decisions on service discovery, authentication, and
address this issue of V2I communication, by using MECs eervice migration can be made centrally or distributively.
RSUs that are closer to the vehicles. However, in a certain dy-6) Resource Allocation?vhen the number of resources in a
namic environment, vehicles can move out of communicati@ystem is large, some may remain underutilized. If the number
range during task of oading. In such a case, either the task resources is small, of oading may be triggered too often.
cannot be of oaded to the infrastructure, or, if of oaded, thédence, one of the key challenges of of oading is to determine
vehicle cannot receive the results. In an environment whete right amount of resources required at the location where the
vehicles are on the move, the rate of movement of vehiclestésks will be executed, otherwise, after of oading, if there is
usually fast, and the change of the topology is intense, aady shortage of resources, tasks will be of oaded further away
it is here, where the V2V task of oading is a matter thaf142]. This may increase the communication latency, and an
needs to be investigated. Recent vehicular-fog research hagease in the number of of oading hops may also trigger
focused mostly on the static vehicle scenario [63], whereasbreach of data privacy [143]. Again, most applications and
in a vehicular-fog set-up, vehicles are mostly managed bysarvices in the system that require intensive computation and
fog manager like RSUs, which is part of the infrastructurdiigh processing are incompatible with devices because of their
In a dynamic vehicular-fog with mobility, management of thémited resources.
federation is a matter of concern. 7) Energy Consumptiolthough task of oading is largely

4) Scaling.Auto-scaling [139] can be classi ed into differ- inevitable in a federated system, it is still a highly energy-
ent categories. First, manual scaling, where we specify ordgnsuming process. One of the challenges is to estimate the
the maximum, minimum, or desired capacity changes to autnergy consumed in communication activities of task of oad-
scaling groups, and auto-scaling maintains the instances wiitly to make task of oading ef cient [144]. As a result, it is
updated capacity. Second, scaling is based on a scheds@emetimes a challenge whether to of oad or not. An ef cient
where one can scale an application ahead of known loadergy estimation model would help to decide whether to
changes. For example, on some particular day, in peak logasform task of oading, based on the energy cost of the
or on a limited offer, one can scale an application based oommunication activities.
scheduled scaling in such cases. Third, for scaling based o) Task Of oading in Different Application ScenarioBask
demand or dynamic or reactive scaling, resources are adjustédading can take place at different locations of different
in real-time based on the number of incoming requestederated systems, depending on the type of service required,
Finally, predictive scaling predicts future arrival traf c ratesand based on different criteria. This section is an overview
by learning past arrival traf ¢ information, and the learningf different application scenarios where task of oading has
outcomes are then used to make scaling decisions. Inregently played a key role. In ITS, automatic traf ¢ monitoring
federated system, service providers can scale resources uprat management systems [145], edges, and RSUs can assist
down by adopting different scaling methods. It is also essentaivers by providing traf c updates, emergency alerts, etc. In
for a service provider to make decisions based on differefiaig-to-fog of oading scenarios, one vehicle can assist another
performance metrics, whether to scale up its resources bipcaching data if required [136]. Emergency help alert mobile
accommodate more incoming requests or of oad the requestdioud (E-HAMC) can provide a quick way of notifying the
others. So, it remains challenging to decide when the resourcelevant emergency authorities by utilizing the services of
need to be scaled up to avoid of oading and when to bfeg for of oading and pre-processing purposes [146]. When
encouraged to of oad to avoid scaling [140]. Scaling in @an alert message is sent, these services can automatically
container/virtual machine-based system could be ne-graingdansmit the location of an incident and the emergency contact
such as increasing the capacity of the VM (vertical scaling) orformation.
adding more containers/VM to the available servers (horizontalNew of oading schemes can improve privacy levels, reduce
scaling). The of oading controller must account for the timeomputation latency, and save the energy of healthcare loT
required for scaling to avoid packet loss due to incompletkevices [147]. Exploiting fog and cloud computing paradigms
computing resources scaling. in health monitoring reduces the hospital's capital expenditures

5) Centralized vs. Distributed FederatioWarious factors for patient data processing and storage. The fog can be used
affect a federation, such as the services available from servfoe simple data analytics, whereas the cloud is used for big
providers, the type of services, their capacity and capabilitietgta analytics [148]. Edge Computing also offers intriguing
their geographical location, number of customers, type pbssibilities for smart agriculture [150]. For example, sus-
customers, etc. A federation between the service providainable water management is a common issue at the farm
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level. By of oading sensible data from the sensor devicasilitary, healthcare, etc. It may also compromise the privacy of
to the edge server, appropriate action can be taken. Edgéividuals. Hence, ef cient and robust data security measures
and fog computing enables intelligent surveillance with realvould be required so that of oading decisions are precise,
time video stream processing. Processing large amountshetause security breaches are something that may not be
data to the cloud will result in long communication latencypublicly disclosed by service providers, unless compelled to
consume massive network resources, and jeopardize vidkoso by particular regulations [153].
privacy [149]. Cloud, edge, and fog can be federated in several different
ways in which a subscriber can move from using the services
of one (cloud, edge, or fog) to using the services of another.
There is a need for authentication when a subscriber moves
1) Interoperability.Interoperability is closely related to bothpetween two entities that are federated, directly or indirectly
standards and lock-in [151]. Internet service providers ugfy some hops in between. This leads to 3rd-party [154] and
multiple networks so that the failure of a single provider willth-party authentication.
not disrupt communications entirely. Here we will focus on 6) Geo_Diversity_The location and geographica| diversity
interoperability between cloud, edge, and fog providers. In@@ a service provider might be of concern to some users.
federated system, an application's execution can be carried @#mpared to centralized cloud systems, widely spread geo-
with its components spread over different service providergraphical distribution of fogs and edges can be considered
From an architectural perspective, appropriate signaling, dagg, one of the key enablers of the Internet of Things (loT),
and control interfaces are needed to ensure interoperabihd big data applications [155]. These offer low latency and
ity at the architectural level, or more precisely, to suppofgcation awareness due to the proximity of the computing
an application's life-cycle, the control interfaces are needefévices. Controlling a distributed area's forwarding devices
for interactions between the different domains. A providegith a centralized network control plane causes control traf ¢
should design control interfaces to allow other providers {9 travel a long distance, and has scalability and high avail-
federate and utilize their resources safely, without exposiagility issues. The use of multiple network control planes in
the architecture's details. Furthermore, a federation interfa@gge Computing should be in\/estigated to reduce |atency and
standard could be developed to support federation and majdieve high availability.
task of oading between providers easier and safer. 7) Reliability. The reliability track record of a service
2) Service Level AgreemerfEvery user wants assurancesgyrovider is just as crucial as contractual guarantees. Big cloud
that their service provider will remain reliable because serviggoviders are likely to have signi cantly better reliability than
interruptions can cause signicant nancial harm. Servicgelatively small, self-maintained IT infrastructures, as they
Level Agreements (SLAs) [152] are contractual agreements f@4ve massive computing capabilities. Edge and fog computing
certain levels of reliability, which would then be compensategi,stems are closer to a user and improve user experience by
in various ways, if there was any breach of the contract. Tlmowdmg low |atency and h|gh|y ef cient Computing_ When
same kind of agreement is applicable between the serviggmputationally intensive components are of oaded to edge
providers who federate with each other to provide servicggrvers or distributed to fog nodes, various constraints such
to their respective subscribers. There must be a contractag@power limitations, limited computing resources, inevitable
federation agreement, to provide a certain level of reliabilitgerver failure, etc. come into play. In such a scenario, how is
Such provisions may include monetary compensation, if thige reliability of of oaded computing [156] to be guaranteed?
level of service offered is below the Contractually Speci e(ﬂiow then does one nd an appropriate of oading poin[ that
level. can guarantee completing a task at a low cost, with minimal
3) RedundancyRedundancy is crucial in numerous sceenergy consumption for communication? What is achievable
narios to ensure the system's high availability. Obviouslyninimal latency for the completion of the task?
redundancy is more critical at the cloud level as compared tog) Pperformance.In federated systems, many customers
edge and fog, as a cloud has multiple data centers, redundagl; share common physical computer hardware and network
networking, backup power, data backup plans, and oth@frastructure. However, sharing can also cause performance
redundancy resources. problems. As providers use statistical multiplexing, excessive
4) Fault Toleranceln a federated system, of oading grad-levels of over-subscription may degrade services. Poor re-
ually becomes automated, and where heterogeneous entiég§rce scheduling and poor management could also degrade
are involved, the risks of failure increases. Some Comm%rformance' even if there is no over-subscription_ If any
examples are connectivity failure, use of faulty devices, corgervice provider in a federated system misrepresents their
munication delays, etc. Of oading processes must be robugtailable capacity or capability, it may cause performance

and capable of not only detecting, but also handling fauligegradation. A real-time benchmarking service for federated
on time. The accuracy and timeliness of the fault detecti@®ge resources is required in this case.

algorithm to detect the faults are thus of signi cant importance.

5) Security.In a federated architecture, multiple systems
communicate with each other, and when of oading occurs,
there is a risk of data theft and misuse. The misuse of dataNetwork communication relies on the coexistence of a
can be a serious threat to security systems such as of Hagiety of architectures of different services. The coexistence

B. Research Challenges

VIl. CONCLUSION
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