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Abstract —In this paper, we present a fast failover mechanism and 

a fast switchover mechanism to deal with link failure and 

congestion problems. In the fast failover mechanism, the 

controller pre-establishes multiple paths for each 

source-destination pair in the related OpenFlow-enabled (OF) 

switches. When a link becomes faulty, OF switches are able to 

failover the affected flows to another path. Based on the 

pre-established paths, in the fast switchover mechanism, the 

controller periodically monitors the status of each port of each OF 

switch. When the average transmission rate of a port consistently 

exceeds the rate threshold, the controller would decrease the 

transmission rate of the port by iteratively switching the flow with 

the minimum rate to another path. The emulation on Ryu 

controller and Mininet emulator shows the average recovery time 

of the fast failover mechanism is less than 40 ms, compared to 

hundreds of ms in the fast restoration mechanism. And, the fast 

switchover mechanism can reduce 47.5%-72.5% sustained time of 

link congestion depending on the parameter setting. 

Keywords—software defined networking, multiple paths, network 

resilience, link failure, link congestion.  

I. INTRODUCTION 

In recent years, software-defined networking (SDN) has 
received increasing attention in both academia and industry. In 
SDN, the control plane is separated from the network devices 
and is managed by a logical centralized controller. The 
controller supports any kinds of control software to manage 
underlying network devices via an open and standardized 
application programming interface (API). OpenFlow [1][2] is a 
well-known example of such an API. An OpenFlow-enabled 
switch supports one or more flow tables and communicates with 
the controller through a secure channel. The controller can 
manage the packet traffic by reactively or proactively installing 
flow entries in the flow table. In each flow entry, certain 
instructions are specified to handle the matched packets. 
Therefore, an OpenFlow-enabled switch can perform different 
functionalities according to the flow entries installed by 
applications. 

Due to its centralized control paradigm, SDN is being 
adopted in the various types of networks such as data center 
[3][4], mobile networks [5][6], transport networks [7][8], and 
enterprise networks [9]. Network resilience is crucial to SDN 
networks. In this paper, we focus on link failure and congestion 
problems. To cope with link failure, there are two typical 
approaches: restoration [10][11] and protection [12][13]. In 
restoration, when a switch detects a link failure (port-down 
event), a notification message is sent to the controller. For each 
affected flow, the controller then computes another path and 
writes an alternative flow entry into the related switches. Since 
the controller need to handle a large number of affected flows 
simultaneously, this approach would yield a long latency to 

recover all the affected flows. In protection, the controller 
computes multiple paths for each flow and installs the flow 
entries into the related switches in advance. In cases of link 
failure, the switch can directly forward the affected flows to 
another path without waiting for the response from the 
controller. But, this approach would yield a large number of 
rarely-utilized flow entries which slow down the pipeline 
processing speed of the switches.  

In addition to link failure, link congestion is also a 
challenging problem for network operators. Link congestion 
occurs when a link is carrying too much data. A typical effect is 
packet loss which would cause an actual reduction in network 
throughput. In traditional computer networks, link conditions 
could be reflected by the link weights of interior gateway 
protocols (IGPs). Therefore, a heavy-loaded link would have a 
higher link weight. Each router then can select a light-loaded 
path to resolve link congestion after exchange of the link 
weights. However, this approach cannot be effectively handle 
link congestion since the link weights are exchanged among 
routers in every 30 seconds. There are very few studies focused 
on link congestion problem in SDN. In [14], each switch needs 
to record pathLoad information which is the transient link load 
for each outgoing link. When the pathLoad exceeds a 
predefined threshold, the switch will compute the new sending 
rate and notify the source to reduce link congestion. In this 
mechanism, some intelligences built on switches are required.  

 In this work, we propose a fast failover mechanism and a fast 
switchover mechanism to deal with link failure and congestion. 
In the fast failover mechanism, the controller periodically 
computes multiple paths for all source-destination pairs and 
proactively installs the flow and group entries on the related 
switches. When a link failure is detected, the switch can failover 
the affected flows to the backup path. In this way, the 
connectivity of hosts could be recovered in a very short time. In 
the fast switchover mechanism, the controller periodically 
performs congestion detection for each port of each switch. 
When a port becomes congested, the controller adaptively 
decreases the transmission rate by iteratively switching the flow 
with the minimum rate to the backup path. Therefore, the link 
congestion could be handled efficiently. We implemented the 
proposed mechanisms on Ryu controller [15] and evaluated the 
performance via extensive emulations on Mininet [16]. The 
results show the average recovery time of the fast failover 
mechanism is less than 40 ms and the fast switchover 
mechanism can efficiently reduce the sustained time of link 
congestion. 

The remainder of this paper is organized as follows. Section 
II presents our fast failover and fast switchover mechanisms. 
Section III demonstrates our experimental results. Finally, the 
conclusions are given in Section IV. 
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II. FAST FAILOVER AND FAST SWITCHOVER MECHANISMS  

A. Network Architecture  

Figure 1 depicts our SDN architecture which is typically 

composed of a logical centralized controller and OpenFlow 

(OF) switches. The controller is regarded as the “brain” of the 

SDN network which manages the underlying OF switches via 

OpenFlow protocol. Our mechanisms, fast failover and fast 

switchover, are implemented as a controller module which runs 

on the controller. In the fast failover mechanism, the controller 

periodically acquires global topology information (topology 

discoverer). According to the topology information, it then 

computes multiple paths for each source-destination pair and 

proactively establishes flow entries and group entries in 

traversal OF switches (path computer). As a result, when the 

“port down” event is detected by OF switches, the OF switches 

can locally failover the affected flows to another path which 

greatly reduces the recovery time. Furthermore, the flow setup 

delay could be reduced significantly by preconfiguring the flow 

entries into the OF switches. 

After the fast failover mechanism is executed, multiple paths 

are established in the traversal OF switches for each 

source-destination pair. In order to resolve link congestion, the 

fast switchover mechanism is designed to adaptively adjust the 

forwarding path of flows in a centralized manner. In the fast 

switchover mechanism, the controller periodically monitors the 

port statistics of underlying OF switches. If the average 

transmission rate of an egress port is continually higher than a 

predefined threshold, the controller will decrease the sending 

rate of the port by iteratively switching the least-loaded flow 

from the active path to the backup path (flow switchover). 

Therefore, link congestion could be resolved in an efficient 

fashion. All the required network states such as topology, hosts, 

routing information, and port statistics are maintained in an 

information base. We define a number of RESTful APIs as 

northbound interface for network management. Network 

administrators could insert host information and monitor all the 

network states via the defined RESTful APIs. 

Our mechanisms are based on OpenFlow specification 1.3.2. 

In each OF switch, there are multiple flow tables and a group 

table. A flow table consists of flow entries. Each flow entry 

contains (1) “match fields” which define the flow, (2) “counters” 

which record flow statistics, and (3) “instructions” which 

define how the packets of the flow should be handled (drop, 

forward, or goto another table). When a packet arrives at a OF 

switch, the packet is matched against the flow entries in the 

flow table. If a flow entry is found, the instructions of the flow 

entry will be executed. Otherwise, a table-miss flow entry 

would be matched to process the packet. Typically, the 

instructions of the table-miss flow would send an 

OFP_PACKET_IN message to the controller for further 

processes.  

The group table enables OF switches to employ additional 

forwarding methods. The group table also consists of group 

entries. Each group entry contains a unique group ID, a group 

type, and a number of action buckets. To execute any specific 

group entry, the flow entry forwards packets to a group entry 

having a specific group ID. In our mechanisms, we use an 

important group type, fast failover, to implement our multipath 

design. The group entries of this type could have multiple 

action buckets, but only the first alive action bucket is executed. 

Therefore, when the first action bucket is not alive, the OF 

switches can locally execute the second action bucket without 

involving the controller. Another advantage of using group 

table to implement multiple paths is that the flow table will not 

be enlarged significantly. 

B. Fast Failover Mechanism  

Figure 2 shows the flowchart of the fast failover mechanism. 

We set a timer (FF timer) to define its execution interval. In our 

cases, the timer is set to 30 seconds. In the beginning, the 

controller performs topology discovery to acquire global 

topology information based on link layer discovery protocol 

(LLDP). Here, we briefly introduce the procedure of topology 

discovery. Firstly, the controller sends an OFP_PACKET 

_OUT message combined with a LLDP packet to each OF 

switch. Upon receiving the OFP_PACKET_OUT message, 

each OF switch floods the LLDP packet to its neighboring 

switches. Once a OF switch receives the LLDP packet from its 

neighbor, it will send an OFP_PACKET_IN message which the 

data field contains the received LLDP packet to the controller. 

According to the OFP_PACKET_IN message, the controller 

can discover a link between two OF switches. Eventually, the 

controller can acquire the information of global network 

topology by this way.  

Next, the OF switches attached with hosts are formed into a 

switch set 𝑁𝑠 based on host information. The host information 

could be obtained manually (via RESTful API) or 

automatically (using learn bridge). For a OF switch i in the 

 
Figure 2. Flowchart of the fast failover mechanism  

 
Figure 1. Overview of Network Architecture 



 3 

switch set 𝑁𝑠 , the controller computes |𝑁𝑠| − 1 active paths 

(From the selected switch to other OF switches) based on 

Dijkstra’s algorithm. Then, for an active path j, the controller 

also computes |𝐿𝑗| backup paths considering a failure in each 

link traversed by the active path. In order to avoid routing loop, 

the controller checks whether there are path conflicts after 

computing a backup path. A backup path will be removed if it 

causes routing loop. Finally, the controller proactively 

establishes an active path and the backup paths by installing a 

flow entry and a fast failover group entry in the traversed OF 

switches for each source-destination pair. Two action buckets 

are specified in the group entry of the OF switches traversed by 

an active path. The first bucket and the second bucket indicate 

the output port of the active path and the backup path, 

respectively. Please note that the group entry will not be 

installed if the OF switches already have the same group entry. 

Figure 3 illustrates an example of the fast failover procedure. 

For the sake of clarity, there are only two hosts (Host_1 and 

Host_2) in this example. For the flows from Host_1 to Host_2, 

the controller computes an active path <ABC>. Then, two 

backup paths <AEFC> and <ABDEFC> are also computed for 

a potential failure in link <AB> and link <BC>. Finally, the 

controller establishes these paths by configuring a flow entry 

and a fast failover group entry in all the OF switches. The group 

entry has two action buckets at OF switches A and B which 

enable the packets to be forwarded from Host_1 to the OF 

switch B, and from the OF switch B to the OF switch C. 

However, at other OF switches (OF switches C, D, E, and F), 

the group entry only has one action bucket because only a 

backup path is configured. Figure 4 shows how the backup path 

<ABDEFC> is used when a failure occurs in the link <BC>. 

When a failure of the output port 3 is detected by the OF switch 

B, the packets will immediately be forward to the OF switch D 

though the output port 4. 

 

C. Fast Switchover Mechanism 

Figure 5 shows the flowchart of the fast switchover 

mechanism. We set another timer, FS timer, to define the 

execution interval. Since this procedure is required to be 

executed very frequently, the execution interval is set to 1 or 2 

seconds. The fast switchover mechanism consists of two stages: 

congestion detection and flow switchover. In the congestion 

detection stage, the first step is to acquire port statistics and 

group statistics from all the OF switches via the 

OFPT_MULTIPART_REQUEST and OFPT_MULTIPART 

_REPLY messages. The second step is to calculate the average 

transmission rate 𝑅𝑡  per port and the congestion window 

𝑊𝑖,𝑗 per port for each OF switch. At first, we compute the 

transmission rate 𝑟𝑡 per port as  

𝑟𝑡 =
𝑡𝑥_𝑏𝑦𝑡𝑒𝑠 ∗ 8

𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑
,                                 (1) 

where tx_bytes and max_speed denote the number of 

transmission bytes and the maximum port bitrate, respectively. 

We then employ exponential moving average (EMA) to 

calculate the average transmission rate 𝑅𝑡 per port as  

𝑅𝑡 = {
𝑟𝑡 𝑡 = 1

(1 − 𝛼)𝑅𝑡−1 + 𝛼𝑟𝑡   𝑡 > 1
,                   (2) 

where 𝛼 denotes the weight of current transmitted rate. For a 

egress port j, the congestion window 𝑊𝑖,𝑗 is increased by 1 if 

the average transmission rate 𝑅𝑡 is larger than the pre-defined 

rate threshold 𝑇𝑟. Otherwise, the congestion window 𝑊𝑖,𝑗 is set 

to 0. Based on the congestion window, the last step is to decide 

whether the state of the egress port j is congestion or normal. 

The state of the egress port j will be set to be congestion only if 

the congestion window 𝑊𝑖,𝑗 is also higher than the pre-defined 

window threshold 𝑇𝑤.  

 
 Once the state of a port j is set to be congestion, the controller 

will execute the flow switchover stage to decrease the traffic 

sent by the port j. In the flow switchover stage, the first step is 

to form a set of the available group entries E which the first 

bucket is the port j and the second bucket is available from the 

group table. In order to avoid another congestion, the controller 

 
Figure 5. Flowchart of the fast switchover mechanism 

 
Figure 3. Example of the fast failover mechanism 

 
Figure 4. Backup path used upon failure of link <BC> 
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selects the group entry with the minimum rate 𝑒𝑠𝑤 . Then, it 

checks the state of the second bucket of the group entry. If the 

state of the second bucket is normal, the controller will 

exchange the first bucket and the second bucket via the 

OFPT_GROUP_MOD message. Otherwise, the controller will 

remove the group entry and reselect again until there are no 

available entries. 

Figure 6 illustrates an example of the fast switchover 

procedure. In this example, we assume that the forwarding 

paths from Host_1 and Host_2 to Host_3 are pre-configured by 

the fast failover procedure. Thus, at OF switch B, two flow 

entries and two group entries are configured in advance. The 

action buckets of the group entries are the same. When the time 

t = T, the controller calculates the average transmission rate per 

port and the congestion window per port for OF switch B. If it 

then detects that the congestion window of the egress port 3 

exceeds the window threshold (𝑇𝑤 = 2), it will set the state of 

the port as congestion. The controller then executes the flow 

switchover stage to decrease the traffic sent by port 3. In this 

case, the controller selects the group entry with GID = 2 as the 

group entry with the minimum rate and checks the state of the 

second bucket (output port 4 of OF switch B). Since the state of 

the port is normal, the controller then swaps the first bucket and 

the second bucket of the group entry. When the time t = T+1, 

the controller performs the fast switchover procedure once 

again. The execution procedure is shown in Fig.7. Since the 

controller reduced the traffic sent by port 3 of OF switch B, the 

average transmission rate of port 3 is lower than the rate 

threshold (𝑇𝑟 = 0.7). As a result, the congestion window of the 

port 3 is set to 0 and the state of the port 3 is normal. Therefore, 

the flow switchover stage is not executed in this time. 

III. PERFORMANCE EVALUATION 

A. Emulation Environment  

We investigate the performance of the proposed mechanisms 

through emulation of real implementation. The proposed 

mechanisms are implemented on Ryu controller as a Ryu 

application. In the emulation environment, two servers are 

employed. The first server (i.e., Intel core i3-2120 CPU 

3.30GHz, Ubuntu 12.04 on VMware workstation) acts as the 

OpenFlow controller, running the Ryu version 3.6. The second 

server (i.e., Intel core i3-2120 CPU 3.30GHz, Ubuntu 12.04 on 

VMware workstation) emulates the network. As shown in 

Figure 8, a topology composed of N = 6 OF switches is 

considered. We use Mininet to emulate the topology and M 

hosts connected to each OF switch. The ping and iperf tools are 

used to generate traffic. In the fast failover mechanism, average 

recovery time, the number of required flow entries, and 

processing time are adopted as performance metrics. In the fast 

switchover mechanism, we investigate the impact of different 

parameter settings on packet loss rate. 

B. Numerical results  

Recovery time of link failure 

Firstly, we demonstrate the average recovery time of the fast 

failover mechanism. In the emulations, there are multiple hosts 

connected to the switch s1 (act as source host) and only one 

host attached to switch s3 (act as destination host). Each source 

host uses a ping application to generate a packet every 10 ms. 

The active path is s1-s2-s3. Packets are captured at the 

destination host using Wireshark [17]. Upon failure on the link 

s2-s3, the backup path is s1-s2-s4-s5-s6-s3. We compare the 

performance of the fast failover mechanism with that of the fast 

restoration mechanism [10]. In the fast restoration mechanism, 

the controller computes a backup path and installs the flow 

entries for each affected flows after the link failure occurs. The 

recovery time is estimated as the time between the reception of 

 
Figure 8. Emulation topology 

 
Figure 7. Example of the fast switchover mechanism (t = T+1) 

 
Figure 6. Example of the fast switchover mechanism (t = T) 
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the last packet before the link failure and the reception of the 

first packet after the link failure at the destination host. The 

failure on the link s2-s3 is repeated 30 times. 

Figure 9 illustrates the average recovery time of the fast 

failover and the fast restoration mechanisms varying with 

different number of affected flows. In Fig. 9, the average 

recovery time of the fast restoration mechanism grows 

exponentially as the number of affected flows increases. It is 

because, in the fast restoration mechanism, the controller needs 

to handle each affected flow when the link failure occurs. Thus, 

the controller is heavy-loaded and becomes performance 

bottleneck when the number of affected flows becomes 

significantly large. When the number of affected flows is 48, 

the fast restoration mechanism requires 864.16 ms to recover 

all the affected flows, which is unacceptable for all types of 

networks. However, since the controller does not involve in the 

recovery procedure in the fast failover mechanism, the average 

recovery time only slightly increases and is less than 40 ms as 

the number of affected flows increases. This result indicates the 

fast failover mechanism is more effective than the fast 

restoration mechanism. 

 

Control-plane and data-plane overhead 

Next, we investigate control-plane overhead (controller 

processing time) and data-plane overhead (the number of 

required flow entries) of the fast failover mechanism. Here, we 

consider two kinds of flow granularity: per source-destination 

host (fine-grained flow entry) and per source-destination subnet 

(coarse-grained flow entry). In the emulations, the hosts 

attached to the same switch are regarded as at the same subnet. 

That is, there are six subnets in the topology. The controller 

processing time comprises of three parts: active path 

computation, backup path computation, and entry insertion.  

Figures 10 and 11 show the controller processing time and 

the average number of flow entries of the fast failover 

mechanism with various number of hosts per switch M. In Fig. 

10, as the number of hosts per switch M increases, the entry 

insertion time also increases exponentially because Ryu 

applications are single-threaded entities. Moreover, we also 

observe that the path computation time increases significantly 

when the fine-grained flow entry is adopted. It is because the 

fast failover mechanism needs to access host information 

frequently in both active path computation and backup path 

computation. In Fig. 11, when the fine-grained flow entry is 

adopted, we can clearly observe that the average number of 

flow entries increases exponentially when the number of hosts 

per switch M increases. In cases of M=16 hosts connected to 

each OF switch, the controller would maintain 6,416 flow 

entries on each OF switch. However, when the coarse-grained 

flow entry is adopted, the controller processing time is lower 

than 100 ms and the average number of flow entries is less than 

50 no matter how many hosts are connected to each OF switch. 

Clearly, the fine-grained flow entry is not suitable to the fast 

failover mechanism since each OF switch has a limited TCAM 

and the controller should keep as light-loaded as possible. 

 

Sustained time of link congestion  

Lastly, we demonstrate the performance of the fast 

switchover mechanism. In the emulations, there are three hosts, 

h1, h2, and h3, connected to the switch s1 (act as source host) 

and only one host, h4, attached to switch s3 (act as destination 

host). In order to simulate link congestion, each source host 

uses iperf tool to generate a flow with different configurations. 

The configurations of the three flows is shown in Table 1. From 

the hosts, h1, h2, and h3, to the host, h4, the active path and the 

backup path are s1-s2-s3 and s1-s2-s4-s5-s6-s3, respectively. 

We set the capacity of the link s2-s3 to 600 Mb/s. Since the 

transmitted data rate exceeds the link capacity, we expect the 

link s2-s3 would become congested from the 20th sec to the 

40th sec. Here, we also investigate the performance of the fast 

switchover mechanism with various configurations of the 

execution interval and the congestion window (denoted by 

c_window). Four different cases: 1: [interval=1, c_window=2], 

2: [interval=1, c_window=3], 3: [interval=2, c_window=2], 

and 4: [interval=2, c_window=3] are considered. In the 

emulations, we set the rate threshold 𝑇𝑟 and the weight α to 0.7 

and 0.1, respectively. 

 
Figure 11. Average number of flow entries per switch 

 
Figure 10. Controller processing time 
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Figure 9. Average recovery time 
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Table 1. Flow Setting 
 Data rate Start time Duration 

flow 1 128 Mb/s 0th sec 30 sec 

flow 2 256 Mb/s 10th sec 30 sec 

flow 3 384 Mb/s 20th sec 30 sec 

Figure 12 shows the packet loss rate of the host h4 varying 

with five cases. In the no fast switchover case, the host h4 has 

high packet loss rate which sustains about 20 seconds (the 

sustained time of link congestion) due to the congested link 

s2-s3. When the fast switchover mechanism is employed, we 

can observe that the sustained time of link congestion is 

reduced significantly. In Fig. 12, the sustained time of link 

congestion of the four cases is 5.5 seconds, 6.5 seconds, 6.5 

seconds, and 10.5 seconds, respectively. It is because the fast 

switchover mechanism can periodically switchover the 

least-loaded flow to the backup path when the link congestion 

is detected. Moreover, when the execution interval and the 

congestion window is set to be smaller, the fast switchover 

mechanism can resolve link congestion more quickly. However, 

this way would significantly increase the burden of the 

controller. 

 

IV.   CONCLUSION  

In this work, we present a fast failover mechanism and a fast 

switchover mechanism to deal with link failure and link 

congestion in SDN networks. In the fast failover mechanism, 

the controller periodically computes multiple paths for each 

source-destination pair and proactively installs flow entries and 

group entries in related OF switches. When a link becomes 

faulty, the switch is able to failover the affected flows to the 

backup path. In the fast switchover mechanism, the controller 

periodically monitors the average transmitted rate of each port 

for each OF switch. When the average transmitted rate of a port 

consistently exceeds the rate threshold, the controller would 

decrease the transmitted rate of the port by iteratively switching 

the flow with the minimum rate from the active path to the 

backup path. The emulation results show the average recovery 

time of the fast failover mechanism is significantly lower than 

that of the fast restoration mechanism. Specifically, the average 

recovery time of the fast failover mechanism is less than 40 ms, 

compared to hundreds of ms in the fast restoration mechanism. 

Considering OF switches have a limited TCAM and the 

controller should keep as light-loaded as possible, the fast 

failover mechanism should employ coarse-grained flow entries 

to establish multiple paths. Our emulation results also 

demonstrate the fast switchover mechanism can reduce 

47.5%-72.5% sustained time of link congestion depending on 

the parameter setting. 
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Figure 12. Packet loss rate of the host h4 
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