
 1

Fast Failover and Switchover for Link Failures and Congestion in

Software Defined Networks

Ying-Dar Lin1, Hung-Yi Teng1, Chia-Rong Hsu1, Chun-Chieh Liao1 and Yuan-Cheng Lai2

1Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

ydlin@cs.nctu.edu.tw, q0226@cs.nctu.edu.tw, cjhsu@cs.nctu.edu.tw, ccliao9615@cs.nctu.edu.tw
2Dept. of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan

laiyc@cs.ntust.edu.tw

Abstract —In this paper, we present a fast failover mechanism and

a fast switchover mechanism to deal with link failure and

congestion problems. In the fast failover mechanism, the

controller pre-establishes multiple paths for each

source-destination pair in the related OpenFlow-enabled (OF)

switches. When a link becomes faulty, OF switches are able to

failover the affected flows to another path. Based on the

pre-established paths, in the fast switchover mechanism, the

controller periodically monitors the status of each port of each OF

switch. When the average transmission rate of a port consistently

exceeds the rate threshold, the controller would decrease the

transmission rate of the port by iteratively switching the flow with

the minimum rate to another path. The emulation on Ryu

controller and Mininet emulator shows the average recovery time

of the fast failover mechanism is less than 40 ms, compared to

hundreds of ms in the fast restoration mechanism. And, the fast

switchover mechanism can reduce 47.5%-72.5% sustained time of

link congestion depending on the parameter setting.

Keywords—software defined networking, multiple paths, network

resilience, link failure, link congestion.

I. INTRODUCTION

In recent years, software-defined networking (SDN) has
received increasing attention in both academia and industry. In
SDN, the control plane is separated from the network devices
and is managed by a logical centralized controller. The
controller supports any kinds of control software to manage
underlying network devices via an open and standardized
application programming interface (API). OpenFlow [1][2] is a
well-known example of such an API. An OpenFlow-enabled
switch supports one or more flow tables and communicates with
the controller through a secure channel. The controller can
manage the packet traffic by reactively or proactively installing
flow entries in the flow table. In each flow entry, certain
instructions are specified to handle the matched packets.
Therefore, an OpenFlow-enabled switch can perform different
functionalities according to the flow entries installed by
applications.

Due to its centralized control paradigm, SDN is being
adopted in the various types of networks such as data center
[3][4], mobile networks [5][6], transport networks [7][8], and
enterprise networks [9]. Network resilience is crucial to SDN
networks. In this paper, we focus on link failure and congestion
problems. To cope with link failure, there are two typical
approaches: restoration [10][11] and protection [12][13]. In
restoration, when a switch detects a link failure (port-down
event), a notification message is sent to the controller. For each
affected flow, the controller then computes another path and
writes an alternative flow entry into the related switches. Since
the controller need to handle a large number of affected flows
simultaneously, this approach would yield a long latency to

recover all the affected flows. In protection, the controller
computes multiple paths for each flow and installs the flow
entries into the related switches in advance. In cases of link
failure, the switch can directly forward the affected flows to
another path without waiting for the response from the
controller. But, this approach would yield a large number of
rarely-utilized flow entries which slow down the pipeline
processing speed of the switches.

In addition to link failure, link congestion is also a
challenging problem for network operators. Link congestion
occurs when a link is carrying too much data. A typical effect is
packet loss which would cause an actual reduction in network
throughput. In traditional computer networks, link conditions
could be reflected by the link weights of interior gateway
protocols (IGPs). Therefore, a heavy-loaded link would have a
higher link weight. Each router then can select a light-loaded
path to resolve link congestion after exchange of the link
weights. However, this approach cannot be effectively handle
link congestion since the link weights are exchanged among
routers in every 30 seconds. There are very few studies focused
on link congestion problem in SDN. In [14], each switch needs
to record pathLoad information which is the transient link load
for each outgoing link. When the pathLoad exceeds a
predefined threshold, the switch will compute the new sending
rate and notify the source to reduce link congestion. In this
mechanism, some intelligences built on switches are required.

 In this work, we propose a fast failover mechanism and a fast
switchover mechanism to deal with link failure and congestion.
In the fast failover mechanism, the controller periodically
computes multiple paths for all source-destination pairs and
proactively installs the flow and group entries on the related
switches. When a link failure is detected, the switch can failover
the affected flows to the backup path. In this way, the
connectivity of hosts could be recovered in a very short time. In
the fast switchover mechanism, the controller periodically
performs congestion detection for each port of each switch.
When a port becomes congested, the controller adaptively
decreases the transmission rate by iteratively switching the flow
with the minimum rate to the backup path. Therefore, the link
congestion could be handled efficiently. We implemented the
proposed mechanisms on Ryu controller [15] and evaluated the
performance via extensive emulations on Mininet [16]. The
results show the average recovery time of the fast failover
mechanism is less than 40 ms and the fast switchover
mechanism can efficiently reduce the sustained time of link
congestion.

The remainder of this paper is organized as follows. Section
II presents our fast failover and fast switchover mechanisms.
Section III demonstrates our experimental results. Finally, the
conclusions are given in Section IV.

IEEE ICC 2016 - Communication QoS, Reliability and Modeling Symposium

978-1-4799-6664-6/16/$31.00 ©2016 IEEE

 2

II. FAST FAILOVER AND FAST SWITCHOVER MECHANISMS

A. Network Architecture

Figure 1 depicts our SDN architecture which is typically

composed of a logical centralized controller and OpenFlow

(OF) switches. The controller is regarded as the “brain” of the

SDN network which manages the underlying OF switches via

OpenFlow protocol. Our mechanisms, fast failover and fast

switchover, are implemented as a controller module which runs

on the controller. In the fast failover mechanism, the controller

periodically acquires global topology information (topology

discoverer). According to the topology information, it then

computes multiple paths for each source-destination pair and

proactively establishes flow entries and group entries in

traversal OF switches (path computer). As a result, when the

“port down” event is detected by OF switches, the OF switches

can locally failover the affected flows to another path which

greatly reduces the recovery time. Furthermore, the flow setup

delay could be reduced significantly by preconfiguring the flow

entries into the OF switches.

After the fast failover mechanism is executed, multiple paths

are established in the traversal OF switches for each

source-destination pair. In order to resolve link congestion, the

fast switchover mechanism is designed to adaptively adjust the

forwarding path of flows in a centralized manner. In the fast

switchover mechanism, the controller periodically monitors the

port statistics of underlying OF switches. If the average

transmission rate of an egress port is continually higher than a

predefined threshold, the controller will decrease the sending

rate of the port by iteratively switching the least-loaded flow

from the active path to the backup path (flow switchover).

Therefore, link congestion could be resolved in an efficient

fashion. All the required network states such as topology, hosts,

routing information, and port statistics are maintained in an

information base. We define a number of RESTful APIs as

northbound interface for network management. Network

administrators could insert host information and monitor all the

network states via the defined RESTful APIs.

Our mechanisms are based on OpenFlow specification 1.3.2.

In each OF switch, there are multiple flow tables and a group

table. A flow table consists of flow entries. Each flow entry

contains (1) “match fields” which define the flow, (2) “counters”

which record flow statistics, and (3) “instructions” which

define how the packets of the flow should be handled (drop,

forward, or goto another table). When a packet arrives at a OF

switch, the packet is matched against the flow entries in the

flow table. If a flow entry is found, the instructions of the flow

entry will be executed. Otherwise, a table-miss flow entry

would be matched to process the packet. Typically, the

instructions of the table-miss flow would send an

OFP_PACKET_IN message to the controller for further

processes.

The group table enables OF switches to employ additional

forwarding methods. The group table also consists of group

entries. Each group entry contains a unique group ID, a group

type, and a number of action buckets. To execute any specific

group entry, the flow entry forwards packets to a group entry

having a specific group ID. In our mechanisms, we use an

important group type, fast failover, to implement our multipath

design. The group entries of this type could have multiple

action buckets, but only the first alive action bucket is executed.

Therefore, when the first action bucket is not alive, the OF

switches can locally execute the second action bucket without

involving the controller. Another advantage of using group

table to implement multiple paths is that the flow table will not

be enlarged significantly.

B. Fast Failover Mechanism

Figure 2 shows the flowchart of the fast failover mechanism.

We set a timer (FF timer) to define its execution interval. In our

cases, the timer is set to 30 seconds. In the beginning, the

controller performs topology discovery to acquire global

topology information based on link layer discovery protocol

(LLDP). Here, we briefly introduce the procedure of topology

discovery. Firstly, the controller sends an OFP_PACKET

_OUT message combined with a LLDP packet to each OF

switch. Upon receiving the OFP_PACKET_OUT message,

each OF switch floods the LLDP packet to its neighboring

switches. Once a OF switch receives the LLDP packet from its

neighbor, it will send an OFP_PACKET_IN message which the

data field contains the received LLDP packet to the controller.

According to the OFP_PACKET_IN message, the controller

can discover a link between two OF switches. Eventually, the

controller can acquire the information of global network

topology by this way.

Next, the OF switches attached with hosts are formed into a

switch set 𝑁𝑠 based on host information. The host information

could be obtained manually (via RESTful API) or

automatically (using learn bridge). For a OF switch i in the

Figure 2. Flowchart of the fast failover mechanism

Figure 1. Overview of Network Architecture

 3

switch set 𝑁𝑠 , the controller computes |𝑁𝑠| − 1 active paths

(From the selected switch to other OF switches) based on

Dijkstra’s algorithm. Then, for an active path j, the controller

also computes |𝐿𝑗| backup paths considering a failure in each

link traversed by the active path. In order to avoid routing loop,

the controller checks whether there are path conflicts after

computing a backup path. A backup path will be removed if it

causes routing loop. Finally, the controller proactively

establishes an active path and the backup paths by installing a

flow entry and a fast failover group entry in the traversed OF

switches for each source-destination pair. Two action buckets

are specified in the group entry of the OF switches traversed by

an active path. The first bucket and the second bucket indicate

the output port of the active path and the backup path,

respectively. Please note that the group entry will not be

installed if the OF switches already have the same group entry.

Figure 3 illustrates an example of the fast failover procedure.

For the sake of clarity, there are only two hosts (Host_1 and

Host_2) in this example. For the flows from Host_1 to Host_2,

the controller computes an active path <ABC>. Then, two

backup paths <AEFC> and <ABDEFC> are also computed for

a potential failure in link <AB> and link <BC>. Finally, the

controller establishes these paths by configuring a flow entry

and a fast failover group entry in all the OF switches. The group

entry has two action buckets at OF switches A and B which

enable the packets to be forwarded from Host_1 to the OF

switch B, and from the OF switch B to the OF switch C.

However, at other OF switches (OF switches C, D, E, and F),

the group entry only has one action bucket because only a

backup path is configured. Figure 4 shows how the backup path

<ABDEFC> is used when a failure occurs in the link <BC>.

When a failure of the output port 3 is detected by the OF switch

B, the packets will immediately be forward to the OF switch D

though the output port 4.

C. Fast Switchover Mechanism

Figure 5 shows the flowchart of the fast switchover

mechanism. We set another timer, FS timer, to define the

execution interval. Since this procedure is required to be

executed very frequently, the execution interval is set to 1 or 2

seconds. The fast switchover mechanism consists of two stages:

congestion detection and flow switchover. In the congestion

detection stage, the first step is to acquire port statistics and

group statistics from all the OF switches via the

OFPT_MULTIPART_REQUEST and OFPT_MULTIPART

_REPLY messages. The second step is to calculate the average

transmission rate 𝑅𝑡 per port and the congestion window

𝑊𝑖,𝑗 per port for each OF switch. At first, we compute the

transmission rate 𝑟𝑡 per port as

𝑟𝑡 =
𝑡𝑥_𝑏𝑦𝑡𝑒𝑠 ∗ 8

𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑
, (1)

where tx_bytes and max_speed denote the number of

transmission bytes and the maximum port bitrate, respectively.

We then employ exponential moving average (EMA) to

calculate the average transmission rate 𝑅𝑡 per port as

𝑅𝑡 = {
𝑟𝑡 𝑡 = 1

(1 − 𝛼)𝑅𝑡−1 + 𝛼𝑟𝑡 𝑡 > 1
, (2)

where 𝛼 denotes the weight of current transmitted rate. For a

egress port j, the congestion window 𝑊𝑖,𝑗 is increased by 1 if

the average transmission rate 𝑅𝑡 is larger than the pre-defined

rate threshold 𝑇𝑟. Otherwise, the congestion window 𝑊𝑖,𝑗 is set

to 0. Based on the congestion window, the last step is to decide

whether the state of the egress port j is congestion or normal.

The state of the egress port j will be set to be congestion only if

the congestion window 𝑊𝑖,𝑗 is also higher than the pre-defined

window threshold 𝑇𝑤.

 Once the state of a port j is set to be congestion, the controller

will execute the flow switchover stage to decrease the traffic

sent by the port j. In the flow switchover stage, the first step is

to form a set of the available group entries E which the first

bucket is the port j and the second bucket is available from the

group table. In order to avoid another congestion, the controller

Figure 5. Flowchart of the fast switchover mechanism

Figure 3. Example of the fast failover mechanism

Figure 4. Backup path used upon failure of link <BC>

 4

selects the group entry with the minimum rate 𝑒𝑠𝑤 . Then, it

checks the state of the second bucket of the group entry. If the

state of the second bucket is normal, the controller will

exchange the first bucket and the second bucket via the

OFPT_GROUP_MOD message. Otherwise, the controller will

remove the group entry and reselect again until there are no

available entries.

Figure 6 illustrates an example of the fast switchover

procedure. In this example, we assume that the forwarding

paths from Host_1 and Host_2 to Host_3 are pre-configured by

the fast failover procedure. Thus, at OF switch B, two flow

entries and two group entries are configured in advance. The

action buckets of the group entries are the same. When the time

t = T, the controller calculates the average transmission rate per

port and the congestion window per port for OF switch B. If it

then detects that the congestion window of the egress port 3

exceeds the window threshold (𝑇𝑤 = 2), it will set the state of

the port as congestion. The controller then executes the flow

switchover stage to decrease the traffic sent by port 3. In this

case, the controller selects the group entry with GID = 2 as the

group entry with the minimum rate and checks the state of the

second bucket (output port 4 of OF switch B). Since the state of

the port is normal, the controller then swaps the first bucket and

the second bucket of the group entry. When the time t = T+1,

the controller performs the fast switchover procedure once

again. The execution procedure is shown in Fig.7. Since the

controller reduced the traffic sent by port 3 of OF switch B, the

average transmission rate of port 3 is lower than the rate

threshold (𝑇𝑟 = 0.7). As a result, the congestion window of the

port 3 is set to 0 and the state of the port 3 is normal. Therefore,

the flow switchover stage is not executed in this time.

III. PERFORMANCE EVALUATION

A. Emulation Environment

We investigate the performance of the proposed mechanisms

through emulation of real implementation. The proposed

mechanisms are implemented on Ryu controller as a Ryu

application. In the emulation environment, two servers are

employed. The first server (i.e., Intel core i3-2120 CPU

3.30GHz, Ubuntu 12.04 on VMware workstation) acts as the

OpenFlow controller, running the Ryu version 3.6. The second

server (i.e., Intel core i3-2120 CPU 3.30GHz, Ubuntu 12.04 on

VMware workstation) emulates the network. As shown in

Figure 8, a topology composed of N = 6 OF switches is

considered. We use Mininet to emulate the topology and M

hosts connected to each OF switch. The ping and iperf tools are

used to generate traffic. In the fast failover mechanism, average

recovery time, the number of required flow entries, and

processing time are adopted as performance metrics. In the fast

switchover mechanism, we investigate the impact of different

parameter settings on packet loss rate.

B. Numerical results

Recovery time of link failure

Firstly, we demonstrate the average recovery time of the fast

failover mechanism. In the emulations, there are multiple hosts

connected to the switch s1 (act as source host) and only one

host attached to switch s3 (act as destination host). Each source

host uses a ping application to generate a packet every 10 ms.

The active path is s1-s2-s3. Packets are captured at the

destination host using Wireshark [17]. Upon failure on the link

s2-s3, the backup path is s1-s2-s4-s5-s6-s3. We compare the

performance of the fast failover mechanism with that of the fast

restoration mechanism [10]. In the fast restoration mechanism,

the controller computes a backup path and installs the flow

entries for each affected flows after the link failure occurs. The

recovery time is estimated as the time between the reception of

Figure 8. Emulation topology

Figure 7. Example of the fast switchover mechanism (t = T+1)

Figure 6. Example of the fast switchover mechanism (t = T)

 5

the last packet before the link failure and the reception of the

first packet after the link failure at the destination host. The

failure on the link s2-s3 is repeated 30 times.

Figure 9 illustrates the average recovery time of the fast

failover and the fast restoration mechanisms varying with

different number of affected flows. In Fig. 9, the average

recovery time of the fast restoration mechanism grows

exponentially as the number of affected flows increases. It is

because, in the fast restoration mechanism, the controller needs

to handle each affected flow when the link failure occurs. Thus,

the controller is heavy-loaded and becomes performance

bottleneck when the number of affected flows becomes

significantly large. When the number of affected flows is 48,

the fast restoration mechanism requires 864.16 ms to recover

all the affected flows, which is unacceptable for all types of

networks. However, since the controller does not involve in the

recovery procedure in the fast failover mechanism, the average

recovery time only slightly increases and is less than 40 ms as

the number of affected flows increases. This result indicates the

fast failover mechanism is more effective than the fast

restoration mechanism.

Control-plane and data-plane overhead

Next, we investigate control-plane overhead (controller

processing time) and data-plane overhead (the number of

required flow entries) of the fast failover mechanism. Here, we

consider two kinds of flow granularity: per source-destination

host (fine-grained flow entry) and per source-destination subnet

(coarse-grained flow entry). In the emulations, the hosts

attached to the same switch are regarded as at the same subnet.

That is, there are six subnets in the topology. The controller

processing time comprises of three parts: active path

computation, backup path computation, and entry insertion.

Figures 10 and 11 show the controller processing time and

the average number of flow entries of the fast failover

mechanism with various number of hosts per switch M. In Fig.

10, as the number of hosts per switch M increases, the entry

insertion time also increases exponentially because Ryu

applications are single-threaded entities. Moreover, we also

observe that the path computation time increases significantly

when the fine-grained flow entry is adopted. It is because the

fast failover mechanism needs to access host information

frequently in both active path computation and backup path

computation. In Fig. 11, when the fine-grained flow entry is

adopted, we can clearly observe that the average number of

flow entries increases exponentially when the number of hosts

per switch M increases. In cases of M=16 hosts connected to

each OF switch, the controller would maintain 6,416 flow

entries on each OF switch. However, when the coarse-grained

flow entry is adopted, the controller processing time is lower

than 100 ms and the average number of flow entries is less than

50 no matter how many hosts are connected to each OF switch.

Clearly, the fine-grained flow entry is not suitable to the fast

failover mechanism since each OF switch has a limited TCAM

and the controller should keep as light-loaded as possible.

Sustained time of link congestion

Lastly, we demonstrate the performance of the fast

switchover mechanism. In the emulations, there are three hosts,

h1, h2, and h3, connected to the switch s1 (act as source host)

and only one host, h4, attached to switch s3 (act as destination

host). In order to simulate link congestion, each source host

uses iperf tool to generate a flow with different configurations.

The configurations of the three flows is shown in Table 1. From

the hosts, h1, h2, and h3, to the host, h4, the active path and the

backup path are s1-s2-s3 and s1-s2-s4-s5-s6-s3, respectively.

We set the capacity of the link s2-s3 to 600 Mb/s. Since the

transmitted data rate exceeds the link capacity, we expect the

link s2-s3 would become congested from the 20th sec to the

40th sec. Here, we also investigate the performance of the fast

switchover mechanism with various configurations of the

execution interval and the congestion window (denoted by

c_window). Four different cases: 1: [interval=1, c_window=2],

2: [interval=1, c_window=3], 3: [interval=2, c_window=2],

and 4: [interval=2, c_window=3] are considered. In the

emulations, we set the rate threshold 𝑇𝑟 and the weight α to 0.7

and 0.1, respectively.

Figure 11. Average number of flow entries per switch

Figure 10. Controller processing time

26 102
404

1608

6416

26 27 29 33 41

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16

A
v
er

ag
e

n
u
m

b
er

 o
f

fl
o

w
 e

n
tr

ie
s

Number of hosts per switch (M)

host

subnet

Figure 9. Average recovery time

0.1

1

10

100

1000

10000

100000

host subnet host subnet host subnet host subnet host subnet

1 2 4 8 16

M
il
li

se
co

n
d
 (

lo
g
 s

ca
le

)

Number of hosts per switch (M)

active path computation backup path compuation entry insertion

11.55 21.58 21.70 31.75

133.53

205.67

452.82

864.16

0

100

200

300

400

500

600

700

800

900

12 24 36 48

M
il
li

se
co

n
d

Number of affected flows

Fast Failover

Fast Restoration

 6

Table 1. Flow Setting
 Data rate Start time Duration

flow 1 128 Mb/s 0th sec 30 sec

flow 2 256 Mb/s 10th sec 30 sec

flow 3 384 Mb/s 20th sec 30 sec

Figure 12 shows the packet loss rate of the host h4 varying

with five cases. In the no fast switchover case, the host h4 has

high packet loss rate which sustains about 20 seconds (the

sustained time of link congestion) due to the congested link

s2-s3. When the fast switchover mechanism is employed, we

can observe that the sustained time of link congestion is

reduced significantly. In Fig. 12, the sustained time of link

congestion of the four cases is 5.5 seconds, 6.5 seconds, 6.5

seconds, and 10.5 seconds, respectively. It is because the fast

switchover mechanism can periodically switchover the

least-loaded flow to the backup path when the link congestion

is detected. Moreover, when the execution interval and the

congestion window is set to be smaller, the fast switchover

mechanism can resolve link congestion more quickly. However,

this way would significantly increase the burden of the

controller.

IV. CONCLUSION

In this work, we present a fast failover mechanism and a fast

switchover mechanism to deal with link failure and link

congestion in SDN networks. In the fast failover mechanism,

the controller periodically computes multiple paths for each

source-destination pair and proactively installs flow entries and

group entries in related OF switches. When a link becomes

faulty, the switch is able to failover the affected flows to the

backup path. In the fast switchover mechanism, the controller

periodically monitors the average transmitted rate of each port

for each OF switch. When the average transmitted rate of a port

consistently exceeds the rate threshold, the controller would

decrease the transmitted rate of the port by iteratively switching

the flow with the minimum rate from the active path to the

backup path. The emulation results show the average recovery

time of the fast failover mechanism is significantly lower than

that of the fast restoration mechanism. Specifically, the average

recovery time of the fast failover mechanism is less than 40 ms,

compared to hundreds of ms in the fast restoration mechanism.

Considering OF switches have a limited TCAM and the

controller should keep as light-loaded as possible, the fast

failover mechanism should employ coarse-grained flow entries

to establish multiple paths. Our emulation results also

demonstrate the fast switchover mechanism can reduce

47.5%-72.5% sustained time of link congestion depending on

the parameter setting.

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Science and

Technology, Taiwan for financially supporting this research

under Contract No. MOST 103－2622－E－009－012 and

MOST 103－2221－E－009－100－MY2.

REFERENCES

[1] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, "OpenFlow: Enabling Innovation in

Campus Networks," ACM SIGCOMM Computer Communication

Review, vol. 38 no. 2, pp. 69-74, April, 2008.

[2] ONF, "OpenFlow Switch Specification version 1.3.2," April 25, 2013.

[3] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song, "Enhancing

dynamic cloud-based services using network virtualization," ACM
SIGCOMM Computer Communication Review, vol. 40, no. 1, pp. 67-74,

Jan. 2010.

[4] V. Mann, A. Vishnoi, K. Kannan, and S. Kalyanaraman, "CrossRoads:
Seamless VM Mobility Across Data Centers Through Software Defined

Networking," in IEEE Network Operations and Management Symposium

(NOMS), pp. 88-96, 2012.
[5] Kok-Kiong Yap, Masayoshi Kobayashi, Rob Sherwood, Te-Yuan

Huang,Michael Chan, Nikhil Handigol, and Nick McKeown, "Openroads:

empowering research in mobile networks," ACM SIGCOMM Computer
Communication Review, vol. 40, no.1, pp. 125-126, 2010.

[6] Y. Wang, and W. Hu K. Pentikousis, "MobileFlow: Toward

Software-Defined Mobile Networks," IEEE Communication Magazine,
vol. 51, no. 7, pp. 44-53, July 2013.

[7] A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi, "Open-Flow and

PCE architectures in wavelength switched optical networks," in 16th Int.
Conf. on Optical Network Design and Modeling (ONDM), pp. 1-6, Apr.

2012.
[8] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P.

Skoldstrom, "Scalable fault management for OpenFlow," in IEEE Int.

Conf. on Communications (ICC), pp. 6606-6610, June 2011.
[9] H. Kim et al., "Communicating with Caps: Managing Usage Caps in

Home Networks," in Proc. ACM SIGCOMM' 11, pp. 470-71, 2011.

[10] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
"Enabling fast failure recovery in OpenFlow networks," in 8th Int.

Workshop on the Design of Reliable Communication Networks (DRCN),

pp. 164-171, Oct. 2011.
[11] D. Staessens, S. Sharma, D. Colle, M. Pickaver, P. Demeester, "Software

defined networking: Meeting carrier grade requirements," in Proc. of the

18th IEEE Workshop on Local and Metropolitan Area Networks, pp. 1-6,
Oct. 2011.

[12] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,

"OpenFlow: Meeting carrier-grade recovery requirements," Computer
Communication, vol. 36, no. 6, pp. 656-665, Mar. 2013.

[13] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,

"Openflow-Based Segment Protection in Ethernet Networks," Journal of
Optical Communications and Networking, vol. 5, no. 9, pp. 1066-1075,

Sep. 2013.

[14] S. Fang, Y. Yu, C. H. Foh, and K. M. M. Aung, "A Loss-free
Multipathing Solution for Data Center Network using Software-defined

Networking Appraoch," IEEE Transactions on Magnetics, vol. 49, no. 6,

pp. 1-8, June 2013.
[15] RYU: http://osrg.github.io/ryu/

[16] Mininet: http://mininet.org/

[17] Wireshark: http://www.wireshark.org/

Figure 12. Packet loss rate of the host h4

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

p
ac

ke
t

lo
ss

 r
at

e

Second

no switchover

interval=1, c_window=2

interval=1, c_window=3

interval=2, c_window=2

interval=2, c_window=3

