IEEE ICC 2016 - Next-Generation Networking and Internet Symposium

A Joint Network and Server Load Balancing Algorithm for
Chaining Virtualized Network Functions

Minh-Tuan Thai!, Ying-Dar Lin!, Yuan-Cheng Lai?
"National Chiao Tung University, Hsinchu, Taiwan
National Taiwan University of Science and Technology, Taipei, Taiwan
Email: tmtuan.eed03g@nctu.edu.tw, ydlin@cs.nctu.edu.tw, laiyc@cs.ntust.edu.tw

Abstract— Chaining virtualized network functions (VNF) is an
effective practice to deploy network services in network operator’s
data centers. Two common concerns arise in such a deployment
are network load balancing and server load balancing. In this
study, motivated by the argument that such two concerns should
be jointly addressed for efficiently chaining VNFs in a data center
environment, we propose a 2-phase algorithm, Nearest First and
Local-Global Transformation (NF-LGT), which concurrently
supports network and service load balancing. The algorithm
firstly constructs service chains by a greedy strategy which both
considers network latency and server latency. Then a searching
technique is applied to improve the solutions. We have
implemented the algorithm using Software-defined networking
(SDN)/OpenFlow concept. The experimental results indicate that,
compared with a sequential approach, NF-LGT improves the
system bandwidth utilization up to 45%.

Keywords— Network function virtualization, software defined
networking, service chaining, quality of services.

L. INTRODUCTION

Network function virtualization (NFV) [1] concept was
recently introduced as a new manner to deliver network services
whereby virtualized network functions (VNFs) substitutes
hardware-based network appliances. By leveraging
virtualization and cloud technology, NFV enables network
function deployment in network operator’s data centers, with
great flexibility in deployment and management. Therefore,
customers can make use of the network services on pay-per-use
and on-demand basic, hence avoiding the need to acquire, install
and maintain special equipment.

Thanks to NFV paradigm, network service operators can
supply multiple network services whereby each service is
provided through a service chain [2], which is a pre-defined
interconnection of VNFs. Flows (i.e., service requests) have to
be steered across needed VNFs while skipping unnecessary
ones. It should be noted that there may be precedence
requirements among those VNFs. For example, packet
inspection functions such as firewall, IDS, and IPS are required
to perform before traffic optimization or protocol proxy
functions, for instance, video transcoding, NAT and HTTP
proxy/cache.

Fig. 1 provides an illustration of service chaining in a data
center environment, where VNFs are deployed in virtual
machines that run on physical machines. The physical machines
are connected by Fat-Tree network topology [3] which is a
common data center topology providing multi-path capacity. In
order to accommodate service requests, network operators have
to select VNFs among candidates to form service chains, then
force the requests to travel through the VNFs in desired order.

978-1-4799-6664-6/16/$31.00 ©2016 |IEEE

Q00 Q70O 9 QO O

B LTy i 1 !
OO0 JQ O QO Ome
¥ / !\\ 1\

Q Q Q /V> O Soft-switch
r [, ;

rem = a== &=)
PM

Fig. 1. Example of service chaining in a data center environment. The red
solid lines represent downward traffic while black dash lines
represent upward traffic.

Obviously, the number of possible chains is very large and
increases exponentially with the number of required VNFs.

There are two important concerns, namely server (i.e., VNF)
load balancing, and network load balancing, for instantiating
service chains in a data center environment. The first concern is
from the VNF multi-instance deploying model. In other words,
one type of VNF has more than one instance which resides in
different network locations. The second concern is from the
multi-path capacity of data center network topology. That is,
flows transmitting between VNFs can go through multiple
paths. It is well-known fact that such concerns have to be tackled
jointly for enabling an efficient NFV environment. To illustrate
this point, one can consider a situation such that a flow may be
assigned to overloaded VNFs, resulting in server congestion, if
service chains are built with the goal only of network load
balancing. Similarly, network congestion possibly happens if
server load balancing is individually solved. A sequential
approach can be applied for tackling these two concerns as well.
That is, after balancing the load of VNFs, we balance the load
of links. However, such an approach may just provide a
suboptimal load balancing ability since it does not consider all
possible combinations between VNFs and links when
constructing service chains.

Both of server and network quality of services (QoS) issues
have been intensively addressed in recent service chaining
studies [4, 5, 6]. StEERING [4] proposes a greedy algorithm to
solve service placement problem whose objective is to minimize
network latency. However, the server QoS issue is ignored in
this work. In contrast with StEERING, an online server load
balancing problem, which is formulated in a linear program, is
solved without the consideration of network QoS in SIMPLE

[5]. The issues are jointly addressed by Stratos [6] whereby
network traffic is split across network function instances
according to their network latency. However, since the solution
distributes packets of a flow among multi-paths, the packets may
experience different latency which introduces a packet
reordering problem, i.e. packet out-of-order arrivals, resulting in
low throughput.

In this paper, aiming at providing both server load balancing
and network load balancing for deploying service chains in a
data center environment, we design an algorithm, called Nearest
First and Local-Global Transformation (NF-LGT), is composed
of two phases. In the 1% phase, a service chain is constructed by
a greedy strategy whereby the next VNF is selected among
candidates according to its latency from the current location. The
latency consists of network latency and server latency, which are
calculated using the current packet arrival rate to links and
VNFs. Consequently, network and server load balancing issues
are jointly tackled in the algorithm. In the 2™ phase, a searching
technique is applied to improve the solution of the 1% phase. The
technique attempts to find a better service chain (i.e., smaller
latency) by replacing selected VNF with another candidate and
swapping the order of VNFs in service chains.

We have implemented our design as a module based on
SDN/OpenFlow approach [7] decoupling control plane and data
plane. The module, running atop an SDN controller, (i) monitors
network topology, link and VNF status, (ii)) computes service
chains, and (iii) generates and inserts forwarding rules to
OpenFlow switches which steer request traffic across VNFs.

Our proposed algorithm is evaluated using Mininet network
emulator [8]. We compare the performance of NF-LGT to Least
Load First and Shortest Path First (LLF-SPF) algorithm which
sequentially solves server and network load balancing issues.
The experimental results show that NF-LGT works efficiently.
It can considerably improve the system bandwidth utilization
while consume an acceptable amount of time.

The rest of this paper is organized as follows. In Section 2,
we introduce the formal description of our service chaining
problem. In Section 3, we elaborate our proposed algorithm, NF-
LGT, and its implementation. Evaluation study and
experimental results are presented in Section 4. Finally, Section
5 concludes this paper with a brief discussion on future work.

II. PROBLEM DESCRIPTION

This section first formally describes important terminologies
in this study. Then, the problem statement is introduced. Fig. 2
provides an example of notation usage, and Table I summarizes
notations used in our service chaining problem. It should be
noted that we assume that the problem follows M/M/1 queuing
model in this study.

A. Terminologies

1) Virtualized network function (VNF): In our problem, a
VNF is responsible for handling a specific network function
running in a virtual machine. Let F ={f;;,0 < j < M;}
present the set of VNFs of the system, where f; ; is jth instance
of type-i network function and M; is the number of instances
of type-i network function. Each VNF f; ; has a latency lt(f; ;)
defined as

W(fii) = co=a0 M

C(fij) - pa(fl])

where C(f;;) and pa(f; ;) are the maximum bandwidth of f; ;
and the current packet arrival rate to f; ;, respectively.

2) Network topology: Let a directed graph G = (F U S,
EF UES) denote the data center network topology where
VNFs are deployed, with node set is F U S, and edge set is
EFUES . The set S ={s,,0<k<|S|} represents the
switches of the network, where s, is the kth switch. The set
EF = {ef; J} denotes the links between switches and VNFs,
where ef~ J is the link between switch s, and VNF f; ;. The set
ES = {es; } denotes the links between switches, where esk
is the link between the switches s and s, - . Links ef} 7 and
esk’ have latency lt(ef; j) and lt(esk) respectively defined
as

1
cleff) - paleffyy

1
C(esll‘f/) - pa(es,’(‘/)

lt(eff) = and lt(esy) =

. (2)

where C(ef; j) and C (esk) are the maximum bandwidth, and
pa(ef; J) and pa(esk) are the current packet arrival rate to
ef{X and esf’

3) Request and Service policy: A network service request
r, is defined as a couple (b, p,), where b, is demanded
bandwidth and p, =< N,,, L, > is a directed acyclic graph
representing the desired service policy for the request. The node
set N, = {n;} denotes network functions in which the request
r, must be processed. The link set L, = {ll } represents the
precedence constraints among n; € N, , where ') is the
precedence constraint from ith network function to i'th network
function. In other words, the request 7, must be processed by

type-i network function before type-i’ network function.

B. Problem statement

Given a set of VNFs F, a network topology graph G = (F U
S, EF UES), and a request 1, (b,,p,) . The objective of this
work is to determining the service chain SC,, which is an
ordered set of links efl-f‘j € EF, esk’ € ES and VNFs fij €F

by which 7, need to go through such that its latency LT, is
minimized. The formula

LT, = Bopk sk, rijeso,Lt(efls) +lt(esy) +1e(fy)), (3)

is used to calculate the latency of the service chain.

e

2 N i e 2
/AN i TN
i " v o
& B B
a) Network topology and service chain b) Service policy

Fig. 2. Example of notation usage.

TABLE L NOTATIONS USED IN SERVICE CHAINING PROBLEM

Notations ‘ Meaning

Virtualized network function

The set of VNFs of the system, where f; ; is jth

instance of type-i network function and M; is the
number of instances of type-i network function

F={f;l0<j< M}

(i) The maximum bandwidth of f; ;
pa(fi;) The current packet arrival rate to f; ;
() The current latency of f; ;

Network topology

The set of |S| switches in the system, where s, is

S={sl0<k<IS} | i witch

The network topology graph, where node set is F U

G<FUSEFUES> | ¢\ dlink setis EF U ES

The link set between VNF's and switches, where e ﬁ’j

EF = {efk
tefi} is the link between s, and f; ;

The link set between switches, where es,’:/ is the

ES = k,
{esi} link between s, and s; -

C(ef*) and C(esf) The maximum bandwidth of ef; and esj’

pa(eff) and pa(esy,) | The current packet arrival rate to ef;" and es)’,

It(efX) and It (esf) The current latency of ef and es)/

Request — Service policy

7, (by, Py) The wvth network service request
b, The demanded bandwidth of ;,
<N L > The directed acyclic graph represents the service
Py v policy required by vth request
N, = {n} The node set represents required network functions
v = Uk by vth request
The link set represents the precedence constraints
; among network functions n; € N, ; where I}/ is
L,={} i

precedence constraint from type-i network function
to type-i network function

The service chain for 7;,, which is ordered set of
sc, links ef/; € EF, esf’ € ES and VNFs f;; € F
by which r;, need to go through

The latency of SC,,

LT,
v LTy = Sep, est,giyesc,(ECfl) + Ut(esi) +16(£,))

The objective of our service chaining problem is finding a
service chain whose latency is smallest among candidates which
can be solved by an exhaustive searching algorithm. However,
such an approach is impractical due to the huge numbers of links
and VNFs; and the time-sensitive requirement of NFV
environment. As a result, an efficient approximation algorithm
is needed.

III. NEAREST FIRST AND LOCAL-GLOBAL
TRANSFORMATION

In this section, we describe our proposed algorithm for
solving the service chaining problem defined in Section 2. We
first give an overview of 2-phase service chaining algorithm
with the Nearest First phase and the Local-Global
Transformation phase. The details of our approach are then
elaborated in the subsequent subsections. Finally, we introduce
the implementation of our design using SDN/OpenFlow
approach.

A. Overview

The key argument of this work is that we should jointly
address server and network load balancing issues in chaining
VNFs. This requirement is satisfied by our design, which
concurrently considers the current load of link and VNF in
building service chains. The latency of the service chains,
calculated as in (3), includes link and VNF latencies which are
calculated based on their current packet arrival rate using (1) and
(2). By doing so, server load balancing and network load
balancing are jointly supported by our algorithm.

To solve the problem, we introduce a 2-phase algorithm
called Nearest First and Local-Global Transformation (NF-
LGT). In the Nearest First phase, we construct an initial service
chain for a submitted request using a greedy strategy. In the
strategy, we choose the VNF, whose latency from the current
location is smallest, to be the next destination. We do this
iteratively until all required network functions are composed to
the service chain. Since the greedy strategy may yield a local
optimal solution, a searching technique is applied in the Local-
Global Transformation phase to improve the solution. The
technique consists of two methods namely Local
Transformation and Global Transformation which aim at
finding a smaller latency service chain among feasible solutions.
During Local Transformation, a new feasible service chain is
constructed by replacing a current selected VNF with another
same type candidate, while the order of two VNFs, which have
no precedence constraints, are swapped to generate a new
feasible chain in Global Transformation.

B. Nearest First phase

Algorithm 1 shows the pseudo code of the Nearest First
phase which constructs a service chain SC, by a greedy
approach. At the first step, it initializes the ingress switch as the
current location (line 2). Next, all available VNFs, which have
no any precedent requirements, are discovered (line 4). After
that, the smallest-latency path sp, which is from the current
location to an available VNF, f; ; € AF, is selected among all
feasible paths FP to construct the service chain SC, (line 6 and
7). Finally, since network function n; is already included to SC,,,
we remove it from N, and assign f; ; as current location (line 8
and 9). Such steps are repeated until all required network
functions n; € N, are included in the service chain SC,, (line 3).

Algorithm 1 Nearest First (NF) phase
Input: G <FUS,EFUES >, r,(b,,py)

Output: SC,
1: Begin
2: currentLocation < Ingress switch

3: While (N, # @)
Find all available VNFs

4: AF « f,,Vf;; €F|AlY € L,
Find all feasible paths
5: FP « feasiblePath(currentLocation, f;;,b,) Vf,; € AF

Find smallest latency path

6: sp « smallestLatency(FP)
7: SC, « SC, U sp

8: N, « N, — n;

9: currentLocation « f;;

10: End-While

11: End

C. Local-Global Transformation phase

In this phase, we attempt to improve the service chain
SC, found in the Nearest First phase. In other words, we try to
find a new service chain SC’, such that LT', < LT,. The
pseudo code of the Local-Global Transformation phase is shown
in Algorithm 2. At the first step, we assign SC,, to the current
accepted solution SC', (line 2). After that, SC, is transformed
to construct new feasible service chains during Local and Global
Transformation methods. In Local Transformation, a current
selected VNF f; ; € SC,, is substituted by a same type f; ;- to
form a new feasible service chain (line 6 and 7). If the latency
LT, of the new chain SC, is smaller than LT', of current
solution SC', , it becomes SC', (line 8 and 9). In Global
Transformation, we interchange the positions of VNFs f; ; and
fur,j» which are currently in SC,,, to form a new feasible chain
(line 12 and 13). It should be noted that such VNFs have no any
precedent requirements (line 3).

Algorithm 2 Local-Global Transformation (LGT) phase
Input: G < FUS,EFUES > ,7r,(b,,p,), SC,
Output: SC',
1: Begin
2: SC', « SC,
3: For each pairs (n;,n;7) € N,| 2 l‘ I eL,

Local transformation

4: For eachn; €N, | M; > 1do
S: Let f;j € SC, be the current selected VNF for n;
6: Replace f;; in SC, with a f; ;,.Vf; ;, €y
7: SC, « update(SC,)
8: If (LT, < LT',) # find a better than SC,
9: SC', « SC,
10: End-If
11: End-For
Global transformation
12: Swap the order of f; ; and f;, ; in SC,,
13: SC, < update(SC,)
14: End-For
15: End

D. Example run for NF-LGT

An example running for NF-LGT is illustrated in Fig. 3.
Note that although there are multiple paths between two VNFs,
only the smallest latency path is shown for simplicity.

In Fig. 3a, an initial service chain with the latency LT, =
15.0 is constructed by the Nearest First phase. From Fig. 3b to
Fig. 3d, we attempt to find a better solution by the Local-Global
Transformation phase. To be more specific, an accepted solution
with LT,, = 14.0 is found by applying the Local transformation
method, i.e., replacing f, ; with f, o, in Fig. 3b. Unfortunately,
the method generates a failed solution showed in Fig. 3c. The
latency of the new service chain is 17.0, which is greater than
the current value. As can be seen from Fig. 3d, the Global
transformation method discovers the final solution with LT, =
13.0 by swapping f3 o and f3 ;.

E. SDN/OpenFlow-based implementation

To validate our design, we have implemented the proposed
algorithm NF-LGT as a module running atop of a SDN
controller. As outlined in Fig. 4, the module communicates with
the controller through provided Restful API. In more details, the

Initial solution: LT, = 15.0

Accepted solution: LT, = 14.0

«»Y | \ /
\V\EFES
Switch 1 { k

a) Nearest First

b) Local transformation — Replace 2,1 with 2,0

Fin |in|\.\tiﬂl‘l LT, =13.0

Ingress 1
Switch

Ingress| 1
Switch

¢) Local transformation — Replace 4,0 with 4,1 d) Global transformation — Swap 3,0 and 4,1

Fig. 3. An example run for NF-LGT. A blue solid line represents the
smallest-latency path from a VNF to another while the red dash lines
represent a feasible service chain.

Network Monitor component maintains current network
topology, the status of links and VNFs by periodically sending
query commands to the controller. The Service Chain Builder
component, where NF-LGT algorithm 1is implemented,
calculates service chains with network status and submitted
requests as the inputs. Subsequently, corresponding flow entries
are generated by the Forwarding Rule Generator component for
such service chains. Then, the entries are sent to the controller
via Restful API. The controller’s service abstraction layer will,
in turn, insert the flow entries to switches in data plane using
OpenFlow plugin.

1) Link and VNF latency calculation: the NF-LGT
algorithm constructs service chains using the current latency of
links and VNFs. Unfortunately, it is non-trivial to measure such
parameters directly both from switches or controller. In our
implementation, we apply port statistic monitoring technique to
estimate these parameters. That is, the Network Monitor
component periodically queries the number of transmitted bytes
from every switch port. Then, it calculates the increment from
the last monitoring time and estimates the current packet arrival
rate of every link and VNF. It is assumed that link and VNF
maximum bandwidth is determined in advance, one can easily

‘ Service request ‘
#

—>\ Serwce Chain Builder ‘I

[Networktopology Tink
___and VNF status

‘/ N « Moni \‘ ‘/ Forwarding Rule
| Network Monitor)\ Generator)

I NF-LGT module:

I 2
Restful API
4
(Service Abstraction Layer
i

Ve . N
S OpenFlow plugin

Network elements

Data plane infrastructure

Fig. 4. SDN/OpenFlow-based implementation for NF-LGT.

NN

/‘
SDN controller

compute the current latency of links and VNFs using (1) and
(2) respectively.

2) Packet steering: In an NFV environment, network traffic
needs to be steered through required VNFs in desired order.
Since a packet may traverse a switch multiple times, and it
should be treated differently each time. Hence, switches must
know the status of a packet, i.e., where the packet is currently
in its service chain, in order to determine processing actions for
the packet. In this work, we propose Status tag for encoding
which network functions have already been traversed in a
service chain. As shown in Fig. 5, the ith bit in the tag represents
the type-i network function. The tag with an initial value is
added to a packet at ingress switches and removed at egress
switches. At soft switches where VNFs are connected, if a
packet has been processed by a VNF, which is easily
determined by the arriving port of the packet, the corresponding
bitissetto 1. VLAN tag, MPLS label or unused IP header fields
could be borrowed to embed the tag to packets depending the
support of OpenFlow switch.

IV. PERFORMACE EVALUATION

This section presents the experimental evaluation where the
effectiveness of proposed algorithm is verified.

A. Experimental setup

The performance of our NF-LGT algorithm is evaluated in a
4-ary FatTree network topology which is simulated by Mininet
network emulator. We use Open vSwitch [9] to simulate a
number of VNFs in the network, which is relevant since they are
both packet processing nodes. The VNFs are randomly located
over the network. OpenDayLight Helium-SR3 [10], whose
monitoring cycle is set to 3 seconds, is deployed as the SDN
controller.

Network service requests are UDP flows generated by iPerf
[11]. In our experiments, we vary their offered load in the range
[1%, 5%] of the overall link and VNF bandwidth. The inter-
arrival time and duration of the flows are exponentially
distributed with an adjustable mean value in order to control the
number of concurrent flows in the system. By doing so, we can
observe the performance of the proposed algorithm under
different system loads. Each request is processed by a service
policy whose the number of network functions is uniformly
generated in the range [1, 5], and their precedence constraints
are randomly created.

The performance of proposed algorithm is measured by
bandwidth utilization criteria which is the ratio of achieved
bandwidth to designed bandwidth of flows. The achieved
bandwidth is real bandwidth which a flow can achieve when
traverses through a service chain. The designed bandwidth is the
bandwidth which iPerf client tool assigns for the flow. The ratio

1 bit for one type of network function

0 0 0 1 1 1 O O 1 0%l:type»inetworkfunctionistraversed

0: type-i network function is NOT traversed

Fig. 5. Status tag for encoding packet status.

is in the range [0.0, 1.0], and the higher ratio is, the better
throughput the system can get [12].

All the experiment results shown here are obtained by
averaging the results of five simulation runs. Each run is
terminated upon the successful completion of 1000 requests.

B. Result Analysis

1) Jointly vs. Sequentially: In this experiment, we compare
NF, the 1% phase of our proposed algorithm, to LLF-SPF. In
contrast to our design, LLF-SPF addresses server and network
balancing issues sequentially. The algorithm constructs a
service chain by firstly selecting the smallest load VNF among
feasible candidates to be the next destination. Then, the path to
the destination whose network latency is smallest is chosen to
construct the service chain. The steps are repeated until all
required network functions added to the service chain.

Fig. 6 shows that our design outperforms LLF-SPF at every
traffic load value. For example, for the case where the number
of concurrent flows is set to 200, the performance difference
between NF and LLF-SPF is approximately 11%. This observed
phenomenon can be explained by the chaining approach of LLF-
SPF in which it chooses the smallest load VNF to be the next
destination. However, it is possible that there are not any feasible
paths to reach the VNF; as a result, network congestions would
happen. On the contrary, NF considers concurrently VNF and
link status for constructing service chains. Consequently, it can
provide better performance than LLF-SPF.

The service chaining time of different algorithms is
compared in Fig. 7. The experiment results show that NF and
LLF-SPT consume almost the same amount of time for
constructing service chains. Surprisingly, the service chain
calculation time only makes up a small proportion of total
chaining time. Take LLF-SPF algorithm, for example, the
proportion is 18%.

2) 2 phases vs. 1 phase: In this investigation, we measure
and observe how well LGT, the 2nd phase of our proposed
algorithm, improves the solutions calculated by the 1st phase,
NF.

1.0
o
9 o9
=
8 os 0.12
5 o7 0.08
< . o
= 06 1 ~11% ooz
3 03 008 | ~20%
2 o4
% : 0.75 0,71
o)
S 03 061 555 054 osp
% 02 0.44 4 39
2 01
< o0
100 200 300 400
Number of concurrent flows
m NF LGT LLF-SPF

Fig. 6. Bandwidth utilization of different algorithms over traffic load.

250

200

150

100

Service chaining time [ms]

NF NF-LGT LLF+SPF

B Flow setup time B SC calculation time

Fig. 7. Service chaining time of different algorithms.

The experiment results clearly indicate that the average
bandwidth utilization is considerably improved by LGT phase.
As shown in Fig. 6, the improvement varies between 20% and
12% at different numbers of concurrent flows. For the service
chaining time, Fig. 7 presents that LGT phase increases the time
about 8%. To sum up, it is worth applying the 2" phase LGT in
the proposed algorithm NF-LGT since the phase could
noticeably enhance the algorithm while consume an acceptable
amount of time.

3) The impact of service chain length: We conduct another
experiment in which the number of concurrent flows is set 200,
and the number of VNFs in service policies is varied in the
range [2,5]. By doing so, the performance of different
algorithms is investigated under various values of service chain
length in this section.

As expected, Fig. 8 clearly demonstrates that the length of
service chain significantly affects the performance of observed
algorithms. Take NF for example, as the length increases from
2 to 5, the average bandwidth utilization decreases 0.73 to 0.42.
The experiment results also indicate that our design is better
LLF-SPF at any values of service chain length. Up to the length
of 4, the longer length is, the better performance NF can get. At
this value of service chain length, the performance difference
between NF and LLF-SPF is 45% improvement in bandwidth
utilization.

V. CONCLUSION

Motivated by the argument that network load balancing and
server load balancing should be jointly addressed for efficiently
enabling NFV in data center environment, we have presented a
service chaining algorithm, NF-LGT. At the 1% phase of the
algorithm, service chaining decisions are made by a greedy
approach which considers concurrently server and network
latencies. Then a searching technique is introduced to improve
the decisions at the 2" phase. We have implemented the
algorithm using SDN/OpenFlow concept with three main
functions such as network monitoring, service chain calculation,
and forwarding rule generation.

1.0
09

0.8
07 et

06 0:01-
05 =
04 ~45% 0.02:

0.73 069

03 082 050 losa
02 037 042

01
0.0

Average bandwidth utilization

2 3 4 5
Service chain length

ENF mLGT = LLF-SPF

Fig. 8. Bandwidth utilization of different algorithms over service chain
length.

The proposed algorithm has been experimentally evaluated
under different scenarios by Mininet network emulator. The
experimental results indicate that our algorithm outperforms the
comparison algorithm which sequentially solves network and
server load balancing issues. The results also show that it is
worth applying the 2" phase of our algorithm since it
considerably improves the system throughput.

REFERENCES

[1] Network Functions Virtualisation — Introductory White Paper. [Online].
Available at:
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White Paper3
.pdf

[2] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research Directions

in Network Service Chaining,” in Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for, 2013, pp. 1-7.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data
Center Network Architecture,” in Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, New York, NY, USA, 2008,
pp. 63-74

[4] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R.
Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan, and
M. Tatipamula, “StEERING: A software-defined networking for inline
service chaining,” in 2013 2Ist IEEE International Conference on
Network Protocols (ICNP), 2013, pp. 1-10.

[5] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
New York, NY, USA, 2013, pp. 27-38.

[6] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar, “Stratos: A Network-Aware
Orchestration Layer for Middleboxes in the Cloud,” May 2013.

[7] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14-76, Jan. 2015.

[8] “Mininet”. Available at: http://mininet.org/

[91 “Open vSwitch”. Available at: http://openvswitch.org/

[10] “OpenDayLight”. Available at: https://www.opendaylight.org/

[11] "iPerf". Available at: https://iperf.fr/

[12] Li, Yu, and Deng Pan. "OpenFlow based load balancing for Fat-Tree
networks with multipath support." in Proc. 12th IEEE International

Conference on Communications (ICC’13), Budapest, Hungary, pp. 1-5.
2013.

