
A Framework for Learning and Inference in Network Management

Ying-Dar Lin and Mario Gerla

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90024

Abstract
This paper presents a network management framework which
builds the management information infrastructure and equips
the management applications with learning and reasoning
abilities for automatic and adaptive management tasks.
Views are global virtual management information constructed
via logical rules from the distributed physical management in-
formation. Through these views, management applications
can access physical network entities. Management appli-
cations learn, network patterns and reason on the discov-
ered patterns and pre-specified domain knowledge t o pre-
dict network behavior, diagnose problems, and trigger con-
trol actions. These abstract view definition, domain knowl-
edge , and network patterns are a set of logical rules stored
in the application-dependent M K B (Managem.ent Knowledge
Base), while the physical management information is stored
in the standard MIB (Management Information Base) at each
node.

1 Introduction
A network ca.n continue to function, a t least for a period of
time, without the management subsystem. However, what
was a once highly tuned network may gradually degenerate
to an inefficient state. Not only a software/hardware failure
but also a performa.nce degradation can be a syst,em prob-
lem. Thus, the task of the mana,gement subsystem is to keep
track of the system status, which includes bot,li configura-
tion and performance, and trigger the control actions when
necessary. As the management tasks rely on the network’s
status informa.tion, a network management system must to
be constructed on top of the underlying management infor-
mation model on which the representation schemes and op-
erations are ba.sed. Given that a network is a dist,ributed,
and maybe heterogeneous, environment, several issues are
confronted when designing the infrastructure of the network
management informa.tion:

Management information representation: In what form
can the information be stored in network entities and
exchanged between network entities? Do the format and
content have to be st,andardized for information sharing?

‘This research was supported in part by a grant. from Mitsubishi
Electric.

e Heterogeneity of protocol stacks: How can machines with
different protocols interoperate to share management in-
formation?

e Information distribution strategy: What is the mecha-
nism for information sharing between network entities?
Should the management system keep a global view of
the network at all time or reconstruct it, when needed,
from local views of net,work entities?

Here we are facing the problems similar to the informa-
tion sharing problems in a traditional file system with multi-
ple applications where the application must know the struc-
ture of the files it is operating on. If one particular application
needs to modify the structure of a file, all the other applica-
tions us,ing that file have to be changed. The solution to avoid
this led to the evolution of database systems which contain
the files, the file structures, and the primitives to access them.
The separation between data and applications provides the
data independence for applications [l]. By the same phi-
losophy, data independence for network protocol stacks and
management applications can be supported by the manage-
inent information databases and their access protocol. The
database primitives and the access protocol form the infor-
mation access primitives for protocol stacks and management
applications. As the information sharing may be among the
distributed heterogeneous network entities, these distributed
databases and the access protocol have to be standardized.

The open-networking community has settled on a man-
agement model that places a MIB (Management Information
Base) on each network node and manages these MIB’s re-
motely with application level protocols [2, 3, 4, 5, 6, 71. Fig-
ure 1 shows the basic platform for MIB and CMIP (Common
Ma.nagement Information Protocol). Due to the hierarchical
nature of network entities and their sub-entities, both IS0
and Iiit,ernet models organize network management informa-
tion into a hierarchical structure. I S 0 even encapsulates this
hierarchical model into object-oriented databases which hide
the heterogeneity of network entities away from the protocol
st,acks and management applications.

The adopted architecture solves the problems of infor-
m at i o n represe n.t at i o n and het erog e n eit y of protocol st a c ks,
but the problem of information distribution strategy still re-
mains. This is one of the two problems, namely informa-
tion distribution strategy and automatic/adaptive manage-
mend, we want to solve in this paper.

On the other hand, although the infrastructure of net-
work management is agreed upon the standard MIBs and

560

sis, abstraction, prediction, and control.

Figure 1: OS1 Management Model

CMIP, little was done on how to use this platform in spe-
cific network management problems: performance, configura-
tion, fault, accounting, security, etc. Several researchers have
adopted expert systems with domain knowledge, represented
as a set of logical rules capturing network management mod-
els, to cope with fault localization and correction [8, 9, lo]. In
these systems, network messages containing ”trouble tickets”
are sent to the expert system. This expert system then rea-
sons on the trouble tickets and network configuration to find
the possible fault locations and then the healing procedures
for these types of faults. The effectiveness of these systems
depends heavily on encoding the problem-solving knowledge
in network domain.

Other network management problems also need automa-
tion. The maintenance of a large number of objects in MIBs
for sure needs to done automatically to keep the status in-
formation up-to-date. Configuration management applica-
tions can then easily identify and update objects, which in
turn changes configurations of network entities. Either re-
medial or preventive performance management schemes need
to be triggered automatically by performance alarms or traf-
fic forecasting, which again depend on automatic interpre-
tation of performance and traffic measurements. This mea-
surement interpretation implies that the system needs to keep
track of the network putterns and perform adaptive control.
That is, the management applications interpret the measure-
ments according to the patterns within the managed network.
The ultimate goal for network management should be a self-
managed and self-adjustable network with automatic mon-
itoring, problem diagnosis, information interpretation, and
control actions.

In this pa.per, we propose a framework for the network
management system with learning and inference abilities,
where learning is to capture network patterns and inference is
to reason on the discovered patterns and pre-specified knowl-
edge to access virtual global objects, predict network sta-
tus, trigger control actions, and diagnose problems. The pro-
posed scheme is meant to operate on the standard manage-
ment architecture where management information is stored
in object-orient>ed da.tabases. MKB (Management Knowledge
Base) which includes network patterns, abstract view defini-
tion, and control knowledge is represented as a set of logical
rules and triggered by the facts in databases and queries from
management applications.

Section 2 presents the network management framework
for learning and inference. The methodology to build the
mana.gement information infrastructure is detailed in section
3. Section 4 illustrates the functionalities of MKB in diagno-

2 The Framework

Network 0

Figure 2: Induction/Deduction in Network Management

To solve the above network management problems: infor-
mation distribution strategy and automatic/adaptive man-
agement, we incorporate learning and inference abilities into
network management systems to automate the process of
global view construction, measurement interpretation, prob-
lem forecasting, problem diagnosis, and decision making.
Network patterns are learned from the measurements stored
in a historical database. These discovered patterns, repre-
sented in the forms of logical rules, describe the correlation
between network objects. Based on these network patterns
and pre-specified domain knowledge, forward and backward
inference can be triggered to predict network status, fire con-
trol actions, diagnose reported problems, and access global
views. Figure 2 illustrates the general approach using learn-
ing and inference in network management. Unlike an ex-
pert system with only pre-specified domain knowledge, the
proposed management system has, in addition, learning abil-
ity to augment its knowledge regarding the specific managed
network. A general approach for fault management system
without learning ability is shown in Figure 3 where the usual
application is problem diagnosis triggered by forward or back-
ward inference [8, 9, lo].

Gzih < Network Controller)

Deduction

Domain
Global Views

Knowledg

Figure 3: Fault Management with Expert System

Figure 4 is an abstract data flow model of our manage-
ment systems. EDBs (Extensional Databases) are actually
the standard object-oriented MIBs. They represent the basic

56 1

facts or data about configuration, traffic/performance mea-
surements, and events/alarms of local nodes. Each network
node has an associated EDB which is its local view about the
network. IDB (Intensional Database), located at a manage-
ment site, is defined as the deductive closure of EDBs with
logical rules. That is, IDB contains virtual objects defined on
the physical objects in EDBs. Access to IDB will be trans-
formed into access to EDBs. This is the same concept as in
relational databases where views are virtual relations defined
on physical relation tables. EDB and IDB are both deductive
database terminologies [l]. The difference is that now IDB
is defined on distributed EDBs. IDB, including overall con-
figuration and inter-object relationships, embodies the global
views of the network. Extracted from IDB, HDB (Historical
Database) is the temporal historical database which encode
time in the network trace. Network patterns are learned from
HDB and stored in PKB (Pattern Knowledge Base). DKB
(Domain Knowledge Base) is pre-specified problem solving
and general relationship knowledge. Note that only EDBs
are standardized; all the others are management application
dependent.

1 - x - 1

abstraction
r - - - - - - - - - - - 1

diagnosis I
I
I triggering I logging

I learning

Figure 4: Abstract Model of Information Flow

A 1ogica.l rule in IDB/PKB/DKB has the generic form:
IF X THEN Y, where X is its body part and Y is its head
part. A body or head part has one or more formulas which
can represent the status of a network object or an action to
update an object’s status.

Each network pattern in PKB describes a correlation
between the attributes of network objects. These correlations
are extracted from HDB where selected attributes are logged
according to the specific management application. Since this
extraction is a statistical process, a probability associated
with each Iogical rules shows how strong this pattern is.

If the s t a h of network objects satisfies the body part
in the rule, the pattern tell us, from the past experience,
it is very likely that the status of the network object also
satisfies the hea.d part with some probability. This logical
rule is thus fired as a. forward inference. Forward inference is
very suitable for status prediction. If some undesired status
of a network object is foreseen to occur, it can further fire
some logical rules in DKB and then trigger preventive con-
trol actions. On the other hand, if a trouble is reported to
the management system (eg. blocking probability of connec-
tion382 is larger than 5%) , this object associated with the
trouble is matched with the object in the head of rules. If

the head is satisfied, the rule is fired as a backward inference
and a series of inferences on the body can carry on. Finally,
the set of residual formulas which can not be further deduced
are the possible causes to that trouble. Again, using forward
inference on the logical rules in DKB, the remedial control
actions can be triggered.

3 Management Information Infras-
t ruct ure

Modeling network management information is to map net-
work configuration, performance, and events to objects in
EDBs. The inheritance hierarchy in Figure 5 presents a
simple classification of network object classes where elements
class has three subclasses: configurations, performances,
and events. physical entities has two subclasses: nodes and
[inks. Etc.

events ZL
Figure 5: Inheritance Hierarchy

A node’s EDB contains only its local management infor-
mation. Figure 6 shows an EDB organized in a containment
hierarchy and its type declaration. An EDB is an object
instance of nodes. In addition to its own variable attributes,
this nodes instance contains a set of links instances (for links
that are connected to this node), a set of connections in-
stances (for connections that pass this node), and a set of
events instances (for events in which this node is involved).
Again, a l i n t s instance also contains a set of connections
instances (for connections that pass this link).

At the management sitme, what the management applica-
tions see is a set of views in IDB. Different sets of views can
be defined for different management applications. Each view
is defined on EDBs with a set of logical rules. The schema
at the management site for IDB/EDB and the Prolog imple-
mentation to define these views are given in Figure 7. Prolog
Logic Programming techniques used here can be found in

To see how a global view can be constructed by combin-
ing local MIBs, let us take predicate connections as an ex-
ample. For every ”Nodeid”, I-connections(Nodeid, Connid,
Type, Capacity, Perfid, St,atus, Clientid, Serverid, Nextid,
Linkid) contains all connections that pass node ” Nodeid”.
For every such connection, /-connections contains ”Nex-
tid” and ”Linkid” for its next hop (node and link), but
doesn’t know the whole path. connections, constructed

P11.

562

6 involved

NodsTLpa = RECORDOF(id: int, cqmcity:mt, parl0rm.n~~: ParfType,
sum:: ins linkx SETOF(LinkType). m d : : S E T O F (C o n T y p n) ,
cvcnu: SETOF(EvmtType));

L i n k w = RECORWF(id: ins protaotProtomlTLp. capacity: int,
performma: PurryPe, SUUS: ins purby: SETOF(Connwtion Type));

Conne.aionType = RECORWF(id im, typc int, capacity: ‘a
performma: Pufllpe, SUUS: int, client: NodeTypq save NodcType.
next: NcdcType. link: LinkTypo);

EvcntQpe = RECORDO~id ink type: ins time: ins d o n : ActTypc.
involved: SETOF(LinkType));

PcrrrLpe = RECORDOF(id: int. tnfic: int, delay: in5 loss: ink intslVd:int);

Figure 6: EDB: a Local MIB

Manager’s Schema for EDBs:

l-nodes(Nodeid, Capacity, Pdid . Status. Links. Conns. Events)
l-links(Nodeid. W d , Protocol, Capacity, Perfid, S t a t u ~ , C o ~ s)
l-coMectionS(Nodeid, Connid. Type, Capacity, Perfid, Status, Clientid,

l-events(Noddd. Eventid. Type. Time, Action, Links)
lqerformance(Nodeid, Peziid. Traffic, Delay. Loss, Interval)

Serverid. Nextid. LinLid)

Views In IDB:

nodes(Nodeid. Capacity. PMld. Status, Links, Conns. Events)
linlrs(Linkid. h t o c o l , Capacity. Pefid, Status. Nodes, COMS. Events)
connections(Connid. Type, Capacity. Perfid. Status, Clientid, Serverid,

events(Eventid, Type, Time, Action, Nodes. Links)
perfonnances(F’d~d. Traffic, Delay. Loss. Interval)

Nodes, LinLs)

View Deflnitlons:

nodes(Nodeid, Capacity, Patid, Status, Links. Conns. Events) :-
l-nodes(Nodeid, Capacity, Perfid. Status, Links, Conns, Events).

linLs(Linkid, PIOtocol. Capacity. P d i d , Status. Nodes, Conns. Events) :-
l-links(Nodeid, LinLid, Protocol, Capacity, P d d . Status, Conns),
set_of(N, (memberwid. N-Ms), l-n&(N, _, -, -, N-links, - J), Nodes),
sa-of(E. (memWLinkid. E-links). LeventsC, E. -, _. -, E-links)), Events).

connections(C0Mid. Type, Capacity. Pedid, Status. Clientid. Servexid. Nodes, Linlrs) :-
l-coMections(Clientid, Cmnid, Type, Capacity, P d d . Status. Clientid. Saverid. _. J,
path(Connid. Clientid, Saverid, Nodes, Links).

parh(COMid,End,End, [End], [I) :- !.
parh(coMid, S M , End, [StmlNodaest]. [LinkidlLinlrrestl) :-
l-COMeCtiOnS(duUt, Connid, - -,-, _. ~ _, Nextid, Linkid),
path(c0Mid. Nextid, End, Noderest. Linkrest).

events(Eventid, Type, Time, Action, Nodes, Links) :-
seLof(Nodeid, I-event(Nodeid. Eventid. Type, Time. Anion. J, Nodes),
set-of(Lhkid, (member(LinLid. E-links), Levents(N0deid. Eventid, Type, Time, Action,

E-links)), Links).

perfmances(Pdid, Traffic. Delay, Loss, Interval) :-
lgerfmances(Nodeid. P d d , Traffic, Delay, Loss, Interval).

Figure 7: Views in IDB

from 1-connections, contains the link lists ”Nodes” (all nodes
on this connection) and ”Links” (all links on this con-
nection). ”Nodes” and ”Links” are constructed by predi-
cate path which takes ”Nextid” and ”Linkid”, starting from
the node ”Clientid”, and inserts them into the link lists
”Nodes” and ”Links”. Note that, in the rule for connections,
’’ Nodeid” in 1-connections is an existential quantifier, which
means all nodes can be tried to match with the attributes of
connections. The similar view construction techniques are
used in predicates links and events. Instead of using recur-
sive predicate path, ”set-of’ constructs are used to construct
the link list whose elements satisfy the specified condition.
links contains ”Nodes” (for all nodes connected to this link)
and ”Events” (for all events involving this link), while event
contains ”Nodes” (for all nodes involved in this event) and
”Links” (for all links involved in this event).

All the predicates mentioned here are the schema def-
initions at the management site. An access to a predicate
of IDB will be converted, by backward chaining, to access
to predicate(s) of EDBs at the management site, and then
transferred, by CMIP queries, to the physical EDBs on lo-
cal nodes. Thus, a mapping between access to predicates of
EDBs at the management site and CMIP queries to physical
EDBs must be done at the management site. The attribute
”Nodeid” in each EDB predicate is used to identify the local
node that contains the object instances.

4 Management Knowledge Infras-
t ruct ure

Conceptually, MIB and MKB are organized in the follow-
ing hierarchical layer structure where EDB is MIB and
IDB/DKB/PKB compose MKB:

Layer Contained in
Control Strategy DKB
Management Knowledge: DKB and PKB
(Configuration, Performance, Fault)
Object and View Manipulation Rules IDB
Network Objects EDB

The control strategy, which is implemented as the man-
ager, decides when to invoke the submanagers, which actu-
ally are rule sets in configuration, performance, and fault
domains. An inference process pn DKB and PKB then ac-
cesses the objects of a view in IDB, which in turn accesses
the remote objects in EDBs over the network.

As previously mentioned, both preventive and remedial
control actions can be taken by network management ap-
plications. Preventive control is triggered by problem for-
casting based on previous patterns, while remedial control
is triggered by network events (performance alarms and de-
vice failures). As the manager receives results of the queries
to IDB, it pass the configuration status variables to config-
uration submanager, performance status variables to perfor-
mance submanager, and event variables to fault submanager.
If any match between the variable values and the body of a
rule occur, the rule is fired and the head part executed. A rule
in IDB/DKB/PKB can be fired for four possible purposes:

563

Prediction: The forward inference on a pattern rule (in
PKB), given that the conditions are true, forecast that
the rule goal will be true.

Control: The forward inference on a domain control rule
(in DKB) suggests the control actions to take when some
network phenomena are detected.

Diagnosis: The backward inference on a domain/pattern
rule (in DKB or PKB) can discover the root causes of
network events, even when they are not yet detected.

Abstraction: The backward inference on a view defini-
tion rule (in IDB) transforms an IDB query to EDB
query/queries and hence provides global view abstrac-
tion.

Here are two example inference processes: (i) a pro-
cess that predicts traffic-demands between node X and Y,
forecasts performance alarms for link L, and takes actions
to reroute some traffic from link L, (ii) a process that diag-
noses the received performance alarms, concludes that node
Z is malfunctioning, reroutes traffic that passes node Z , and
disables node Z.

Backward inference is triggered by events (ie. only when
there are network problems: performance alarms and device
failures) and queries (from manager to IDB). However, for-
ward inference is triggered by a set of state variables. The
workload on forward inference process can be very high since
each state variable will match against each condition in rules
to see if some rules can be fired. Thus, keeping the num-
ber of state variables for triggering forward inference sinal1 is
critical in designing management applications.

5 Conclusions and Future Work
In this paper we have identified the basic network nianage-
ment issues: management information infrastructure and au-
tomatic/adaptive management. The evolution of MIB and
CMIP is briefed. One basic problem in management infor-
mation infrastructure is to provide a window through which
management applications can access the global management
information. Our solution to this is to construct views by
logic programming on the distributed physical MIBs. Ac-
cesses to views are transformed into CMIP queries to MIBs.

We have also proposed the methodology to equip the
system with automatic and adaptive management abilities.
Learned pattern knowledge works together with domain
knowledge to perform adaptive management tasks - predic-
tion, diagnosis, and control action. This pattern knowledge
captures the underlying network patterns and refine the pre-
specified domain knowledge.

An experiment on traffic pattern discovery is reported in
[12]. Traffic patterns are learned by a machine learning tool
from measurements stored in a HDB implemented as a rela-
tional database. The discovered rules can describe traffic pat-
terns in terms of locality, long-term burstiness, correlation,
and predictability. These patterns are useful for medium-
term and long-term performance management. Presently, the
implementation of a prototype network management system,
LEN (Learning Expert for Networks), is in progress.

Acknowledgements
The authors would like to acknowledge their colleagues, Shen-
Tzay Huang and Carlo Zaniolo at UCLA, for the fruitful
discussions on issues in deductive databases and logic pro-
gramming.

References
[l] Ullman, J . D., Principles of Database and Knowledge-

base Systems, Volume I, p. 11-12, p. 82-87, p. 100-101,
Computer Science Press, 1988.

[2] Case, J . D., J . R. Davinm, M. S. Fedor, and M. L. Schoff-
stall, A Simple Network Management Protocol, RFC
1067, SRI Int., August 1988.

[3] McCloghrie, K. and M. Rose, Management Information
Base for Network Management of TCP/IP-based Inter-
nets, RFC 1156, Internet Standard, May 1990.

[4] Rose, M., Management Information Base for Network
Management of TCP/IP-based Internets - MIB 11, RFC
1158, Internet Standard, May 1990.

[5] ISO/IEC DIS 10165-1, Information Technology - Open
Systems Interconnection - Structure of Management In-
formation - Part 1: Management Information Model,
ISO, Geneva, Switzerland, June 1990.

[6] I S 0 9596, Informution Technology - Open Systems In-
terconnection - Common Management Information Pro-
tocol Specification, E O , Geneva, Switzerland, May 1990.

[7] Cassel, L. N., C. Partridge, and J. Westcott, Network
Management Architectures and Protocols: Problems and
Approaches, IEEE Journal on Selected Areas in Com-
munications, Vol. 7, No. 7, September 1989.

[8] Liebowitz, J . (Editor), Expert Systems Applications t o
Telecommunications, John Wiley & Sons, New York,
1988.

[9] Ericson, E. C., L.T. Ericson, and D. Minoli, editors, Ex-
pert Systems Applications in Integrated Network Man-
agement, Artech House, 1989.

[lo] Goyal, S., Knowledge Technologies for Evolving Net-
works, Proceedings of the IFIP TC6/WG6.6 Second In-
ternational Symposium on Integrated Network Manage-
ment, January 1991; also in Integrated Network Man-
agement, 11, I. Krishnan, et al., editors, North-Holland,
1991.

[l l] Sterling, L. and E. Shapiro, The Art ofprolog: Advanced

[12] Gerla, M. and Y. D. Lin, Network Management Using
Database Discovery Tools, Proceedings of IEEE 16th
Conference on Local Computer Networks, Minneapolis,
October 1991.

Programming Techniques, MIT Press, 1986.

564

