
International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 506

Automatic Analysis and Classification of Obfuscated Bot

Binaries
Ying-Dar Lin1, Yi-Ta Chiang1, Yu-Sung Wu1, and Yuan-Cheng Lai2

(Corresponding author: Yi-Ta Chiang)

Department of Computer Science, National Chiao Tung University1
1001 University Road, Hsinchu, 300, Taiwan

Department of Information Management at National Taiwan University of Science and Technology2
43,Sec.4,Keelung Rd.,Taipei,106,Taiwan

(Email: yida@cs.nctu.edu.tw)
(Received Dec. 17, 2012; revised and accepted May 16, 2013)

Abstract

Botnets is a serious threat to Internet security. Popular
defense strategies such as traffic filtering and malware
detection all require a good understanding of the
constituent bot binaries for creating the corresponding filter
rules or signatures. This means that an effective analysis
and classification process for bot binaries is needed for
dealing with the threat of botnets. Unfortunately, the
rampant usage of binary obfuscation these days has made
the analysis and classification rather difficult. A simple
string pattern matching or disassembly of the binary no
longer suffices as the exact instruction sequence can be
easily altered by obfuscation. In this work, we propose a
new framework for automatic analysis and classification of
bot binaries. The framework analyzes a bot binary’s
runtime system call trace and uses the longest common
subsequences between system call traces for the
classification of bot binaries. The framework can
effectively deal with obfuscated bot binaries. Experiment
result shows that the framework can attain an overall 94%
true positive rate and 93% true negative rate.

Keywords: Longest common subsequence algorithm,
obfuscation, system call

1 Introduction

The Internet faces many security threats nowadays ranging
from low-level attacks such as packet spoofing to large-
scale malicious activities such as botnets. A botnet is an
autonomous network that consists of compromised
computers running software agents, commonly referred to
as robots or bots, under the control of an attacker. A bot-
network (botnet) is typically formed to conduct nefarious
activities such as DDoS attack [18], e-mail spamming [17],
stealing of personal information, etc. These attacks have
raised concerns over Internet security and can have severe

financial impact. For example, a DDoS attack caused by
botnets in New Jersey had cost a loss of over $2.5 million
dollars [5].

The threat of botnets is difficult to eradicate because
new types of bots appear every day. The analysis and
classification of bot binaries can no longer rely on manual
analysis carried out by experts solely. The process has to be
automated in order to match the high birth rate of new bots
these days. On the other hand, the rampant usage of binary
obfuscation also brings new challenge to traditional
analysis and classification techniques that are based on
string pattern matching or disassembly. These traditional
techniques use the raw instruction sequence to characterize
a binary, and the sequence can now be easily mutated
through binary obfuscation.

In this work, we present a framework for the automatic
analysis and classification of bot binaries. The framework
uses dynamic analysis to extract system call sequences
from bot binaries. The framework then classifies the
binaries based on the LCS similarity of system call
sequences. We notice that obfuscation can relocate
instructions in a bot binary. On the other hand, obfuscation
can also introduce extra system calls into a call sequence.
Both of these can negatively affect the classification
accuracy. We therefore come up with heuristics to
compensate these effects. Another problem is that many
bots contains anti-VM code to prevent being analyzed in a
virtual machine (VM), we therefore use the PIN tool to
observe their behaviors in real machines. Our experiment
based on 564 distinct bot binaries and 1692 variants shows
that the framework is able to achieve high classification
accuracy (94% true positive rate and 93% true negative rate)
even with obfuscated bot binaries. Overall, the framework
offers a streamlined and effective process for the automatic
analysis and classification of obfuscated bot binaries.

International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 507

Controller Classifier

Recorder
Bot

Sample

2. Start recorder

4. Record
system calls

5. Store
system call
sequence

6. Start classifier

Storage

Database

1. Fetch a new
sample

7. Fetch system call sequence

3. Execute
sample

Figure 2: Architecture diagram

2 Background

2.1 Taxonomy of Botnet

A botnet is made of a bunch of bots, which are controlled
by a command and control server (C&C server) as shown
in Figure 1. A botnet typically follows the three-phase life-
cycle, that includes: (1) the injection of bots onto
vulnerable hosts, (2) the injected bots establishing
connections back to a C&C server and waiting for its
commands, and (3) C&C server issuing commands to the
bots to order the launch of attack on a chosen victim.

The injection of bots can be achieved through many
different ways such as exploiting vulnerability in network
services, through e-mail attachment, via P2P file sharing,
and so on. After a bot is injected into a computer, the bot
will attempt to establish a communication channel with a
C&C server. A popular approach is to rely on an existing
IRC server to act as the C&C server. However, it is also
possible to use a customized server. A malicious attacker,
sometimes known as the bot herder, can remotely control
the bots by issuing commands through the C&C server. The
C&C communication channel is often encrypted to prevent
anyone but the authorized bot herders from controlling a
botnet. A botnet can have more than one C&C server to
make the botnet more robust against crackdown.

Any bot in a botnet can be used to carry out attack
actions. This means that it is typically difficult to track
down a single attack origin for crackdown in a botnet attack.

Botnet is thus a very popular choice for conducting attacks
such as e-mail spamming. When the bots in a botnet are
instructed to carry out attacks on a targeted victim around
the same time, the botnet can become a very effective
DDoS attack weapon. For instance, the botnet MyDoom [8]
was used to carry out a DDoS attack on the web site of
SCO Group.

2.2 Overview of Binary Analysis and Classification

For the analysis of bot binaries, there are two different
approaches: static analysis and dynamic analysis. Static
analysis analyzes a bot binary without actually running it.
In its simplest form, static analysis can be a straightforward
string pattern matching within a binary. More advanced
static analysis may involve disassembly of binary,
constructing function call graph, and semantic analysis of
the disassembled code. For instance, Liang [11] merges
function calls into modules that characterize specific types
of high-level tasks such as file and registry operation.
Zhang and Reeves [21] look for common patterns of
assembly code sequences in malware binaries. Han [7] uses
the full-name here (API) list in the full-name here (IAT)
table as a signature to cassify samples. None of the above
works can deal with obfuscated binaries. In the work by
Natarij [13], they design a binary-to-gray-level image
converter to calculate the similarity of binary codes. While
they can identify different malware from the same packer,
they are unable to distinguish different malware from the
same packer unless the packer has weak encryption
schemas.

Static analysis typically runs very fast. It does not
require actually running the bot binaries (and possibly
causing damages). However, it can be easily defeated by
binary obfuscation [6]. One common technique used in
binary obfuscation is encrypting the binary, so a
straightforward string matching or disassembly will not be
able to give any meaningful analysis result. More advanced
static analysis tools may attempt to decrypt an obfuscated
binary, but still the obfuscation can introduce extra layers
of protection. For instance, the layout of a binary can be
restructured and redundant data fields or garbage codes can
be added to the binary to cause noise to the static analysis
process. Some obfuscation tool such as Themida [15] can
even translate an x86 binary into a binary for some
unknown architecture and use a virtual machine (VM) of
the corresponding architecture to execute the obfuscated
binary.

The weakness of static analysis on obfuscated binary
has led to interests in the development of dynamic binary
analysis techniques. One approach is API hooking, in
which key system APIs are hooked by monitoring routines
to track their usage. Since API hooking incurs overhead
only when the hooked APIs are invoked, the dynamic
analysis process can be made quite efficient. However, a
limitation with API hooking is that those in-between
instruction sequences that do not involve system APIs will
not be analyzed. It is also possible that a bot binary can

Attacker
C&C
Server

Bot

Bot
Victim

(2)C&C channel (3)Attack(1)Injection

Figure 1: Architecture of a botnet

International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 508

MOV EAX,0x1b
MOV EDX,0x5a0e0300

SYSENTER or INT 2Eh

callback_before()

callback_after()

Figure 3: Intercept system calls through instrumentation
(Windows platform)

NTSTATUS ZwQueryValueKey(

 __in HANDLE KeyHandle,

 __in PUNICODE_STRING ValueName,

 __in KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass,

 __out_opt PVOID KeyValueInformation,

 __in ULONG Length,

 __out PULONG ResultLength

);

Figure 4: Example of Windows system call (native API)

attempt to unhook the monitoring routine or make direct
API call into the kernel to bypass the dynamic analysis
[20].

Another approach for dynamic analysis is through full
system emulation [2], where a bot binary is executed in an
operating system that runs on a hardware platform
emulator (e.g. QEMU). The emulator can be modified to
extract detailed runtime information such as instructions
executed, memory content at arbitrary address, and so on.
This kind of dynamic analysis can be very thorough.
Typically, the emulated environment is isolated from the
outside world, so the dynamic analysis process cannot be
bypassed or disabled. However, it is possible that a bot can
detect the emulated environment (e.g. through
fingerprinting BIOS, and so on.) and refrain from showing
its full behavior [14]. The approach also comes with
significant runtime overhead due to emulation. For instance,
systems running on QEMU can experience a 4~10 times
slowdown compared with systems running directly on the
underlying hardware [4].

Bayer, Kruegel and Kirda [3] proposed a system named
"TTAnalyze" that executes a binary sample inside a virtual
machine to observe the binary’s runtime behaviors
including file modification, registry modification and
network access. A popular tool for online binary dynamic
analysis is CWSandbox [20], where one can upload
suspicious binaries for dynamic analysis in their sandboxed
environment. A limitation with dynamic analysis is that
only those executed control paths are analyzed by default.
This limitation can be addressed by symbolic execution
[12]. Li, Xu, Zheng and Xu [10] also use system call
sequence similarity to classify samples. Their method
focuses on the patterns of continuous system call. In
comparison, our framework also considers more detailed
features such as gap shift (Sec. 0) in a system call sequence.
LeDoux [9] combines signatures from Anubis and
CWSandbox to achieve higher accuracy, but more
signatures also means more time to analyze samples.

3 System for Analysis and Classification of
Obfuscated Bot Binaries

Figure 2 shows the architecture of the system. First, the
controller fetches a bot binary sample from disk storage
(step 1). It then starts the recorder (step 2) to begin dynamic
analysis on the bot sample. During the dynamic analysis,
the system calls invoked by the bot sample will be collected
(step 3 and 4). The recorder relies on the dynamic
instrumentation tool PIN [16] to record the system calls
invoked by the binary during its execution. The data

collected are stored in the database (step 5). Once the
sample stops running or when a predefined timeout limit is

reached, the controller will terminate the recorder and
initiate the classifier. The classifier will classify the sample
based on its system call trace (step 6 and 7).

3.1 Analysis of Bot Binaries

As mentioned in Section 2.2, API hooking is susceptible to
tampering. On the other hand, full system emulation incurs
a high overhead and is not suitable for the analysis of a
huge volume of bot binaries. Instead, we use process-level
binary instrumentation [16] as the mechanism for the
dynamic analysis of bot binaries. Process-level binary
instrumentation can instrument monitoring routine code
into a bot binary’s process memory at runtime. The
instrumentation tool can breakpoint the execution of a
process at locations of interests and insert monitoring code
at those locations (e.g. locations where a system call is
about to be invoked). An instrumented process is executed
natively on the hardware, so the analysis process can be
made almost as fast as that of API hooking. On the other
hand, instrumentation is more versatile than API hooking in
the sense that the monitoring code can be instrumented
almost anywhere in the text segment of a process, not just
at the system call sites. However, instrumentation-based
analysis is typically limited to user-mode process and is not
suitable for analyzing kernel-mode malware such as rootkit.
For analyzing kernel-mode malware, it is more appropriate
to rely on full system emulation.

In Figure 3, on 32-bit Windows platform, the
invocation of system call relies on either software interrupt
INT 2Eh or the SYSENTER instruction to transfer control
into the kernel-mode system call handler. The system call
number is passed by the EAX register. The call arguments
are passed by the stack. A pointer to the arguments on the
stack will be passed through the EDX register. We use PIN
API PIN_AddSyscallEntryFunction() to instrument the
monitoring routine callback_before() right before each
SYSENTER/INT 2Eh instruction. This allows the recorder
to intercept the invocation of each system call and collect
the corresponding system call number, call arguments, and
thread ID. The monitoring routine can acquire these
information through PIN API PIN_GetSyscallNumber(),
PIN_GetSyscallArgument(), and PIN_GetTid() respectively.
On the other hand, the analyzer also instruments the

International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 509

A B C D

Program
Loader

Unpacking
Loader

Packed
Program

Program
Exit Handler

Figure 5: Segments of system calls in an obfuscated binary

monitoring routine callback_after() right after each
SYSENTER/INT 2Eh instruction. This is used to collect
the return value of each system call.

Some of the system call arguments may be pointers. For
instance, the Windows system call ZwQueryValueKey has
six call arguments (Figure 4). The second argument
ValueName and the fifth argument ResultLength are
pointers. When collecting system call information in
callback_before(), the recorder will deference pointer
arguments and record the values stored at the memory
addresses pointed by the pointers.

3.2 Features for Classification: System Call Sequence

The analyzer will group the collected system calls from a
bot binary based on thread IDs. In the current
implementation, the analyzer only keeps the system calls of
the main thread (the thread that contains the most number
of system calls). The system calls in the main thread is then
sorted into a system call sequence based on the invocation
time of each system call.

An example of a system call sequence from an
obfuscated bot sample is shown in Figure 5. The system
calls in the sequence can be roughly divided into four
segments. Segment A includes system calls related to the
initialization of a new process. (e.g. loading of the
executable image and the related library files). Segment B
represents the stub loader embedded by an obfuscation tool
used for initializing the runtime environment. In the case of
UPX [19], segment B is mainly about the decompression of
program text. For Themida, segment B corresponds to the
loading and initialization of the built-in virtual machine. Of
most interest to us is segment C, which contains the system
calls made by the original bot binary itself. System calls in
segment C characterizes the behavior of a bot binary.
Segment D contains system calls used for the deallocation
of resources (files, memory, etc.) at the time of process
termination.

3.3 LCS Similarity of System Call Sequences

The number of bot binaries is huge. The proposed
framework comes with a classification process to help the
study of bot binaries by automatically identifying and
grouping bot binaries into classes. The similarity between
two bot binaries is judged by the similarity between their
system call sequences.

Bot binaries can bear similarity in their system call
sequences for at least two reasons. First, a bot binary is
often obfuscated into different forms to avoid signature-
based detection. The obfuscated binaries will still contain
the system call behavior of the original binary, or they will
not be able to fulfill the same intended functionality as the
original binary. The other reason for similarity in bot binary
system calls is because malware writers may reuse some
code pieces from previous malware. By looking for
similarity in the system call sequences, the classification
process can help identify the bot variants more quickly.

The similarity between two bots is defined based on
their system call sequences. Specifically, the similarity is
defined by the longest common subsequence of the system
call sequences of the two bots. Let us assume that the two
system call sequences are X:

1 2 3, , , , mX X X X and

Y:
1 2 3, , , , nY Y Y Y , where Xi and Yj are the IDs of the

respective system calls made by the two bots in ascending
invocation time order. The longest common subsequence
LCS(X,Y) is a common subsequence of X and Y with
maximal length |LCS(X,Y)|.

To evaluate the system call sequence similarity S(X,Y)
between two call sequences X and Y, we define S(X,Y) as

(,)
(,) ,

min(,)

LCS X Y
S X Y

X Y
 (1)

which is the ratio of the maximal length of the common
system call sequence to the length of the shorter sequence

of X and Y. Since | (,) | min(| |,| |)LCS X Y X Y , the
value of S(X,Y) is between 0 and 1, where 1 means either
X is a subset of Y, or Y is a subset of X. The similarity
value S(X,Y) is then compared against a threshold value TS
to decide if X and Y should be placed in the same class.
The decision rule is

(,) Different class,

(,) Same class.
s

s

S X Y T

S X Y T


 




 (2)

while the value of TS is decided in Sec. 0 for
maximizing true positive rate and true negative rate.

3.4 Improve Classification Accuracy with Gap Shift
Ratio

System calls in the longest common subsequence LCS(X, Y)
may not always come from the same locations in sequence

International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 510

0

20

40

60

80

0 200 400 600 800

865

870

875

880

885

0 500 1000 1500 2000 2500 3000 3500

G
a
p
 S
h
if
t

System call index in LCS(Agobot original, Agobot Themida)

Figure 6: The gap shift sequence of Agobot original vs.
Agobot Themida

0

20

40

60

80

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450 500

G
ap

 S
h
if
t

System call index in LCS(Bodombot original, Breplibot original)

Figure 7: Gap shift value chart of Bodombot original &
Breplibot origional

X and Y. Although these system calls appear in both X and
Y, they may carry quite different semantic meanings. For
instance, two consecutive CreateProcess() calls could very
likely come from a function used in some initialization
work. On the other hand, two CreateProcess() calls that
spread far apart may more likely come from two separate
functions that are not related to each other. Due to this
reason, the LCS similarity between two unrelated bot
binaries can sometimes become erroneously high. This will
cause the classification process to put the two binaries into
the same class by mistake according to Equation 2.

To address the deficiency in classification with LCS
similarity alone (Equation 2), we propose a heuristic that
factors in the effect of the gap shifts in system call
sequences. Specifically, after we obtain the LCS sequence

1 2 1(, , , , ,...,)k k lS S S S S of X and Y, we will

determine the respective indices for each system call Sk in X
and Y. This would create two sequences of indices:

IX: 1 2 3(, , , ,)lp p p p for X and IY:
 1 2 3(, , , ,)lq q q q

for Y. For example, p1 is the index of system call S1 in X
and q1 is the index of S1 in Y. If S1 is the first system call in
X, then p1 is 1. And, if S1 is the 100th system call in Y, then
q1 are 100.

The gap shift sequence G is constructed by taking the

difference of each pair of elements from IX and IY, so we

have G: 1 1 2 2 3 3(, , , ,)l lp q p q p q p q    . We then

define N(G) as the number of the distinct values in the
sequence G. According to our observation, for two bot
binaries that should belong to the same class, their N(G)
value will be small. Because they are similar in their
behaviors, their system calls in common should bear
similar semantic meanings, and the relative gap shifts
should be similar as well. On the other hand, for two
unrelated binaries, the corresponding N(G) value will be
usually high.

Figure 6 shows the gap shift sequence between Agobot
original (unpacked) and Agobot Themida (obfuscated by
Themida). The gap shift values for the first 762 system
calls are below 80 because they correspond to the
initialization of a new process (Segment A of Figure 5).
This part of the system call sequence is hardly affected by
the Themida packer. From the 763th system call and onward,
we can see a huge shift (about 865) in the system call
indices. This shift is due to the unpacking loader code
(Segment B in figure 5) inserted by the Themida packer
between the 762th system call and the 763th system call. The
two bot binaries are related, and as we can see from the plot,
the gap shift values only take on a few levels (the
corresponding N(G) value is 27).

Figure 7 shows the gap shift sequence between two
different bots: Bodombot and Breplibot. The LCS
similarity between these two bot binaries is 0.97, which
will cause incorrect classification according to Equation 2.
Looking at the gap shift sequence plot in Figure 7, we can
see that the gap shift values take on many different levels
(the N(G) value is 100). This indicates that the common
system calls as identified by LCS are located at quite
different locations in Bodombot and Breplibot, meaning
that the corresponding behaviors shall be quite different.

The N(G) value also increases with the length of a gap
shift sequence. We can normalize it by the length of the gap
shift sequence L=|G| and define the gap shift ratio R as

()

.
N G

R
L

 (3)

Combined with Equation 2, the criteria for determining
if two bot binaries belong to the same class is now defined
as

Different class,

Different class,

Same class.

s

s r

s r

S T

S T and R T

S T and R T


  
  







 (4)

3.5 Improve Classification Accuracy of Call Sequences with
Segment Identification

In Figure 5, we see that only segment C of a system call
sequence is of relevance for identifying bots with similar
behaviors. The system calls in segments A and D are
common to most executable files, and segment B is

International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 511

Table 1: List of bots used in the experiment

Id MD5 Kaspersky Sophos

1 ea46b4606531d28
474e06cb4cd060c
71

Backdoor.Wi
n32.Anibot.b

Mal/IRCBot-B

2 c1ed6261902e
bc178f55159c
a1b061b1

Backdoor.
Win32.Afb
ot.a

Mal/IRCBot-C

3 d7b32cc7056f
37eb8ccf0d1f4
72d8e5b

Backdoor.
Win32.Rb
ot.gen

W32/Rbot-Gen

4 fa29f9048e3b
57705e97583d
70f00ba1

Backdoor.
Win32.Ag
obot.gen

W32/Agobot-
Gen

5 f1f9f762f899a
24a2d71a35c4
b825db8

Backdoor.
Win32.Ro
hbot.a

Mal/Generic-A

6 69fd63dade7c
d4f8878c6e80
084069fb

Backdoor.
Win32.Rb
ot.gen

W32/Rbot-Fam

7 4aac37248630
70dc422ad0dc
0a39a5af

Backdoor.I
RC.Botva.
b

Troj/Bckdr-MPJ

8 8a87d88714f2
017e2cdd7491
2449e7cf

Backdoor.
Win32.De
vBot.b

Troj/DevBot-B

9 c3207feb5160
c71227dbd92c
c3fe4e53

Backdoor.
Win32.Da
SBot.12

Mal/Generic-A

10 0ce8ccbd76e6
126ed10350fd
70c37d98

Backdoor.
Win32.Poe
Bot.a

 W32/Poebot-
Gen

NTOpenKey
\Registry\Machine\Software\Micros
oft\Windows
NT\CurrentVersion\Image File
Execution Options\winmm.dll

NTOpenKey
\Registry\Machine\Software\Micros
oft\Windows
NT\CurrentVersion\DRIVERS32

NTQueryValueKey wave
NTQueryValueKey wave
NTQueryValueKey wave1
NTQueryValueKey wave2
NTQueryValueKey wave3
NTQueryValueKey wave4

Figure 8: System call sequence in segment B from a
Themida-obfuscated binary

 introduced by an obfuscation tool. We can improve the
classification accuracy by ignoring segments A, B, and D
in the calculation of LCS similarity and gap shift ratio.
Segment A and D are easy to identify and ignore as they
are very much the same across all executables.

Segment B, on the other hand, is much more difficult to
deal with, because it depends on the type of obfuscation
tool in use. As a result, we have to build profiles for each
different obfuscation tool in order to identify and remove
segment B effectively. As an example, a Themida-
obfuscated binary always has the system calls shown in
Figure 8 in segment B, which can be reliably removed to
improve classification accuracy.

To build the profile, we use LCS to identify the
common subsequence over a bunch of binaries obfuscated
by a given packer (e.g. Themida). The resulting common
subsequence that is left should include only segment A, B,
and D. Since segment A and D are standard to any
executable, we can trim them away in the recorder and
extract segment B as the profile for the corresponding
obfuscation tool.

4 Experiments

We conduct four experiments to evaluate the proposed
framework. The first two experiments (Section 4.1 and
Section 4.2) look at the effect of obfuscation on LCS
similarity and gap shift ratio. Ideally, neither of them
should be significantly affected by obfuscation, or the
proposed framework would fail to accurately classify
obfuscated bot binaries according to Equation 4. In the
third experiment (Section 4.3), we look at how the selection
of different threshold values TS and TR affects the
classification accuracy. In the fourth experiment (Section
4.4), we evaluate the overall effectiveness of our
framework with a large sample of 564 real-world bot
binaries.

4.1 LCS Similarities and Gap Shift Ratios between
Variants of a Bot Sample

In this experiment, we calculate the LCS similarities and
gap shift ratios between bot variants, which are created by
obfuscating 10 (unpacked) bot samples with different
packers. We use the 10 unpacked bot samples (Table 1) as
the baseline (denoted as group A) in this experiment. We
then obfuscate each of those 10 bot samples with ASProtect
[1] to create ASProtect-obfuscated test targets (denoted as
group B). We also create 10 Themida-obfuscated test
targets (denoted as group C) and 10 UPX-obfuscated test
targets (denoted as group D). For each bot sample, there are
six different combinations for evaluating the LCS
similarities and gap shift ratios: (A,B), (A,C), (A,D), (B,C),
(B,D), and (C,D). For instance, in the case of (A,B), we
will take one bot from group A and calculate the LCS
similarity and gap shift ratio of it with the corresponding

ASProtect-obfuscated version of the bot from group B.
This yields 10 data points, and overall, there will be 60 data
points, which are summarized in Figure 9.

Figure 9 shows the distrbution of the 60 data points.
Here, each data point corresponds to the LCS similarity (S)
and the gap shift ratio (R) between two variants of a bot
sample. Each of the circle in Figure 9 represents a group of

International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 512

data points with the same LCS similarity and gap shift ratio.

The diameter of the circle is proportaionl to the number of
data points in that circle. As we can see, most of the data
points present a high LCS similarity values (close to 1)
indicating that the two corresponding variants are from the
same origin. On the other hand, the gap shift ratios are low
(near 0.01), which also indicates the variants are from the
same origin. This shows that LCS similarity and gap shift
ratio are not sensitive to obfuscation with respect to
identifying bot variants of the same origin.

4.2 LCS Similarities and Gap Shift Ratios between
Distinctive Bot Samples

In this experiment, we evaluate the LCS similarities and
gap shift ratios between bot samples of different origins.
First, we calculate the pair-wise LCS similarities and gap
shift ratios for the 10 unpacked bot samples (group A in
Sec. 0). The result is presented in Figure 10-A. We then
calculate the pair-wise LCS similarities and gap shift ratios
for the ASProtect-obfuscated bot samples (group B) with
the result shown in Figure 10-B. The results for Themida-
obfuscated bot samples (group C) and UPX-obfuscated bot
samples (group D) are presented in Figure 10-C and Figure
10-D respectively.

This result shows that the LCS similarities (S) between
bot samples of different origins are widely dispersed. The
LCS similarities no longer concentrate near 1 as in Sec. 0.
Some of the data points have high LCS similarities, but
comparing to Figure 9, their gap shift ratios (R) are mostly
above 0.05. Thereby, if we consider both the LCS
similarity and gap shift ratio together as in Equation 4, we
can also reliably distinguish bot samples of different origins.

4.3 Choosing TS (LCS Similarity Threshold) and TR
(Gap Shift Ratio Threshold)

From the previous two experiments, we know that for bot
variants from the same origin, their LCS similarity values
are close to 1 and their gap shift ratios are close to 0. On
the other hand, for bot samples from different origins, their
LCS similarities are widely dispersed and the gap shift
ratios tend to be larger. Based on the observation, we
designed the classification criteria of Equation 4. To

determine the proper threshold values TS and TR in

Figure 9: Distribution of LCS similarity and gap shift ratio

A. Non-obfuscated bots

B. ASProtect obfuscated bots

C. Themida obfuscated bots

D. UPX obfuscated bots

Figure 10: Result distribution on the same obfuscation

International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 513

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

0.44

0.48

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

0

0
.0
4

0
.0
8

0
.1
2

0
.1
6

0
.2

0
.2
4

0
.2
8

0
.3
2

0
.3
6

0
.4

0
.4
4

0
.4
8

0
.5
2

0
.5
6

0
.6

0
.6
4

0
.6
8

0
.7
2

0
.7
6

0
.8

0
.8
4

0
.8
8

0
.9
2

0
.9
6 1

G
ap

 S
h
if
t
R
at
io
 T
h
re
sh
o
ld
 (
T
R
)

LCS Similarity Threshold (TS)

95%‐100%

90%‐95%

85%‐90%

80%‐85%

75%‐80%

70%‐75%

65%‐70%

60%‐65%

55%‐60%

50%‐55%

45%‐50%

40%‐45%

35%‐40%

30%‐35%

25%‐30%

20%‐25%

15%‐20%

10%‐15%

5%‐10%

0%‐5%

Figure 11: True positive rate

Table 2: Classification accuracy

True Positive ate True Negative Rate

94% 93%

Equation 4, we experiment with different TS and TR values
and look at the corresponding classification accuracy in
terms of true positive rate (TPR) and true negative rate
(TNR). True positive rate represents the percentage of bot
samples classified in the same group, which are indeed
from the same origin. On the other hand, true negative rate
represents the percentage of bot samples classified into
different groups, which indeed belong to different origins.

The effect on TPR and TNR when varying the LCS
similarity threshold (TS) and gap shift ratio threshold (TR) is
shown in Figure 11 and Figure 12. We thereby consider
0.53 as an appropriate threshold value TS and 0.05 as the
threshold for TR because this can achieve an overall 95%
TPR and 92% TNR.

4.4 Classification Accuracy on a Large Sample of Bots

In this experiment, we conduct a large scale experiment
with 560 distinct bot samples from the honeypot at campus,
along with 4 legitimate programs: notepad, Firefox, MS
Word, and 7-Zip. For each of the 564 binaries, we create 3
obfuscated variants with ASProtect, Themida, and UPX
respectively. This results in a total of 2256 binaries,
including original programs and obfuscated ones. We then
use the proposed framework to analyze and classify all the
binaries. The threshold TS is set to 0.53 and the threshold TR

is set to 0.05 according to Section 4.3.
The classification result is summarized in Table 2.

Overall, we can see that the framework achieves a decent
94% true positive rate and 93% true negative rate on the
classification of the 2256 binaries.

5 Conclusions

We propose a framework for the automatic analysis and
classification of obfuscated bot binaries. The framework
use dynamic analysis to extract the system call sequence of
a bot binary. Since system calls define the interactions
between a program (the bot binary) and the operating
system, obfuscation can hardly alter the call sequence
without breaking the interactions. We rely on this property
and use the system call sequence to characterize the
behavior of a bot binary.

For the classification, we define a similarity metric
between two bot binaries based on the longest common
subsequence (LCS) of their system call sequences. The
LCS similarity does not consider the relative locations of
system calls in the two binaries, and that can cause mis-
classification in some cases. This is addressed by a
heuristic called gap shift ratio, which detects excessive
variation in the relative locations of system calls.

Although obfuscation can hardly change the original
system call sequence in a bot binary, it can often introduce
additional system calls into an obfuscated binary. Most of
them are due to the obfuscation tool's stub code. The
additional system calls are noises to the classification
process, and we have come up with a segment

International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 514

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

0.44

0.48

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

0

0
.0
4

0
.0
8

0
.1
2

0
.1
6

0
.2

0
.2
4

0
.2
8

0
.3
2

0
.3
6

0
.4

0
.4
4

0
.4
8

0
.5
2

0
.5
6

0
.6

0
.6
4

0
.6
8

0
.7
2

0
.7
6

0
.8

0
.8
4

0
.8
8

0
.9
2

0
.9
6 1

G
ap

 S
h
if
t
R
at
io
 T
h
re
sh
o
ld
 (
T R
)

LCS Similarity Threshold (TS)

95%‐100%

90%‐95%

85%‐90%

80%‐85%

75%‐80%

70%‐75%

65%‐70%

60%‐65%

55%‐60%

50%‐55%

45%‐50%

40%‐45%

35%‐40%

30%‐35%

25%‐30%

20%‐25%

15%‐20%

10%‐15%

5%‐10%

0%‐5%

Figure 12: True negative rate

 identification process to filter out these noises. Overall, the
framework can achieve 94% true positive rate and 93% true
negative rate.

The current system is based on an off-line process. It
records the system call sequence and then compares the
sequence with sequences of known samples in the database.
In future work, we plan to implement an on-line analysis
process, where the system can work as an anti-virus tool
that can detect running bots on a computer.

References

[1] ASPack, Software Protection Tools for Software
Developers. (http://www.aspack.com/asprotect.html)

[2] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel,
and E. Kirda, “Scalable, behavior-based malware
clustering,” Network and Distributed System Security
Symposium, 2009.

[3] U. Bayer, C. Kruegel, and E. Kirda, “Ttanalyze: A tool
for analyzing malware”, in 15th Annual Conference of
the European Institute for Computer Antivirus
Research, 2006.

[4] F. Bellard, “Qemu, a fast and portable dynamic
translator,” in USENIX Annual Technical Conference,
2005.

[5] K. K. R. Choo, “Zombies and botnets,” TRENDS &
ISSUES in crime and criminal justice, 2007.

[6] C. Collberg, C. Thomborson, and D. Low, A taxonomy
of Obfuscating Transformations, Department of
Computer Science, The University of Auckland, New
Zealand, 1997.

[7] K. Han, I. Kim, and E. Im, “Malware classification
methods using API sequence characteristics,” in The
International Conference on IT Convergence and
Security, Sewon, Korea, 2011.

[8] M. Landesman, The Secrets to Mydoom's Success.
(http://antivirus.about.com/cs/allabout/a/mydoomddos_
3.htm)

[9] C. LeDoux, A. Walenstein, and A. Lakhotia,
“Improved malware classification throughsensor fusion
using disjoint union,” Information Systems,
Technology and Management Communications in
Computer and Information Science, vol. 285, pp. 360-
371, 2012.

[10] J. Li, M. Xu, N. Zheng, and J. Xu, “Malware
obfuscation detection via maximal patterns,” in Third
International Symposium on Intelligent Information
Technology Application, 2009.

[11] Z. Liang, T. Wei, Y. Chen, X. Han, J. Zhuge, and W.
Zou, “Component similarity based methods for

International Journal of Network Security, Vol.16, No.6, PP.506-515, Nov. 2014 515

automatic analysis of malicious executables,” in Virus
Bulletin Conference, 2007.

[12] A. Moser, C. Kruegel, and E. Kirda, “Exploring
multiple execution paths for malware analysis,” IEEE
Symposium on Security and Privacy, 2007.

[13] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S.
Manjunath, “Malware Images: Visualization and
Automatic Classification,” in The 8th International
Symposium on Visualization for Cyber Security,
Pittsburgh, U.S.A, 2011.

[14] A. A. e. Omella, Methods for Virtual Machine
Detection. (http://www.s21sec.com/descargas/vmware-
eng.pdf)

[15] Oreans Technology : Software Security Defined.
(http://www.oreans.com/themida.php)

[16] Pin, Pin - a dynamic binary instrumentation tool.
(http://www.pintool.org/)

[17] J. Sheu, “An efficient two-phase spam filtering method
based on e-mails categorization,” International Journal
of Network Security, vol. 9, no. 1, pp. 34-43, July 2009.

[18] J. Udhayan and T. Hamsapriya, “Statistical segregation
method to minimize the false detections during DDoS
attacks” International Journal of Network Security, vol.
13, no. 3, pp. 152-160, Nov. 2011.

[19] UPX, UPX: the Ultimate Packer for eXecutables –
Homepage. (http://upx.sourceforge.net/)

[20] C. Willems, T. Holz, and F. Freiling, “Toward
automated dynamic malware analysis using
cwsandbox,” IEEE Security & Privacy, 2007.

[21] Q. Zhang and D. S. Reeves, “Metaaware: Identifying
metamorphic malware,” in Annual Computer Security
Applications Conference, 2007.

Ying-Dar Lin is Professor of Computer Science at
National Chiao Tung University (NCTU) in Taiwan. He
received his Ph.D. in Computer Science from UCLA in
1993. He served as the CEO of Telecom Technology
Center during 2010-2011 and a visiting scholar at Cisco
Systems in San Jose during 2007¡V2008. Since 2002, he
has been the founder and director of Network
Benchmarking Lab (NBL, www.nbl.org.tw), which reviews
network products with real traffic. He also cofounded L7
Networks Inc. in 2002, which was later acquired by D-Link
Corp. He recently, in May 2011, founded Embedded
Benchmarking Lab (www.ebl.org.tw) to extend into the
review of handheld devices. His research interests include
design, analysis, implementation, and benchmarking of
network protocols and algorithms, quality of services,
network security, deep packet inspection, P2P networking,
and embedded hardware/software co-design. His work on
¡§multi-hop cellular¡¨ was the first along this line, and has
been cited over 500 times and standardized into IEEE
802.11s, WiMAX IEEE 802.16j, and 3GPP LTE-Advanced.
He was elevated to IEEE Fellow in 2013 for his
contributions to multi-hop cellular communications and
deep packet inspection. He is currently on the editorial
boards of IEEE Transactions on Computers, IEEE

Computer, IEEE Network, IEEE Communications
Magazine - Network Testing Series, IEEE Wireless
Communications, IEEE Communications Surveys and
Tutorials, IEEE Communications Letters, Computer
Communications, Computer Networks, and IEICE
Transactions on Information and Systems. He recently
published a textbook "Computer Networks: An Open
Source Approach" (www.mhhe.com/lin), with Ren-Hung
Hwang and Fred Baker (McGraw-Hill, 2011). It is the first
text that interleaves open source implementation examples
with protocol design descriptions to bridge the gap between
design and implementation.

Yi-Ta Chiang performed this research while at National
Chiao Tung University. He is now an engineer at Network
Benchmarking Lab. His research interests include Network
Security and performance evaluation. Chiang has an MS in
computer science from National Chiao Tung University.

Yu-Sung Wu received the B.S. degree in Electrical
Engineering from National Tsing Hua University, Taiwan
in 2002, and the Ph.D. degree in Electrical and Computer
Engineering from Purdue University, West Lafayette,
Indiana in 2009. He is an assistant professor in the
Department of Computer Science, National Chiao Tung
University, Taiwan, where he leads the Laboratory of
Security and Systems. His research interests include
security, dependability, and systems.

Yuan-Cheng Lai received the Ph.D. degree in computer
science from National Chiao Tung University, Hsinchu,
Taiwan, in 1997. In August 2001, he joined the faculty of
the Department of Information Management at National
Taiwan University of Science and Technology, Taipei,
Taiwan, where he has been a professor since February 2008.
His research interests include wireless networks, network
performance evaluation, network security, and content
networking.

