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Abstract 

Botnets is a serious threat to Internet security. Popular 
defense strategies such as traffic filtering and malware 
detection all require a good understanding of the 
constituent bot binaries for creating the corresponding filter 
rules or signatures. This means that an effective analysis 
and classification process for bot binaries is needed for 
dealing with the threat of botnets. Unfortunately, the 
rampant usage of binary obfuscation these days has made 
the analysis and classification rather difficult. A simple 
string pattern matching or disassembly of the binary no 
longer suffices as the exact instruction sequence can be 
easily altered by obfuscation. In this work, we propose a 
new framework for automatic analysis and classification of 
bot binaries. The framework analyzes a bot binary’s 
runtime system call trace and uses the longest common 
subsequences between system call traces for the 
classification of bot binaries. The framework can 
effectively deal with obfuscated bot binaries. Experiment 
result shows that the framework can attain an overall 94% 
true positive rate and 93% true negative rate. 

Keywords: Longest common subsequence algorithm, 
obfuscation, system call 

1   Introduction 

The Internet faces many security threats nowadays ranging 
from low-level attacks such as packet spoofing to large-
scale malicious activities such as botnets. A botnet is an 
autonomous network that consists of compromised 
computers running software agents, commonly referred to 
as robots or bots, under the control of an attacker. A bot-
network (botnet) is typically formed to conduct nefarious 
activities such as DDoS attack [18], e-mail spamming [17], 
stealing of personal information, etc. These attacks have 
raised concerns over Internet security and can have severe 

financial impact. For example, a DDoS attack caused by 
botnets in New Jersey had cost a loss of over $2.5 million 
dollars [5]. 

The threat of botnets is difficult to eradicate because 
new types of bots appear every day. The analysis and 
classification of bot binaries can no longer rely on manual 
analysis carried out by experts solely. The process has to be 
automated in order to match the high birth rate of new bots 
these days. On the other hand, the rampant usage of binary 
obfuscation also brings new challenge to traditional 
analysis and classification techniques that are based on 
string pattern matching or disassembly. These traditional 
techniques use the raw instruction sequence to characterize 
a binary, and the sequence can now be easily mutated 
through binary obfuscation. 

In this work, we present a framework for the automatic 
analysis and classification of bot binaries. The framework 
uses dynamic analysis to extract system call sequences 
from bot binaries. The framework then classifies the 
binaries based on the LCS similarity of system call 
sequences. We notice that obfuscation can relocate 
instructions in a bot binary. On the other hand, obfuscation 
can also introduce extra system calls into a call sequence. 
Both of these can negatively affect the classification 
accuracy. We therefore come up with heuristics to 
compensate these effects. Another problem is that many 
bots contains anti-VM code to prevent being analyzed in a 
virtual machine (VM), we therefore use the PIN tool to 
observe their behaviors in real machines. Our experiment 
based on 564 distinct bot binaries and 1692 variants shows 
that the framework is able to achieve high classification 
accuracy (94% true positive rate and 93% true negative rate) 
even with obfuscated bot binaries. Overall, the framework 
offers a streamlined and effective process for the automatic 
analysis and classification of obfuscated bot binaries. 
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Figure 2: Architecture diagram 

2 Background 

2.1   Taxonomy of Botnet 

A botnet is made of a bunch of bots, which are controlled 
by a command and control server (C&C server) as shown 
in Figure 1. A botnet typically follows the three-phase life-
cycle, that includes: (1) the injection of bots onto 
vulnerable hosts, (2) the injected bots establishing 
connections back to a C&C server and waiting for its 
commands, and (3) C&C server issuing commands to the 
bots to order the launch of attack on a chosen victim. 

The injection of bots can be achieved through many 
different ways such as exploiting vulnerability in network 
services, through e-mail attachment, via P2P file sharing, 
and so on. After a bot is injected into a computer, the bot 
will attempt to establish a communication channel with a 
C&C server. A popular approach is to rely on an existing 
IRC server to act as the C&C server. However, it is also 
possible to use a customized server. A malicious attacker, 
sometimes known as the bot herder, can remotely control 
the bots by issuing commands through the C&C server. The 
C&C communication channel is often encrypted to prevent 
anyone but the authorized bot herders from controlling a 
botnet. A botnet can have more than one C&C server to 
make the botnet more robust against crackdown. 

Any bot in a botnet can be used to carry out attack 
actions. This means that it is typically difficult to track 
down a single attack origin for crackdown in a botnet attack. 

Botnet is thus a very popular choice for conducting attacks 
such as e-mail spamming. When the bots in a botnet are 
instructed to carry out attacks on a targeted victim around 
the same time, the botnet can become a very effective 
DDoS attack weapon. For instance, the botnet MyDoom [8] 
was used to carry out a DDoS attack on the web site of 
SCO Group. 

2.2   Overview of Binary Analysis and Classification 

For the analysis of bot binaries, there are two different 
approaches: static analysis and dynamic analysis. Static 
analysis analyzes a bot binary without actually running it. 
In its simplest form, static analysis can be a straightforward 
string pattern matching within a binary. More advanced 
static analysis may involve disassembly of binary, 
constructing function call graph, and semantic analysis of 
the disassembled code. For instance, Liang [11] merges 
function calls into modules that characterize specific types 
of high-level tasks such as file and registry operation. 
Zhang and Reeves [21] look for common patterns of 
assembly code sequences in malware binaries. Han [7] uses 
the full-name here (API) list in the full-name here (IAT) 
table as a signature to cassify samples. None of the above 
works can deal with obfuscated binaries. In the work by 
Natarij [13], they design a binary-to-gray-level image 
converter to calculate the similarity of binary codes. While 
they can identify different malware from the same packer, 
they are unable to distinguish different malware from the 
same packer unless the packer has weak encryption 
schemas. 

Static analysis typically runs very fast. It does not 
require actually running the bot binaries (and possibly 
causing damages). However, it can be easily defeated by 
binary obfuscation [6]. One common technique used in 
binary obfuscation is encrypting the binary, so a 
straightforward string matching or disassembly will not be 
able to give any meaningful analysis result. More advanced 
static analysis tools may attempt to decrypt an obfuscated 
binary, but still the obfuscation can introduce extra layers 
of protection. For instance, the layout of a binary can be 
restructured and redundant data fields or garbage codes can 
be added to the binary to cause noise to the static analysis 
process. Some obfuscation tool such as Themida [15] can 
even translate an x86 binary into a binary for some 
unknown architecture and use a virtual machine (VM) of 
the corresponding architecture to execute the obfuscated 
binary. 

The weakness of static analysis on obfuscated binary 
has led to interests in the development of dynamic binary 
analysis techniques. One approach is API hooking, in 
which key system APIs are hooked by monitoring routines 
to track their usage. Since API hooking incurs overhead 
only when the hooked APIs are invoked, the dynamic 
analysis process can be made quite efficient. However, a 
limitation with API hooking is that those in-between 
instruction sequences that do not involve system APIs will 
not be analyzed. It is also possible that a bot binary can 
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Figure 1: Architecture of a botnet 
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MOV EAX,0x1b
MOV EDX,0x5a0e0300

SYSENTER or INT 2Eh

callback_before()

callback_after()
 

Figure 3: Intercept system calls through instrumentation 
(Windows platform) 

NTSTATUS ZwQueryValueKey( 

    __in    HANDLE KeyHandle, 

    __in    PUNICODE_STRING ValueName, 

    __in    KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass, 

    __out_opt    PVOID KeyValueInformation, 

    __in    ULONG Length, 

    __out PULONG ResultLength 

);

Figure 4: Example of Windows system call (native API) 

attempt to unhook the monitoring routine or make direct 
API call into the kernel to bypass the dynamic analysis 
[20]. 

Another approach for dynamic analysis is through full 
system emulation [2], where a bot binary is executed in an 
operating system that runs on a hardware platform 
emulator (e.g. QEMU). The emulator can be modified to 
extract detailed runtime information such as instructions 
executed, memory content at arbitrary address, and so on. 
This kind of dynamic analysis can be very thorough. 
Typically, the emulated environment is isolated from the 
outside world, so the dynamic analysis process cannot be 
bypassed or disabled. However, it is possible that a bot can 
detect the emulated environment (e.g. through 
fingerprinting BIOS, and so on.) and refrain from showing 
its full behavior [14]. The approach also comes with 
significant runtime overhead due to emulation. For instance, 
systems running on QEMU can experience a 4~10 times 
slowdown compared with systems running directly on the 
underlying hardware [4].  

Bayer, Kruegel and Kirda [3] proposed a system named 
"TTAnalyze" that executes a binary sample inside a virtual 
machine to observe the binary’s runtime behaviors 
including file modification, registry modification and 
network access. A popular tool for online binary dynamic 
analysis is CWSandbox [20], where one can upload 
suspicious binaries for dynamic analysis in their sandboxed 
environment. A limitation with dynamic analysis is that 
only those executed control paths are analyzed by default. 
This limitation can be addressed by symbolic execution 
[12]. Li, Xu, Zheng and Xu [10] also use system call 
sequence similarity to classify samples. Their method 
focuses on the patterns of continuous system call. In 
comparison, our framework also considers more detailed 
features such as gap shift (Sec. 0) in a system call sequence. 
LeDoux [9] combines signatures from Anubis and 
CWSandbox to achieve higher accuracy, but more 
signatures also means more time to analyze samples. 

3 System for Analysis and Classification of 
Obfuscated Bot Binaries 

Figure 2 shows the architecture of the system. First, the 
controller fetches a bot binary sample from disk storage 
(step 1). It then starts the recorder (step 2) to begin dynamic 
analysis on the bot sample. During the dynamic analysis, 
the system calls invoked by the bot sample will be collected 
(step 3 and 4). The recorder relies on the dynamic 
instrumentation tool PIN [16] to record the system calls 
invoked by the binary during its execution. The data 

collected are stored in the database (step 5). Once the 
sample stops running or when a predefined timeout limit is  

reached, the controller will terminate the recorder and 
initiate the classifier. The classifier will classify the sample 
based on its system call trace (step 6 and 7). 

3.1   Analysis of Bot Binaries 

As mentioned in Section 2.2, API hooking is susceptible to 
tampering. On the other hand, full system emulation incurs 
a high overhead and is not suitable for the analysis of a 
huge volume of bot binaries. Instead, we use process-level 
binary instrumentation [16] as the mechanism for the 
dynamic analysis of bot binaries. Process-level binary 
instrumentation can instrument monitoring routine code 
into a bot binary’s process memory at runtime. The 
instrumentation tool can breakpoint the execution of a 
process at locations of interests and insert monitoring code 
at those locations (e.g. locations where a system call is 
about to be invoked). An instrumented process is executed 
natively on the hardware, so the analysis process can be 
made almost as fast as that of API hooking. On the other 
hand, instrumentation is more versatile than API hooking in 
the sense that the monitoring code can be instrumented 
almost anywhere in the text segment of a process, not just 
at the system call sites. However, instrumentation-based 
analysis is typically limited to user-mode process and is not 
suitable for analyzing kernel-mode malware such as rootkit. 
For analyzing kernel-mode malware, it is more appropriate 
to rely on full system emulation. 

In Figure 3, on 32-bit Windows platform, the 
invocation of system call relies on either software interrupt 
INT 2Eh or the SYSENTER instruction to transfer control 
into the kernel-mode system call handler. The system call 
number is passed by the EAX register. The call arguments 
are passed by the stack. A pointer to the arguments on the 
stack will be passed through the EDX register. We use PIN 
API PIN_AddSyscallEntryFunction() to instrument the 
monitoring routine callback_before() right before each 
SYSENTER/INT 2Eh instruction. This allows the recorder 
to intercept the invocation of each system call and collect 
the corresponding system call number, call arguments, and 
thread ID. The monitoring routine can acquire these 
information through PIN API PIN_GetSyscallNumber(), 
PIN_GetSyscallArgument(), and PIN_GetTid() respectively. 
On the other hand, the analyzer also instruments the 
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Figure 5: Segments of system calls in an obfuscated binary 

monitoring routine callback_after() right after each 
SYSENTER/INT 2Eh instruction. This is used to collect 
the return value of each system call. 

Some of the system call arguments may be pointers. For 
instance, the Windows system call ZwQueryValueKey has 
six call arguments (Figure 4). The second argument 
ValueName and the fifth argument ResultLength are 
pointers. When collecting system call information in 
callback_before(), the recorder will deference pointer 
arguments and record the values stored at the memory 
addresses pointed by the pointers. 

3.2   Features for Classification: System Call Sequence 

The analyzer will group the collected system calls from a 
bot binary based on thread IDs. In the current 
implementation, the analyzer only keeps the system calls of 
the main thread (the thread that contains the most number 
of system calls). The system calls in the main thread is then 
sorted into a system call sequence based on the invocation 
time of each system call.  

An example of a system call sequence from an 
obfuscated bot sample is shown in Figure 5. The system 
calls in the sequence can be roughly divided into four 
segments. Segment A includes system calls related to the 
initialization of a new process. (e.g. loading of the 
executable image and the related library files). Segment B 
represents the stub loader embedded by an obfuscation tool 
used for initializing the runtime environment. In the case of 
UPX [19], segment B is mainly about the decompression of 
program text. For Themida, segment B corresponds to the 
loading and initialization of the built-in virtual machine. Of 
most interest to us is segment C, which contains the system 
calls made by the original bot binary itself. System calls in 
segment C characterizes the behavior of a bot binary. 
Segment D contains system calls used for the deallocation 
of resources (files, memory, etc.) at the time of process 
termination. 

3.3   LCS Similarity of System Call Sequences 

The number of bot binaries is huge. The proposed 
framework comes with a classification process to help the 
study of bot binaries by automatically identifying and 
grouping bot binaries into classes. The similarity between 
two bot binaries is judged by the similarity between their 
system call sequences.  

Bot binaries can bear similarity in their system call 
sequences for at least two reasons. First, a bot binary is 
often obfuscated into different forms to avoid signature-
based detection. The obfuscated binaries will still contain 
the system call behavior of the original binary, or they will 
not be able to fulfill the same intended functionality as the 
original binary. The other reason for similarity in bot binary 
system calls is because malware writers may reuse some 
code pieces from previous malware. By looking for 
similarity in the system call sequences, the classification 
process can help identify the bot variants more quickly.  

The similarity between two bots is defined based on 
their system call sequences. Specifically, the similarity is 
defined by the longest common subsequence of the system 
call sequences of the two bots. Let us assume that the two 
system call sequences are X:

1 2 3, , , , mX X X X  and 

Y:
1 2 3, , , , nY Y Y Y , where Xi and Yj are the IDs of the 

respective system calls made by the two bots in ascending 
invocation time order. The longest common subsequence 
LCS(X,Y) is a common subsequence of X and Y with 
maximal length |LCS(X,Y)|. 

To evaluate the system call sequence similarity S(X,Y) 
between two call sequences X and Y, we define S(X,Y) as 

( , )
( , ) ,

min( , )

LCS X Y
S X Y

X Y
                                     (1) 

which is the ratio of the maximal length of the common 
system call sequence to the length of the shorter sequence 

of X and Y. Since | ( , ) | min(| |,| |)LCS X Y X Y , the 
value of S(X,Y) is between 0 and 1, where 1 means either 
X is a subset of Y, or Y is a subset of X. The similarity 
value S(X,Y) is then compared against a threshold value TS 
to decide if X and Y should be placed in the same class. 
The decision rule is 

( , ) Different class,

( , ) Same class.
s

s

S X Y T

S X Y T


 




 (2) 

while the value of TS is decided in Sec. 0 for 
maximizing true positive rate and true negative rate. 

3.4   Improve Classification Accuracy with Gap Shift 
Ratio 

System calls in the longest common subsequence LCS(X, Y) 
may not always come from the same locations in sequence  
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Figure 6: The gap shift sequence of Agobot original vs. 
Agobot Themida 
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Figure 7: Gap shift value chart of Bodombot original & 
Breplibot origional 

X and Y. Although these system calls appear in both X and 
Y, they may carry quite different semantic meanings. For 
instance, two consecutive CreateProcess() calls could very 
likely come from a function used in some initialization 
work. On the other hand, two CreateProcess() calls that 
spread far apart may more likely come from two separate 
functions that are not related to each other. Due to this 
reason, the LCS similarity between two unrelated bot 
binaries can sometimes become erroneously high. This will 
cause the classification process to put the two binaries into 
the same class by mistake according to Equation 2. 

To address the deficiency in classification with LCS 
similarity alone (Equation 2), we propose a heuristic that 
factors in the effect of the gap shifts in system call 
sequences. Specifically, after we obtain the LCS sequence 

1 2 1( , , , , ,..., )k k lS S S S S  of X and Y, we will 

determine the respective indices for each system call Sk in X 
and Y. This would create two sequences of indices: 

IX: 1 2 3( , , , , )lp p p p  for X and IY:
 1 2 3( , , , , )lq q q q  

for Y. For example, p1 is the index of system call S1 in X 
and q1 is the index of S1 in Y. If S1 is the first system call in 
X, then p1 is 1. And, if S1 is the 100th system call in Y, then 
q1 are 100. 

The gap shift sequence G is constructed by taking the 

difference of each pair of elements from IX and IY, so we 

have G: 1 1 2 2 3 3( , , , , )l lp q p q p q p q    . We then 

define N(G) as the number of the distinct values in the 
sequence G. According to our observation, for two bot 
binaries that should belong to the same class, their N(G) 
value will be small. Because they are similar in their 
behaviors, their system calls in common should bear 
similar semantic meanings, and the relative gap shifts 
should be similar as well. On the other hand, for two 
unrelated binaries, the corresponding N(G) value will be 
usually high. 

Figure 6 shows the gap shift sequence between Agobot 
original (unpacked) and Agobot Themida (obfuscated by 
Themida). The gap shift values for the first 762 system 
calls are below 80 because they correspond to the 
initialization of a new process (Segment A of Figure 5). 
This part of the system call sequence is hardly affected by 
the Themida packer. From the 763th system call and onward, 
we can see a huge shift (about 865) in the system call 
indices. This shift is due to the unpacking loader code 
(Segment B in figure 5) inserted by the Themida packer 
between the 762th system call and the 763th system call. The 
two bot binaries are related, and as we can see from the plot, 
the gap shift values only take on a few levels (the 
corresponding N(G) value is 27). 

Figure 7 shows the gap shift sequence between two 
different bots: Bodombot and Breplibot. The LCS 
similarity between these two bot binaries is 0.97, which 
will cause incorrect classification according to Equation 2. 
Looking at the gap shift sequence plot in Figure 7, we can 
see that the gap shift values take on many different levels 
(the N(G) value is 100). This indicates that the common 
system calls as identified by LCS are located at quite 
different locations in Bodombot and Breplibot, meaning 
that the corresponding behaviors shall be quite different. 

The N(G) value also increases with the length of a gap 
shift sequence. We can normalize it by the length of the gap 
shift sequence L=|G| and define the gap shift ratio R as 

          
( )

.
N G

R
L

  (3) 

Combined with Equation 2, the criteria for determining 
if two bot binaries belong to the same class is now defined 
as 

Different class,

Different class,

Same class.

s

s r

s r

S T

S T and R T

S T and R T


  
  







       (4) 

3.5 Improve Classification Accuracy of Call Sequences with 
Segment Identification 

In Figure 5, we see that only segment C of a system call 
sequence is of relevance for identifying bots with similar 
behaviors. The system calls in segments A and D are 
common to most executable files, and segment B is 
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Table 1: List of bots used in the experiment 

Id MD5 Kaspersky Sophos 

1 ea46b4606531d28
474e06cb4cd060c
71 

Backdoor.Wi
n32.Anibot.b 

Mal/IRCBot-B 

2 c1ed6261902e
bc178f55159c
a1b061b1 

Backdoor.
Win32.Afb
ot.a 

Mal/IRCBot-C 

3 d7b32cc7056f
37eb8ccf0d1f4
72d8e5b 

Backdoor.
Win32.Rb
ot.gen 

W32/Rbot-Gen 

4 fa29f9048e3b
57705e97583d
70f00ba1 

Backdoor.
Win32.Ag
obot.gen 

W32/Agobot-
Gen 

5 f1f9f762f899a
24a2d71a35c4
b825db8 

Backdoor.
Win32.Ro
hbot.a 

Mal/Generic-A 

6 69fd63dade7c
d4f8878c6e80
084069fb 

Backdoor.
Win32.Rb
ot.gen 

W32/Rbot-Fam 

7 4aac37248630
70dc422ad0dc
0a39a5af 

Backdoor.I
RC.Botva.
b 

Troj/Bckdr-MPJ

8 8a87d88714f2
017e2cdd7491
2449e7cf 

Backdoor.
Win32.De
vBot.b 

Troj/DevBot-B 

9 c3207feb5160
c71227dbd92c
c3fe4e53 

Backdoor.
Win32.Da
SBot.12 

Mal/Generic-A 

10 0ce8ccbd76e6
126ed10350fd
70c37d98 

Backdoor.
Win32.Poe
Bot.a 

 W32/Poebot-
Gen 

 

NTOpenKey 
\Registry\Machine\Software\Micros
oft\Windows 
NT\CurrentVersion\Image File 
Execution Options\winmm.dll 
 
NTOpenKey 
\Registry\Machine\Software\Micros
oft\Windows 
NT\CurrentVersion\DRIVERS32 
 
NTQueryValueKey wave 
NTQueryValueKey wave 
NTQueryValueKey wave1 
NTQueryValueKey wave2 
NTQueryValueKey wave3 
NTQueryValueKey wave4 

 

Figure 8: System call sequence in segment B from a 
Themida-obfuscated binary 

 introduced by an obfuscation tool. We can improve the 
classification accuracy by ignoring segments A, B, and D 
in the calculation of LCS similarity and gap shift ratio. 
Segment A and D are easy to identify and ignore as they 
are very much the same across all executables.  

Segment B, on the other hand, is much more difficult to 
deal with, because it depends on the type of obfuscation 
tool in use. As a result, we have to build profiles for each 
different obfuscation tool in order to identify and remove 
segment B effectively. As an example, a Themida-
obfuscated binary always has the system calls shown in 
Figure 8 in segment B, which can be reliably removed to 
improve classification accuracy. 

To build the profile, we use LCS to identify the 
common subsequence over a bunch of binaries obfuscated 
by a given packer (e.g. Themida). The resulting common 
subsequence that is left should include only segment A, B, 
and D. Since segment A and D are standard to any 
executable, we can trim them away in the recorder and 
extract segment B as the profile for the corresponding 
obfuscation tool. 

4 Experiments 

We conduct four experiments to evaluate the proposed 
framework. The first two experiments (Section 4.1 and 
Section 4.2) look at the effect of obfuscation on LCS 
similarity and gap shift ratio. Ideally, neither of them 
should be significantly affected by obfuscation, or the 
proposed framework would fail to accurately classify 
obfuscated bot binaries according to Equation 4. In the 
third experiment (Section 4.3), we look at how the selection 
of different threshold values TS and TR affects the 
classification accuracy. In the fourth experiment (Section 
4.4), we evaluate the overall effectiveness of our 
framework with a large sample of 564 real-world bot 
binaries. 

4.1 LCS Similarities and Gap Shift Ratios between 
Variants of a Bot Sample 

In this experiment, we calculate the LCS similarities and 
gap shift ratios between bot variants, which are created by 
obfuscating 10 (unpacked) bot samples with different 
packers. We use the 10 unpacked bot samples (Table 1) as 
the baseline (denoted as group A) in this experiment. We 
then obfuscate each of those 10 bot samples with ASProtect 
[1] to create ASProtect-obfuscated test targets (denoted as 
group B). We also create 10 Themida-obfuscated test 
targets (denoted as group C) and 10 UPX-obfuscated test 
targets (denoted as group D). For each bot sample, there are 
six different combinations for evaluating the LCS 
similarities and gap shift ratios: (A,B), (A,C), (A,D), (B,C), 
(B,D), and (C,D). For instance, in the case of (A,B), we 
will take one bot from group A and calculate the LCS 
similarity and gap shift ratio of it with the corresponding 

ASProtect-obfuscated version of the bot from group B. 
This yields 10 data points, and overall, there will be 60 data 
points, which are summarized in Figure 9. 

Figure 9 shows the distrbution of the 60 data points. 
Here, each data point corresponds to the LCS similarity (S) 
and the gap shift ratio (R) between two variants of a bot 
sample. Each of the circle in Figure 9 represents a group of 
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data points with the same LCS similarity and gap shift ratio. 

The diameter of the circle is proportaionl to the number of 
data points in that circle. As we can see, most of the data 
points present a high LCS similarity values (close to 1) 
indicating that the two corresponding variants are from the 
same origin. On the other hand, the gap shift ratios are low 
(near 0.01), which also indicates the variants are from the 
same origin. This shows that LCS similarity and gap shift 
ratio are not sensitive to obfuscation with respect to 
identifying bot variants of the same origin. 

4.2 LCS Similarities and Gap Shift Ratios between 
Distinctive Bot Samples 

In this experiment, we evaluate the LCS similarities and 
gap shift ratios between bot samples of different origins. 
First, we calculate the pair-wise LCS similarities and gap 
shift ratios for the 10 unpacked bot samples (group A in 
Sec. 0). The result is presented in Figure 10-A. We then 
calculate the pair-wise LCS similarities and gap shift ratios 
for the ASProtect-obfuscated bot samples (group B) with 
the result shown in Figure 10-B. The results for Themida-
obfuscated bot samples (group C) and UPX-obfuscated bot 
samples (group D) are presented in Figure 10-C and Figure 
10-D respectively. 

This result shows that the LCS similarities (S) between 
bot samples of different origins are widely dispersed. The 
LCS similarities no longer concentrate near 1 as in Sec. 0. 
Some of the data points have high LCS similarities, but 
comparing to Figure 9, their gap shift ratios (R) are mostly 
above 0.05. Thereby, if we consider both the LCS 
similarity and gap shift ratio together as in Equation 4, we 
can also reliably distinguish bot samples of different origins. 

4.3 Choosing TS (LCS Similarity Threshold) and TR 
(Gap Shift Ratio Threshold) 

From the previous two experiments, we know that for bot 
variants from the same origin, their LCS similarity values 
are close to 1 and their gap shift ratios are close to 0. On 
the other hand, for bot samples from different origins, their 
LCS similarities are widely dispersed and the gap shift 
ratios tend to be larger. Based on the observation, we 
designed the classification criteria of Equation 4. To 

determine the proper threshold values TS and TR in  
 

Figure 9: Distribution of LCS similarity and gap shift ratio
  

A. Non-obfuscated bots  

B. ASProtect obfuscated bots 

 
C. Themida obfuscated bots 

D. UPX obfuscated bots 

Figure 10: Result distribution on the same obfuscation 
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Figure 11: True positive rate 

 

Table 2: Classification accuracy 

True Positive ate True Negative Rate 

94% 93% 

 
Equation 4, we experiment with different TS and TR values 
and look at the corresponding classification accuracy in 
terms of true positive rate (TPR) and true negative rate 
(TNR). True positive rate represents the percentage of bot 
samples classified in the same group, which are indeed 
from the same origin. On the other hand, true negative rate 
represents the percentage of bot samples classified into 
different groups, which indeed belong to different origins. 

The effect on TPR and TNR when varying the LCS 
similarity threshold (TS) and gap shift ratio threshold (TR) is 
shown in Figure 11 and Figure 12. We thereby consider 
0.53 as an appropriate threshold value TS and 0.05 as the 
threshold for TR because this can achieve an overall 95% 
TPR and 92% TNR. 

4.4 Classification Accuracy on a Large Sample of Bots 

In this experiment, we conduct a large scale experiment 
with 560 distinct bot samples from the honeypot at campus, 
along with 4 legitimate programs: notepad, Firefox, MS 
Word, and 7-Zip. For each of the 564 binaries, we create 3 
obfuscated variants with ASProtect, Themida, and UPX 
respectively. This results in a total of 2256 binaries, 
including original programs and obfuscated ones. We then 
use the proposed framework to analyze and classify all the 
binaries. The threshold TS is set to 0.53 and the threshold TR 

is set to 0.05 according to Section 4.3. 
The classification result is summarized in Table 2. 

Overall, we can see that the framework achieves a decent 
94% true positive rate and 93% true negative rate on the 
classification of the 2256 binaries. 

5 Conclusions 

We propose a framework for the automatic analysis and 
classification of obfuscated bot binaries. The framework 
use dynamic analysis to extract the system call sequence of 
a bot binary. Since system calls define the interactions 
between a program (the bot binary) and the operating 
system, obfuscation can hardly alter the call sequence 
without breaking the interactions. We rely on this property 
and use the system call sequence to characterize the 
behavior of a bot binary. 

For the classification, we define a similarity metric 
between two bot binaries based on the longest common 
subsequence (LCS) of their system call sequences. The 
LCS similarity does not consider the relative locations of 
system calls in the two binaries, and that can cause mis-
classification in some cases. This is addressed by a 
heuristic called gap shift ratio, which detects excessive 
variation in the relative locations of system calls.  

Although obfuscation can hardly change the original 
system call sequence in a bot binary, it can often introduce 
additional system calls into an obfuscated binary. Most of 
them are due to the obfuscation tool's stub code. The 
additional system calls are noises to the classification 
process, and we have come up with a segment 
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Figure 12: True negative rate 

 identification process to filter out these noises. Overall, the 
framework can achieve 94% true positive rate and 93% true 
negative rate. 

The current system is based on an off-line process. It 
records the system call sequence and then compares the 
sequence with sequences of known samples in the database. 
In future work, we plan to implement an on-line analysis 
process, where the system can work as an anti-virus tool 
that can detect running bots on a computer. 
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