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a b s t r a c t

False positives (FPs) and false negatives (FNs) happen in every Intrusion Detection System

(IDS). How often they occur is regarded as a measurement of the accuracy of the system.

Frequent occurrences of FPs not only reduce the throughput of an IDS as FPs block the

normal traffic and also degrade its trustworthiness. It is also difficult to eradicate all FNs

from an IDS. One way to overcome the shortcomings of a single IDS is to employ multiple

IDSs in its place and leverage the different capabilities and domain knowledge of these

systems. Nonetheless, making a correct intrusion decision based on the outcomes of

multiple IDSs has been a challenging task, as different IDSs may respond differently to the

same packet trace. In this paper, we propose a method to reduce FPs and FNs by applying a

creditability-based weighted voting (CWV) scheme to the outcomes of multiple IDSs. First, the

CWV scheme evaluates the creditability of each individual IDS by monitoring its response to

a large collection of pre-recorded packet traces containing various types of intrusions. For

each IDS, our scheme then assigns different weights to each intrusion type according to its

FP and FN ratios. Later, after their operations, the outcomes of individual IDSs are merged

using a weighted voting scheme. In benchmarking tests, our CWV-based multiple IDSs

demonstrated significant improvement in accuracy and efficiency when compared with

multiple IDSs employing an ordinary majority voting (MV) scheme. The accuracy is the

percentage of whole traces that are determined accurately, while the efficiency indicates

that the voting algorithm performs better on reducing both FP and FN ratios. The CWV

scheme achieved 95% accuracy and 94% efficiency while the MV scheme produced only

66% accuracy and 41% efficiency; the average percentages of FP/FN reduction were 21% and

58% respectively.
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1. Introduction detection capability of the IDSs. Therefore, malicious activ-
Intrusion Detection Systems (IDSs) protect computer net-

works against intrusions. Among various techniques, the

signature-based approach has been a popular one. It charac-

terizes intrusions according to their specific attack patterns,

known as signatures, and tries to detectmalicious activities by

comparing these signatures against the actual traffic using

pattern matching. For a signature-based IDS to operate

correctly, it must maintain a signature database of all known

intrusions. There are somemajor challenges in implementing

an effective signature-based defense mechanism. The first

one lies with the balance between generic and precise signa-

ture specification. Generic signatures can be used to specify

wide ranges of attacks, but they can be mismatched with

benign traffic and thus produce false positives (FPs). On the

other hand, signatures that are too specific may miss attacks

that differ only slightly from some known attacks, and pro-

duce false negatives (FNs). The second challenge lies with the

difficulty of implementing an efficient IDS runtime engine. In

order to maintain a reasonable throughput, an IDS engine

cannot afford to analyze the complete context of all network

activities in real-time. As a result, intrusions that differ only

slightly from normal activities or known attacks may not be

detected because the IDS engine only analyzes the partial

context of potential intrusions. Lastly, the on-going variation

ofmalicious trafficmakes it difficult tomaintain an up-to-date

signature database. A well-known example is the mainte-

nance of the Snort signature database (Sourcefire).

As figures of merit, the frequencies of FP and FN occur-

rences are often quite high among IDSs and render most of

them unsatisfactory in their performance. To illustrate the

severity of FP and FN impacts, let us examine the issues from

two different angles. From the vendor’s viewpoint, FPs create

a heavy workload for the IDS analysis engine, while FNs cause

the IDS engine to fail in generating the signatures of new at-

tacks. From the user’s viewpoint, frequent alerts generated by

FPs disrupt the system administrators’ work and cause them

to distrust the system, while FNs imply that malicious in-

trusions have not been detected in a protected network. All

these are serious issues. Thus, the reduction of FP/FN occur-

rences remains a paramount task for all IDS vendors and

users.

In order to reduce FPs and FNs, an analyst manually post-

processes all the alerts produced by the IDS to determine

whether the alerts are true positives (TPs) or false positives (FPs)

(Pietraszek, 2006). Nevertheless, an IDS can do only so much

by itself, partly because the analyst can only examine the TP/

FP alerts produced by the IDS, but cannot investigate the FNs

of the IDS. In addition, if there aremany FPs, an analyst would

need considerable time to analyze the alerts. According to

alert management (Pietraszek, 2006), which means an analyst

post-processes all the alerts to further improve the signature

design, the use of a single IDS as the only source of alerts

would be a major handicap. To overcome the problem and

limitations of a single IDS, multiple IDSs are used because

each has its own private and independent signature design.

Based on the different domain knowledge among the IDSs,

traffic can be more accurately recognized by leveraging the
Please cite this article in press as: Lin Y-D, et al., Creditability-bas
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ities which cannot be detected by some IDSs are detected by

the others.

However, the detection results among multiple IDSs may

be in conflict. To resolve such conflicts, the Majority Voting

(MV) algorithm (Chen et al., June 2009) was proposed. MV first

finds potential FPs (P-FPs) and potential FNs (P-FNs) by

comparing the alerts. If a few IDSs generate alerts but most

IDSs do not when they process the same traffic, these traces

are P-FPs of the few IDSs. In contrast, if few IDSs do not

generate alerts but most IDSs do, these are P-FNs of the few

IDSs. Then, P-FPs and P-FNs are analyzed to verify they are

indeed FPs and FNs. However, in (Latif-shabgahi et al., 2004;

Parham, 2002), the authors found MV often leads to incorrect

decisions, although they did not focus on the results of alert

handling.We also foundMV is not efficient in our experiments:

MV disregards the different domain knowledge among IDSs,

which results in low percentages of P-FPs/P-FNs being true FPs/

FNs.

In this work, we propose a Creditability-based Weighted

Voting (CWV) scheme to leverage the different domain

knowledge among multiple IDSs, reduce FPs and FNs, and

increase the efficiency of alert post-processing. There are four

components in our algorithm: Creditability Modeling (CM), Au-

thority Selection (AS), Voter Exclusion (VE), and Weighted Voting

(WV). First, CM identifies the IDSs’ detection capability for

different types of traffic traces and determines the IDSs’ cor-

responding creditability by investigating their past detection

experience. In order to investigate the detection capability

based on one or both of the two factors composing an alert,

i.e., protocol type and malicious type, the creditability is

therefore constructed at two levels, Protocol level and Alert

level. For instance, “HTTP” is at the Protocol level. “HTTP:

Attempt to Read Password File” is an alert of HTTP at the Alert

level. If the creditability of some IDSs exceeds decision criteria

for a certain type of trace, ASwill choose them to be authorities.

The reason is that these IDSs may have lower FP and FN in-

cidences for a certain type of trace. On the other hand, if no

IDS can be an authority, VE will exclude IDSs that perform

poorly in detection because these IDSs would nullify the cor-

rect decisions. Finally, WV assigns weights to either the IDSs

chosen by AS or the existing IDSs excluded by VE and uses

these weights to determine a trace as malicious or benign.

Accordingly, compared with MV, CWV considers the different

domain knowledge among IDSs, and thus reduces FPs and

FNs.

This work makes the following contributions. First, it uses

multiple IDSs simultaneously, rather than a single IDS, to

detect intrusions. Second, it uses the CWV scheme to leverage

domain knowledge among multiple IDSs, reducing not only

the number of FPs, but also the number of FNs. CWV de-

termines the creditability of each IDS at the protocol level and

at the alert level, rather than at the single level that is used in

MV. Third, several experiments are performed to demonstrate

that CWV is much better than MV on accuracy and efficiency.

The rest of this paper is organized as follows. Section 2

presents the background and related works. Section 3 de-

fines terminologies and problem statements. Section 4 de-

scribes the design and solution ideas of our algorithm. Section
ed weighted voting for reducing false positives and negatives
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5 displays the evaluation of our solutions. Finally, Section 6

concludes this work and discusses the future work.
2. Background

This section describes alert post-processing and its related

methods, followed by the generation FP/FN datasets.

2.1. Methods of alert post-processing

Currently, IDSs have become necessary components to

network security. However, IDSs easily produce many alerts,

so it is necessary to find an efficient way to reduce the number

of alerts and provide a more succinct and high-level view of

security events. To address this issue, alert post-processing

(APP) has been proposed. APP uses alerts as an input and

processes them to improve their accuracy. According to the

corresponding goal, APP can be classified into three categories:

alert correlation, alert causing, and alert classification. Note

that some previous approaches may belong to multiple cate-

gories because they have more than one goal. A systematic

illustration of these categories is as follows.

First, alert correlation finds the causal relationships be-

tween alerts in order to construct high-level attack scenarios

from the isolated alerts (Valeur et al., 2004; Xu et al., 2008; Ning

et al., 2002; Valdes and Skinner, 2001;Maggi et al., 2009; Yu and

Frincku, 2005; Porras et al., 2002; Sadoddin andGhorbani, 2006;

Ning and Xu, 2003; Ning et al., 2004). There are three types of

alert correlation techniques: multi-step, fusion-based, and

filter-based (Xu et al., 2008). For example, Ning et al.

(2002) detected multi-step attacks with an alert correlation

approach which correlates alerts based on pre-conditions and

post-conditions. Two alerts are correlated when the pre-

condition of a later attack is satisfied by the post-condition

of an earlier attack. The fusion-based alert correlation tech-

nology utilizes the alert similarity metric to fuse the correla-

tive alerts. For example, Valdes and Skinner (2001) presented a

correlation process utilizing an alert similarity metric. Maggi

et al. (2009) used fuzzy measures and fuzzy sets to deign an

alert fusion model. Yu and Frincku (2005) proposed improving

and assessing alert accuracy by incorporating an algorithm

based on the exponentially weighted Dempster-Shafer theory

of evidence. The filter-based correlation technology seeks to

identify the most important alerts in the alert stream. For

example, Porras et al. (2002) discussed a mission-impact-

based approach to prioritize alerts. Alert correlation actually

offers a more high-level view on the security events raised by

the IDS. However, Sadoddin and Ghorbani (2006) found that

alert correlation may not have a significant effect on reducing

the number of total alerts and the number of FPs. The reason

is that the goal of alert correlation is to provide an abstract

view of attacks, rather than reducing the number of FPs and

FNs, despite that it sometimes does reduce the number of FPs.

Second, alert causing (Julisch, 2003a, 2001, 2003b) studies

the causes of FPs and identifies root causes that create an IDS

alert. It groups the alerts with similar root causes. For

instance, Julisch (2003a) defined six attributes for an alert:

source and destination IP addresses, source and destination

ports, alert types, and timestamps. The alerts with the same
Please cite this article in press as: Lin Y-D, et al., Creditability-bas
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six attributes are categorized into the same group, called an

alert cluster. Thus, the alerts in the same alert group may have

the same root cause. According to the root causes, a system

administrator may reduce the number of FPs in an IDS.

Third, alert classification classifies alerts into TPs and FPs

for reducing the number of FPs in IDSs (Chen et al., June 2009;

Pietraszek, 2004; Viinikka et al., 2009; Treinen and Thurimella,

2006; Clifton andGengo, 2000; Long et al., 2006; Vaarandi, 2009;

Vaarandi and Podins, 2010; Zhang et al., 2012; Gupta et al.,

2012). The Adaptive Learner for Alert Classification (ALAC) is

an adaptive alert classifier based on the feedback of an

intrusion detection analysis and a machine-learning tech-

nique (Pietraszek, 2004). It has a recommender mode and an

agent mode. In the recommender mode, all the alerts are

labeled as TPs or FPs and passed to the analyst; in the agent

mode, some alerts are processed automatically. Therefore,

ALAC could intuitively reduce the number of FPs in the IDS.

However, although the agent mode reduces the analyst’s

workload, the recommender mode still creates a heavy

workload for the analyst. Viinikka et al. (2009) used time series

modeling formodeling regularities in large alert volumes. This

study is based on the observation that flows consisting of

alerts related to normal system behavior can contain strong

regularities. Thus it models these regularities using non-

stationary autoregressive models. Once modeled, the regu-

larities can filtered out to reduce the number of FPs.

To reduce the number of FPs in IDSs, some approaches

with alert log mining have been proposed (Treinen and

Thurimella, 2006; Clifton and Gengo, 2000; Long et al., 2006;

Vaarandi, 2009; Vaarandi and Podins, 2010; Zhang et al.,

2012; Gupta et al., 2012). Treinen and Thurimella (2006) have

investigated the application of association rule mining for the

detection of rules for new attack types. Using a similar

approach, frequent alert sequences were investigated to

construct IDS alert filters in (Clifton and Gengo, 2000). Long

et al. (2006) have suggested a supervised clustering algo-

rithm for distinguishing Snort IDS true alerts from FPs. An

unsupervised data mining based approach for IDS alert clas-

sification was further proposed in (Vaarandi, 2009). This al-

gorithm first employs frequent itemset mining to detect

patterns that describe frequently occurring redundant alerts.

It then extracts signature IDs from detected patterns and finds

frequent endpoint sets which describe strong associations

between alert attribute values for each ID.With this approach,

knowledge is mined from IDS logs and processed in an auto-

mated way to build an alert classifier. However, frequent

endpoint sets used in (Vaarandi, 2009) cannot capture all

strong associations because an unrealistic assumption that all

associations for a given signature ID are of the same type was

made. Thus, Vaarandi and Podins (2010) further proposed data

clustering techniques to find fine-grained subpatterns for

each detected pattern. Decision support classification (DSC)

was proposed for alert classification (Zhang et al., 2012). DSC

first collects alert transactions in an attack-free environment.

Accordingly, all alerts are treated as FPs in this environment,

and the frequent patterns to be mined in this case are treated

as patterns of normal behaviors, or called patterns of FPs. DSC

then uses these patterns to remove FPs. Gupta et al. (Gupta

et al., 2012) proposed a post-processor for IDS alerts using

knowledge-based evaluation, a system that uses background
ed weighted voting for reducing false positives and negatives
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Table 1 e Comparison of methods of alert classification.

Reference Techniques No. of IDSs Goal Drawbacks

(Pietraszek, 2004) Machine-learning One Reduce FPs High overheads

in recommender mode

Manual knowledge

acquisition

(Viinikka et al., 2009) Time series modeling One Reduce FPs High overheads

(Treinen and Thurimella, 2006) Association rule mining Multiple Reduce FPs High overheads

(Clifton and Gengo, 2000) Frequent alert sequences finding One Reduce FPs High overheads

(Long et al., 2006) Supervised clustering One Reduce FPs High overheads

(Vaarandi, 2009) Unsupervised data mining One Reduce FPs High overheads

(Vaarandi and Podins, 2010) Unsupervised data mining

and data clustering

One Reduce FPs High overheads

(Zhang et al., 2012) Decision support Multiple Reduce FPs High overheads

(Gupta et al., 2012) Knowledge-based evaluation One Reduce FPs High overheads

(Chen et al., 2009) Majority Voting (MV) Multiple Reduce FPs/FNs Low accuracy

This work Creditability-based Weighted

Voting (CWV)

Multiple Reduce FPs/FNs
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information about the hosts present on the network and the

vulnerability exploited to generate a score for each alert. The

score is measure of the importance of the alert. A simple bi-

nary classifier then classifies the alert as FP or TP based on

value of score threshold.

However, the previous studies belonging to the category of

alert classification will pay a lot of overhead because of data

mining efforts. Also the processed alerts usually come from

only one IDS, so these studies can only process FP cases but

cannot investigate FN cases. Hence, they cannot reduce the

number of FNs due to the limitation posed by a single IDS.

Therefore, attention has turned to the use of multiple IDSs.

For instance, Chen et al. (2009) presented a particular method

of APP, Majority Voting algorithm (MV), to deal with alerts

produced by multiple IDSs and reduce the number of FPs and

FNs. The idea of MV is to resolve the conflicts among the

outcomes of multiple IDSs. MV finds FPs and FNs by

comparing the alerts of multiple IDSs. If few IDSs produce

alerts from specific traffic traces, the trace is likely to be an FP

case of the few IDSs. If few IDSs do not produce alerts, it is

likely to be an FN case of the few IDSs. However, Parham (2002)

showed thatMV is not absolutely correct inmany cases, and it

would often lead to an incorrect decision. Furthermore, the

main cause for the inefficiency of MV is that it disregards the

different domain knowledge among multiple IDSs.
Fig. 1 e Generation meth
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Creditability-basedWeighted Voting (CWV) algorithm reduces

both the number of FPs and FNs and increases the efficiency of

APP by leveraging different domain knowledge among multi-

ple IDSs. CWV can investigate the detection creditability of

multiple IDSs to overcome the limitation of a single IDS, as

well as reduce the number of FPs and FNs to decrease the

heavy workload of the analyst. Table 1 summarizes the goals

and methods of the different approaches. In this paper, we

will focus on a comparison of MV and CWV and evaluate the

efficiency of these two algorithms.

2.2. Generation methods of FP/FN datasets

In order to evaluate the detection capability of the IDSs, one

must pay special attention to the choice of test traces. Some

studies used real-world traffic traces to evaluate FPs and FNs

andmeasure the accuracy of the IDSs (Chen et al., 2009;Wang,

2010).

As shown in Fig. 1, Wang designed an Active Trace

Collection (ATC) (Wang, 2010) to actively extract and classify

suspicious traces from real-world traffic captured in the NCTU

Beta Site (Lin et al., 2010). First, in the extraction module, it

uses a traffic replay tool to replay the captured traffic to

multiple IDSs. If an IDS detects a specific behavior in the

traffic, it will trigger an alert. Based on the IDSs’ alerts, the ATC
od of FP/FN datasets.

ed weighted voting for reducing false positives and negatives
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finds the anchor packets that trigger the alerts by comparing

five fields, i.e., source and destination IP addresses, source and

destination ports, and protocols. Then it processes the packet

and connection association to extract each session into the

packet traces. Second, in the classification module, the ATC

uses alerts to classify traces into different categories by key-

words. Ten categories, listed in Table 2, have been established,

including Web, File Transfer, Remote Access and others. Each

category uses corresponding protocol names as its keywords

(Wang, 2010). As an example, the Web category uses HTTP as

its keyword. Currently, numerous suspicious classified traces

have been collected.

The detection of IDSs may be incorrect due to FPs and FNs.

Ho et al. proposed a FP/FN Assessment (FPNA) (Ho et al., 2012)

which analyzes the FP and FN cases and investigates the

causes of FPs and FNs. First, it finds potential FPs and FNs of

the IDSs by using a voting algorithm (e.g., majority voting).

Next, in FP/FN analysis, it replays the corresponding extracted

traces based on the IDS alerts. This step verifies whether the

traces are reproducible to the original IDSs. Then, the repro-

ducible traces are manually analyzed to confirm which cases

are correct FPs or FNs. The confirmed FP and FN cases and

their causes are recorded to generate the FP/FN datasets. This

study further uses the traces and the causes behind the FPs

and FNs to investigate the creditability of the IDSs.

In the followings, two case studies of the FP/FN analysis are

used as examples to show why the benign traces were

detected as malicious ones and the malicious traces were not

detected by IDSs. The investigation on the FP/FN analysis is

illustrated by the description of activity, the corresponding

signature, and the cause of FP/FN, as shown in the respective

fields in Fig. 2(a) and Fig. 2(b). The description of the malicious

activity refers to CommonVulnerabilities and Exposures (CVE)

(Common Vulnerabilities an, 1999). The corresponding

signature of the malicious activity refers to the Snort signa-

ture database (Sourcefire) as examples. The cause of FP/FN

explains why FP/FN occurs.

1) Fig. 2(a) illustrates a false positive case, “WEB-CGI csh ac-

cess”, and a detailed analysis of the packet content using

Wireshark (Wireshark et al., 1998) is shown in Fig. 2(b). The

execution of the csh interpreter in the cgi-bin directory on a

WWW site is detected by simply matching the “/csh”
Table 2 e Classification of traces and their representative
keywords.

Category Keywords

Web HTTP

Email POP3, SMTP, IMAP

FileTransfer FTP, SMB, TFTP

RemoteAccess Telnet, SSH, RDP, VNC

Encryption SSL, FTPS, HTTPS

Chat IRC, ICQ, Yahoo Messenger, MSN, AIM, Skype,

Google talk

FileSharing Bittorrent, eDonkey, Gnutella, Pando, SoulSeek,

Winny, Xunlei

Streaming PPLive, QuickTime, Octoshape, Orb, Slingbox

VoIP SIP

Network NetBIOS, DNS, SNMP, Socks, STUN

Please cite this article in press as: Lin Y-D, et al., Creditability-bas
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content in the requested URI field. It often results in FP

because the signature design is too general and simplistic.

2) Fig. 3(a) illustrates a false negative case, “SQL Worm prop-

agation attempt”, and a detailed analysis of the packet

content is shown in Fig. 3(b). The SQLWormwould result in

buffer overflow in the Microsoft Windows server service.

The worm loads Kernel32.dll andWS2_32.dll and then calls

GetTickCount to continuously send 376 bytes UDP packet of

exploit and propagation codes across port 1434 until the

SQL Server process shuts down. However, it sometimes

results in FN since some IDSs lack the signature to detect it.
3. Problem statement

3.1. Terminologies

Table 3 defines a confusion matrix to represent the types of

trace datasets detected by IDSs. The elements are actual trace

behaviors (malicious or benign) and detected alarms (alert or

non-alert). According to the corresponding relation between

the elements, there are four types of traces: True Positive (TP),

False Positive (FP), True Negative (TN), and False Negative (FN). TP

and FP represent the alerts produced by the IDS for malicious

and normal activities, respectively. Similarly, TN and FNmean

the IDS does not produce an alert for a normal and amalicious

activity, respectively.

Table 4 defines the notations used in this algorithm. M and

:M respectively denote malicious and benign traces. X rep-

resents the number of IDSs involved in detection, and the X

IDSs form a set V. Whether all X IDSs have the voting rights

depends on the voting algorithm, such as MV and CWV. Ac-

cording to the detection results, one of the four types, TP, FP,

TN, or FN, would occur. Furthermore, there are different Yj
P

kinds of alerts produced by the j-th IDS under the protocol P,

and Aj
P;k records the k-th kind of alerts. After the recording, in

order to investigate its creditability, the probability, Rj
P;type, is

used to denote the rate of the trace type generated by the j-th

IDS under the protocol P. However, it is possible that some

IDSs are not creditable, so two thresholds sd and sa are used to

choose the IDSs with suitable creditability. The set of the

chosen IDSs is a subset of V and is denoted as VR. sd is the

detection threshold, whereas sa is the abnormality threshold.

Then, according to intrusion detection alarm (alert or non-

alert) produced by the j-th IDS for the i-th trace, denoted as

dji, a corresponding weight wj
i is determined. Based on the

above notations and definitions, CMDi can be calculated for

malicious tendency of the i-th trace.

3.2. Problem description

In APP, the efficiency is low when alerts come from only one

IDS, as explained in Section 1. On the other hand, when alerts

come frommultiple IDSs, the efficiencymay also be low if APP

disregards the different domain knowledge among multiple

IDSs. Moreover, different IDSs may have different detection

results for the same traffic trace due to their different domain

knowledge. How to efficiently use these results tomake a good

decision on the processed traffic trace is thus a problem.

The above description can be formulated as follows.
ed weighted voting for reducing false positives and negatives
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Fig. 2 e A False Positive case study e WEB-CGI csh access.
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Given: (1) X IDSs, (2) some detected traces for training, (3)

alerts produced by X IDSs to these traces, and (4) some un-

detected traces.

Objectives: correctly determine each undetected trace as a

malicious trace or a benign one to efficiently reduce FPs and

FNs.
4. Creditability-based Weighted Voting

This section details CWV and its four components. The first

component is Creditability Modeling, which investigates and

models the IDSs’ creditability according to the past detections.

Second,Authority Selection determines authorities of detection.
Fig. 3 e A False Negative case study e
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Third, Voter Exclusion excludes IDSs that perform poorly in the

past detections. Last, Weighted Voting determines where a

trace belongs.
4.1. Overview

The goal of this work is to increase the efficiency of alert post-

processing when alerts come from multiple IDSs; that is, to

increase the accuracy of the corresponding processed traces

which actually belong to TP, FP, TN, or FN cases. The gener-

ated TP/FP/TN/FN datasets can thus be used by IDS vendors to

improve their signature designs, aswell as used to accumulate

general knowledge on alerts.
SQL worm propagation attempt.

ed weighted voting for reducing false positives and negatives
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Table 3 e Confusion matrix definition.

Detected

Alert Non-alert

Actual Malicious True Positive (TP) False Negative (FN)

Benign False Positive (FP) True Negative (TN)
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As shown in Fig. 4, the Active Trace Collection collects and

classifies suspicious traffic traces, which are replayed to

multiple IDSs, by comparing the alerts produced by different

IDSs. Since the detection of IDSs could be incorrect, the FP/FN

Analysis investigates the causes of FP/FN using the collected

traces and records the confirmed TP/FP/TN/FN traces into the

Datasets. Based on the Datasets and the accumulated

knowledge of alerts, this work proposes the CWV scheme for

making a more accurate decision on suspicious traffic traces.

The main concept in using CWV to increase the efficiency

of alert post-processing, i.e., to classify the traces more

accurately, is by investigating the IDSs’ creditability because

an IDS could not perform well on all types of traces, and

merging the IDSs’ detection results based on their corre-

sponding creditability. Therefore, as shown in Fig. 5, to

investigate the IDSs’ creditability, Creditability Modeling (CM)
Table 4 e Notations used in creditability-based weighted
voting.

Notations Descriptions

M(:M) Malicious trace (benign trace)

X Number of IDSs.

V:{IDS1,IDS2,.,IDSX} Set of IDSs.

Type:{TP, FP, TN, FN} Types of the trace dataset.

Yj
P Number of kinds of alerts

produced by the j-th IDS under

the protocol P.

Aj
P;k Under the protocol P, the

k-th kind of alerts produced

by the j-th IDS.

Aj
Pð:Aj

PÞ Under the protocol P, any(no)

alert produced by the j-th IDS.

P:{HTTP, FTP,/} Used protocol of classified

traces.

Rj
P;type Under the protocol P, rate of

the trace type generated

by the j-th IDS.

VR Set of the IDSs which are

allowed to vote.

Z Number of elements of VR.

sd Detection threshold for

measuring the correctness

of detection.

sa Abnormality threshold for

measuring the abnormality

of alert frequency.

dji Intrusion detection alarm

produced by the j-th IDS for

the i-th trace.

wj
i Weight of the j-th IDS for

the i-th trace, which is assigned

according to the creditability.

CMDi The creditability of the malicious

decision for the i-th trace.
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selects significant types of traces from the Datasets to set up

the Training Data and uses the Two-level Modeling to model the

IDSs’ corresponding creditability for different types of traces.

For the integration of the IDSs’ detection results, Authority

Selection (AS) first selects the IDSs with high detection capa-

bilities to be authorities. If AS does not select an authority,

Voter Exclusion (VE) excludes the IDSs that cannot usually

perform well, i.e., usually produce FPs and FNs. Finally,

Weighted Voting (WV) uses the IDSs selected by either AS or VE

and their corresponding creditability to weight and classify

the traces, i.e., malicious, benign, or unknown.
4.2. CM: Creditability Modeling

An alert is a description of a suspicious activity in a signature.

It comprises either one or both factors: protocols and mali-

cious types, and these two factors are thus considered in

investigating an alert. Furthermore, a protocol is defined as

the first level in this article because it is the most common

categorization. Similarly, malicious types belong to the sec-

ond level due to its detailed description of an alert. Therefore,

CM is designed using two-levels to investigate and model the

detection capability of IDSs for different types of traffic. As

shown in Fig. 5, CM includes two components: Training Data

(TD) and Two-level Modeling (TLM).

According to the TP/FP/TN/FN traces confirmed by the FP/

FN Analysis, CM selects significant types of traces to set up the

TD. The selection policies are based on the proportion of ap-

pearances in traffic and the number of corresponding defined

signatures. If both of them are high, the CM will identify the

types of traces as significant ones and select them into TD.

Based on the TD, the TLM calculates two detection capa-

bilities for an IDS. One is for the Alert level (AL) and the other is

for the Protocol level (PL). As the name implies, each AL’s

detection capability depends on the accuracy of an alert and

the detection capability of PL is based on certain protocols.

Therefore, the conditional probability of each element of the

confusion matrix can be calculated as follows.

First, in AL, to know the detection capability of an alertAj
P;k,

the accuracy rate of this alert, PðMjAj
P;kÞ, analyzed by the FP/FN

Analysis, can be calculated as

P
�
MjAj

P;k

�
¼

C
�
Aj

P;k

�

T
�
Aj

P;k

�; 1 � j � X; (1)

where TðAj
P;kÞ and CðAj

P;kÞ are the total number of Aj
P;k and the

number of Aj
P;k that detect the correct intrusion, respectively.

Notably, the alert generated by an IDS about an attack, Aj
P;k, is

used only to find the values of TðAj
P;kÞ and CðAj

P;kÞ for that IDS.

Although different alerts are generated in different IDSs, the

alert that is generated by an IDS can be clearly recognized by

that IDS. Accordingly, the capability of the IDS to detect the

alert can be calculatedwithout standardizing the alert format.

Second, to determine the detection capability of an IDS at

generating alerts, we define the successful detection rate

as PðMjAj
PÞ to mean the probability of correctly detected ma-

licious traces with the protocol P if alerts are generated by the

j-th IDS. Based on (1), the successful detection rate is calcu-

lated as
ed weighted voting for reducing false positives and negatives
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Fig. 4 e Architecture of the proposed system.
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�
j
� PY

j
P

k¼1 C
�
Aj

P;k

�

P MjAP ¼ PY

j
P

k¼1 T
�
Aj

P;k

�; 1 � j � X; (2)

where Yj
P is the number of kinds of alerts produced by the j-th

IDS under the protocol P.

Third, to perceive the detection capability of an IDS at

keeping silent, we define the successful omission rate as

Pð:Mj:Aj
PÞ to mean the probability of correctly detected

benign traceswith the protocol P if no any alert is generated by

the j-th IDS. According to the Bayes’ theorem, the successful

omission rate is calculated as

P
�
:Mj:Aj

P

�
¼ Pð:MÞ � Rj

P;TN

Pð:MÞ � Rj
P;TN þ PðMÞ � Rj

P;FN

; 1 � j � N: (3)

As a result, each IDS has a creditability table which com-

prises three vectors, i.e., PðMjAj
P;kÞ, PðMjAj

PÞ and Pð:Mj:Aj
PÞ.

4.3. AS: Authority Selection

Based on the investigation of detection capability of IDSs for

different types of traces, AS finds that sometimes some IDSs

have a much higher creditability than others. This is because

lower FP and FN rates result in higher creditability. Therefore,

if the creditability of some IDSs exceeds a decision criterion
Fig. 5 e Architecture of creditabi
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for a certain type of trace, AS selects these IDSs to be au-

thorities for detecting the specific trace.

AS comprises three steps. First, for each type of trace, AS

sorts the FP and FN rates of each IDS from high to low. Then,

AS separately calculates the average values of FP and FN rates

of the IDSs, denoted as L1 and L2, respectively, listed after

three-quarters of all IDSs. Third, IDSs whose FP and FN rates

are both lower than L1 and L2 are selected to be the authorities

of detection by AS.

After three steps, there are three possible outcomes: no

authority, one authority, or multiple authorities. If no au-

thority occurs, CWVwill enter VE and thenWV.When there is

one authority, the traces will be decided directly by that au-

thority. Otherwise, CWV will enter WV and the traces will be

decided by multiple authorities.
4.4. VE: Voter Exclusion

VE is designed to exclude IDSs which usually perform poorly

in detection. IDSs are excluded based on two conditions: TP/FP

rates and alert frequency.

According to the TP and FP rates, VE excludes IDSs whose

TP is less than the detection threshold sd. The reason is that

some IDSs produce more incorrect than correct detections. VE

assumes that such IDSs are not strong and excludes them.
lity-based weighted voting.

ed weighted voting for reducing false positives and negatives
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Table 5 e Two-level creditability results of example run.

Creditabilities IDS1 IDS2 IDS3 IDS4 IDS5 IDS6 IDS7

PðMjAj
HTTPÞ e 0.46 0.03 e 1.00 e 0.51

Pð:Mj:Aj
HTTPÞ 0.71 0.78 0.52 0.71 0.75 0.71 0.80

w87 N/A 0.83 N/A N/A N/A N/A 0.20
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Based on the alert frequency, VE assumes that IDSswith an

abnormal alert frequency are unusual, because some IDSs

always or never produce alerts when detecting a specific type

of trace. For example, when processing the same type of trace,

some IDSs do not produce any alert while others do.Moreover,

when an IDS with the detection function for a certain type of

trace does not produce any alert, its corresponding signature

design is doubted. Thus, in processing the same type of trace,

if either the alert rate or the non-alert rate is more than sa, i.e.,

abnormal alert frequency, the IDS is excluded by the VE.
4.5. WV: Weighted Voting

After either multiple authorities are chosen from AS or VE

excludes some voters, CWV will enter the last component,

WV. First, WV assigns weights to existing voters according to

their creditability. Then, when the WV processes the traces

one by one, the value of CMD is used to calculate the degree of

tendency towards malicious activities. First, the weight of the

j-th IDS for the i-th trace, wj
i, is calculated as

wj
i ¼

8><
>:

P
�
MjAj

P;k

�
; if

�
dj
i ¼ Aj

P;k

�

P
�
MjAj

P

�
; if ck;

�
dj
isAj

P;k

�

1� P
�
:Mj:Aj

P

�
; if

�
dj
i ¼ NULL

� and dj
isNULL; (4)

where dj
i is intrusion detection alarm (alert or non-alert) pro-

duced by the j-th IDS for the i-th trace and it is set as NULL

when no any alert produced. In (4), there are three conditions

to calculatewj
i. The first condition is that the j-th IDS produces

an alert and this alert belongs to the alerts generated for the

training data. It can belong to AL with PðMjAj
P;kÞ. The second

condition is that the j-th IDS produces an alert but the alert

does not belong to the previous alerts. It can only be calculated

in PL with PðMjAj
PÞ. The last condition is that the j-th IDS does

not produce an alert. It is calculated in PL with 1� Pð:Mj:Aj
PÞ.

Then WV calculates the overall creditability of the mali-

cious decision for the i-th trace by

CMDi ¼ 1
Z

XZ
j¼1

wj
i; (5)

where Z is the number of voters.

Finally, WV makes a decision on the i-th trace using CMDi

to decide whether the trace is malicious, benign or unknown.

The i-th trace is determined as malicious if its CMDi is more

than a, while it is benign if the CMDi is less than b. When the

value ranges between a and b, the malicious or benign ten-

dency is not very obvious. Hence, this trace is classified into

the unknown one.

Notably, most IDSs not only report an alert by text, but also

report a number that specifies the generated alert. For such an

IDS, the alert number is utilized to determine which alert and

to find rapidly its weight of the capability for detecting the
Please cite this article in press as: Lin Y-D, et al., Creditability-bas
in intrusion detection, Computers & Security (2013), http://dx.do
alert with a constant time complexity. For an ID that reports

the alert only by text, the reported text is compared with the

alert texts that were generated by this IDS and stored in the

database. A hashing function is utilized to determine whether

they match, so the time complexity is constant. Thus, CWV

has a low workload and a low computational complexity in

the detection phase.

4.6. Example of creditability-based Weighted Voting

Assume there are seven IDSs (i.e., X ¼ 7) which detect the

same traffic and produce corresponding alerts. By comparing

the alerts, the HTTP traces can be collected and are given as

examples here. After the FP/FN Analysis, the TP/FP/TN/FN

datasets can be set up. Then, CM sets up the TD according to

the datasets and calculates Rj
HTTP;TP, Rj

HTTP;FP, Rj
HTTP;TN, and

Rj
HTTP;FN. Next, CM uses the TLM to model the seven IDSs’

corresponding creditability. First, in AL, the accuracy rate of

the k-th alert is calculated as PðMjAj
HTTP;kÞ and thus the accu-

racy rates of all alerts can be obtained. Next, PL calculates the

successful detection rate PðMjAj
HTTPÞ and successful omission

rate Pð:Mj:Aj
HTTPÞ, which are shown in Table 5.

After CM, the other three components of CWV can process

HTTP traces with a two-level creditability. First, in AS, the L1
and L2 are 0 and 0.51 respectively. By comparing each IDS’s

Rj
HTTP;FP and Rj

HTTP;FN with L1 and L2 respectively, there is no

authority for the detection. Next, in VE, the 3rd IDS is excluded

according to the TP/FP rates. The 1st, 4th, 5th and 6th IDSs are

excluded according to the abnormal alert frequency. Hence,

the remaining voters are the 2nd and 7th IDSs. Finally, in WV,

when processing the 87th trace, the 2nd IDS produces an alert

“IBM Lotus Domino Accept-Language Buffer Overflow” which

belongs to the previous alerts in the training data, while the

7th IDS does not produce any alert. The weight of the 2nd IDS

of the alert in AL, PðMjd287Þ, is 0.83. The weight of the 7th IDS of

the non-alert in PL, 1� Pð:Mj:A7
HTTPÞ, is 0.20. Therefore, the

CMD87 is calculated as (0.83 þ 0.20)/2, which is 0.52. Because

the value is larger than 0.5 (a¼ 0.5), the 87th trace is decided as

a malicious one.
5. Evaluation and observation

In this section, the detection capability of multiple IDSs and

the performance of CWV are evaluated. First, the IDSs’ cor-

responding creditability of different types of traffic traces

modeled by the CM are illustrated. Second, the Accuracy, TPR,

TNR and Efficiency are used to evaluate the voting algorithms.

5.1. Trace selection and experiment environment

As mentioned in Section 4.2, trace selection policies are based

on the rate of appearance in traffic and the rate of number of
ed weighted voting for reducing false positives and negatives
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Table 6 e Investigation result of trace selection.

Category Web File sharing Chat File transfer Network Remote access VoIP Encryption Email Streaming

% Of traffic 35.86 32.69 8.82 7.07 4.84 4.05 3.14 2.79 0.49 0.22

% Of signature 81.78 0.14 0.57 2.13 8.80 0.66 1.41 0.00 4.48 0.04
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corresponding signatures. If both are significant for a certain

type of trace, the trace will be selected. According to the ten

categories classified by ATC (Wang, 2010), we investigated the

traffic in the NCTU Beta Site (Common Vulnerabilities an,

1999) during the period from September 1, 2010 to February

1, 2011 to understand the frequently appearing categories in

traffic. Second, we took the rule version 2.9 of Snort as an

example to investigate signature classification and distribu-

tion. The investigation results are shown in Table 6. Initially

we chose five types, Web, File Transfer, Network, Remote

Access, and VoIP, because they have more signatures and

could generate more alerts. Then VoIP is skipped because we

are not very familiar with it. FromWeb, File Transfer, Network

and Remote Access, we selected the most popular protocol,

respectively. Hence, the four types of traces were decided:

HTTP, FTP, NetBIOS and TELNET.

The real-world traffic captured from the NCTU Beta Site

(Lin et al., 2010), during the period from September 1, 2010 to

February 1, 2011, occupies 10Tbytes. We then used a traffic

replay tool (e.g., tcpreplay) to replay the captured raw traffic to

multiple IDSs. Seven IDSs are involved in the classification, as

shown in Table 7. Table 8 presents the number of the four

selected types of traces, where a trace means a flow. The size

of the traffic set is large while the numbers of traces in Table 8

are not large. The reason is that the traces shown in Table 8

only include the replayed traffic which triggers at least one

alert in seven IDSs. Since Snort may classify inaccurately, it is

used for rough traffic classification to determine the per-

centage of each traffic type and the percentage of the signa-

ture in each category, as indicated in Table 6. A manual

analysis was carried out as an extra precaution to obtain the

number of traffic traces in Table 8. That is, whether the traces

are malicious or benign were confirmed by some experts.

Since Snort may classify inaccurately, it is used for rough

traffic classification to determine the percentage of each

traffic type and the percentage of the signature in each cate-

gory, as indicated in Table 6. A manual analysis was carried

out as an extra precaution to obtain the number of traffic

traces, as shown in Table 8. Hence, experts were able to

confirm whether the traces are malicious or benign.

The ratio of malicious traces to benign ones is about 4e6.

The rate of benign traces is lower than anticipated since we

expected to avoid a flood of benign traces fromdominating the

results in this experiment. During the period, the two domi-

nant types of traces were HTTP and NetBIOS. In the HTTP

traffic, 39% of the traces were malicious, meaning HTTP ap-

plications are frequently exploited. In the NetBIOS traffic, 62%
Table 7 e Vender and device names on seven IDSs.

Vendor name BroadWeb D-link Fortinet M

Device name NetKeeper7K DFL-1600 FortiGate-110c M
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of the traces were malicious, meaning the vulnerabilities of

NetBIOS are usually targeted by attackers. Here, we choose the

traces collected in the first two months to be the training data

and the traces of the latter three months to be the processing

data. The former served as input for the CM to set up the TD

while the latter served as input for measuring the accuracy of

the CWV.

The parameters in CWV were set as follows. In the VE, the

detection threshold sd was set at 0.5 while the abnormality

threshold sa was set at 0.9. In WV, the values of a and b were

both set at 0.5. The parameters are discussed in detail in

Section 5.3.

5.2. Experiment results of investigation of creditabilities

In the CM evaluation, this work takes seven IDSs, which are

called IDS1, IDS2, ., and IDS7, respectively, as examples to

represent the IDSs’ corresponding creditability for different

types of traffic traces at two levels.

As mentioned in Section 4.2, the successful detection rate

and successful omission rate are defined as PðMjAj
PÞ and

Pð:Mj:Aj
PÞ, respectively, to represent the detection capability

for PL. As shown in Table 9, when the value of detection rate is

‘e’, it means that it is uncalculated; that is, the IDS does not

produce any alert for the type of traces. Where the value of

detection rate is 0.00, it means that the alerts result from

commonly used commands, i.e., the traffic is always benign.

For example, some alerts produced by IDS5 for FTP traces

result from a commonly used FTP command.Where the value

of detection or omission rates is 1.00, it means that the defi-

nition of the signature for the type of trace is more precise. For

instance, only one type of alerts is produced by IDS5 for

TELNET traces and after our investigation, this detection

result is correct. Notably, the IDSs’ detection capability for

different protocols is different. In our investigation, for HTTP,

IDS2, IDS5 and IDS7 have a higher creditability. For FTP, IDS5,

IDS6 and IDS7 have a higher creditability. For NetBIOS, IDS1,

IDS4, IDS5 and IDS6 have a higher creditability. For TELNET,

IDS3 and IDS5 have a higher creditability. Generally, IDS5

achieves satisfied successful rates in each protocol.

5.3. Accuracy, TPR, TNR, and Efficiency of voting
algorithms

Let TPtraces be the number of malicious traces which are

correctly determined, FNtraces be the number of malicious

traces which are not determined, TNtraces be the number of
cAfee Tipping-point Trend micro ZyXEL

-1250 5000E TDA2 ZyWALL USG 1000
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Table 8 e Statistics for number of traffic traces.

Type Malicious Benign Total

(A) Training data

HTTP 46 72 118

FTP 22 74 96

NetBIOS 66 47 113

TELNET 4 31 35

Total 138 224 362

(B) Processing data

HTTP 57 86 143

FTP 29 77 106

NetBIOS 87 46 133

TELNET 5 42 47

Total 178 251 429
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Fig. 6 e Accuracy of the voting algorithms.
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benign traces which are correctly classified, FPtraces be the

number of benign traces which are incorrectly determined as

malicious ones.

This work uses theAccuracy, TPR, and TNRmetrics (Wu and

Banzhaf, 2010) for the voting algorithm in the evaluation. Ac-

curacy is evaluated with the percentage of whole traces that

are determined accurately. This is a commonly used metric

for an overall view of evaluation.

Accuracy ¼ TPtraces þ TNtraces

TPtraces þ FPtraces þ TNtraces þ FNtraces
� 100%:

TPR is evaluated with the percentage of malicious traces

that are correctly determined as malicious ones, while the

TNR is evaluated with the percentage of benign traces that are

correctly determined as benign ones.

TPR ¼ TPtraces

TPtraces þ FNtraces
� 100%

TNR ¼ TNtraces

TNtraces þ FPtraces
� 100%:

There is a tradeoff between TPR and TNR, so when evalu-

ating the performance of a voting algorithm, we have to

consider both TPR and TNR. Similar to the F1 score

(Rijsbergen, 1979) which is a measure of a test’s accuracy, this

work defines a similar measure for the efficiency of the voting

algorithm. Efficiency takes the harmonic mean of TPR and

TNR, given by:

Efficiency ¼ 2
1

TPR þ 1
TNR

� 100%:
Table 9 e Experiment results of successful detection and omis

IDSs

HTTP FTP

PðMjAj
PÞ Pð:Mj:Aj

PÞ PðMjAj
PÞ Pð:Mj:Aj

PÞ
IDS1 e 0.71 e 0.92

IDS2 0.46 0.78 e 0.92

IDS3 0.03 0.52 0.00 0.78

IDS4 e 0.71 e 0.92

IDS5 1.00 0.75 0.74 0.98

IDS6 e 0.71 0.69 1.00

IDS7 0.51 0.80 0.70 0.95
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A higher value of Efficiency indicates that the voting algo-

rithm performs better on not only TPR, but also TNR.

5.3.1. Experimental evaluation results
Fig. 6 shows the complete accuracy results of CWV and MV. It

is observed that each accuracy of CWV is higher than that of

MV. The overall accuracy of CWV and MV are 95% and 66%,

respectively, by calculating them for all traces. It is observed

that CWV is improved by about 1.4 times as that of MV. The

results demonstrate that the weights of IDSs should be

different for leveraging the different domain knowledge

among the IDSs when multiple IDSs are involved in the

detection.

Figs. 7 and 8 compare the TPR and TNR of CWV with MV.

The results mainly demonstrate the effect of a two-level

creditability modeling. The average TPR of CWV and MV are

93% and 14%, respectively, meaning that CWV has a lower FN

rate. The reason is that the FNs of some IDSs could be avoided

by leveraging other IDSs’ correct detection using the corre-

sponding creditability. The average TNR of CWV and MV are

98% and 93%, respectively, meaning that the CWV has a lower

FP. The main reason is that, in CWV, the FPs of some IDSs

could be filtered by the creditability, especially in AL. In CWV,

the TNR is higher than the TPR because the correctness of the

alert itself is investigated in AL. Thus, an alert with a frequent

FP would be filtered. In addition, the TPR and TNR of MV for

HTTP, FTP, and TELNET are 0% and 100%, respectively. The

reason is that only a few IDSs produce alerts, which means

either FNs occur in most IDSs or FPs occur in few IDSs.
sion rates in protocol level for each IDS.

Types

NetBIOS TELNET

PðMjAj
PÞ Pð:Mj:Aj

PÞ PðMjAj
PÞ Pð:Mj:Aj

PÞ
0.95 0.69 0.28 0.99

e 0.33 e 0.98

0.66 0.33 1.00 0.99

0.68 1.00 e 0.98

0.88 0.83 1.00 0.99

0.67 0.68 0.00 0.98

0.41 0.31 0.01 0.72
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Fig. 7 e TPR of the voting algorithms.
Fig. 9 e Efficiency of various abnormality thresholds of

CWV.
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Regardless of the situation, MV makes a classification directly

from the same weighted IDSs; i.e., it may underestimate the

judgments of some IDSs which have a noticeably high cred-

itability. Accordingly, MV couldmake incorrect classifications,

especially in the case that most of them are FNs.

From TPR and TNR showed in Figs. 7 and 8, respectively,

the efficiency of MV is 41%, while that of CWV is as high as

94%. CWV canmaintain an efficiency at about 2.3 times higher

than that of MV. This means CWV can maintain both TPR and

TNR well.

5.3.2. Discussion of important parameters in CWV
In VE, the detection threshold sd is set at 0.5, whichmeans half

of the detection is correct, i.e., the probability of intuition is

50%. Based on this value, we experiment with various abnor-

mality threshold values between 0.6 and 1.0, and the results

are shown in Fig. 9. Values smaller than 0.5 are not used in this

experiment because they result in no voters being used. It

does not make sense when there are no voters in a voting. As

can be seen in Fig. 9, when the abnormality threshold is 0.9,

CWV has the highest efficiency. Therefore, we use this value

in all the experiments of this article.

Similarly, in WV, we changed a and b from 0.1 to 0.9 and

found that the accuracy can be 100%when the values of a and

b are 0.7 and 0.1, respectively. However, the range between a

and b is large, 0.6 (¼ 0.7e0.1), so the number of unknown cases

is up to 55% of total processed traffic traces. Hence, a and b can
98%

72%

96%100% 100%100% 100%100%
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Fig. 8 e TNR of the voting algorithms.
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be tuned as a result of a tradeoff between the accuracy of the

decided traces and the number of unknown traces that need

to be analyzed manually.
5.4. Differences between CWV and each IDS in
percentages at FP and FN

Table 10 shows the percentages of FP and FN of CWV and each

IDS for different types of traces. Some IDSs have FP and FN

valueswith 0%and100%since these IDSsdonot produce alerts

for this type of traces. This also means these IDSs lack the

respective signatures. Notably, the FP of IDS3 is 100% because

the alerts result from commonly used commands, such as the

“FTP GET command”. For IDS5, both the FP and FN are 0%. The

reason is the IDS5 produced only one type of alerts, and the

alert is “SOLARIS.TELNETD.AUTHENTICATION.EXP”, which is

a precise signature in our investigation, i.e., the creditability of

the alert is 1.0. In the evaluation, the traces that generate this

alert are alwaysmalicious ones. For NetBIOS traces, most IDSs

producemany alerts that result inmore FPs for each IDS,while

for other types of traces, many IDSs do not produce alerts,

resulting in more FNs.

The differences between CWV and each IDS in the per-

centage of FP and FN are shown in Table 11. Some detection

results of IDSs are partially better than those of the CWV

because the percentage of FP or FN is negative, but no IDS can

individually detect well in both FP and FN. CWV performswell

in most cases for all types of traces by leveraging the different

detection capability among the IDSs, i.e., different percent-

ages of FP and FN. It is demonstrated that the average per-

centage of FP and FN reduction for CWV and for each IDS is

21% and 58%, respectively.
5.5. Case studies

In this section, two case studies in the experiment are given as

examples to show the TP case in CWV and FN in MV, and the

TN case in CWV and FP in MV.

5.5.1. Case study I: TP case in CWV and FN in MV
Alerts and the corresponding creditability are shown in

Fig. 10(a), while the trace content is illustrated in Fig. 10(b). It is
ed weighted voting for reducing false positives and negatives
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Table 10 e Percentages of FP and FN of CWV and each IDS.

HTTP FTP NetBIOS TELNET

FP FN FP FN FP FN FP FN

IDS1 0 100 0 100 63.04 5.17 0 100

IDS2 26.74 94.74 0 100 0 100 0 100

IDS3 63.95 100 100 86.21 80.43 1.15 2.38 40.00

IDS4 0 100 0 100 25.53 7.58 0 100

IDS5 0 98.25 0 48.28 52.17 9.20 0 0

IDS6 0 100 0 13.79 67.39 1.15 0 100

IDS7 9.30 5.26 0 48.28 39.13 82.76 97.62 80.00

CWV 2.33 7.02 0 13.79 4.35 9.20 0 0
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observed that the attacker uses the command “USER efadm”

as the argument injection via the USER environment variable

in the environment option to attempt to bypass the authen-

tication. More information about Telnet environment option

can be found in (Alexander, 1994). Furthermore, the malicious

content in hexadecimal is “ff fa 27 00 00 55 53 45 52 01 2d 66 61

64 6d”. However, this malicious trace can be correctly deter-

mined by CWV because of the high creditability in AL, while it

is missed by MV because only a few voters can detect it.

5.5.2. Case study II: TN case in CWV and FP in MV
The alerts and the corresponding creditability are shown in

Fig. 11(a), while the trace content is illustrated in Fig. 11(b). It is

observed that the signature designs are not specific. Hence,

the general signature is easily matched in the payload even

though the payload is benign. Obviously, logon/login failure is

a general outcome that often occurs in normal activities. Our

investigation demonstrated that the corresponding credit-

ability of this trace is low. Therefore, this benign trace can be

correctly determined as a benign one by CWV, while it is

incorrectly classified as a malicious one by MV because most

voters detected it.
6. Conclusions and future work

This work proposes Creditability-based Weighted Voting

(CWV) to reduce both FPs and FNs and increase the efficiency

of alert post-processing by using multiple IDSs. Creditability

Modeling (CM) leverages the domain knowledge among mul-

tiple IDSs by investigating the detection capability of all the

IDSs and models the corresponding creditability for them.

From the experiment results, we demonstrate the different
Table 11 e Differences between CWV and IDS in percentages o

HTTP FTP

FP FN FP FN

IDS1 �2.33 92.98 0 86.

IDS2 24.41 87.82 0 86.

IDS3 61.62 92.98 100 72.

IDS4 �2.33 92.98 0 86.

IDS5 �2.33 91.23 0 34.

IDS6 �2.33 92.98 0 0

IDS7 6.97 �1.76 0 34.

Average 11.95 78.44 14.29 57.
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IDSs’ detection capability by their creditability. We observed

that the signature design is the main factor in the correctness

of detection. Some IDSs have more specific signatures that

result in fewer numbers of alerts and FPs, while some IDSs

have more generic signatures that result in larger numbers of

alerts and FPs. On the other hand, some IDSs lack certain

signatures, which results in FNs.

This work uses accuracy, TPR and TNR, and defines effi-

ciency to evaluate two voting algorithms, CWV and MV. CWV

can achieve an accuracy and efficiency up to 95% and 94%,

respectively, which are much higher than MV in comparison.

Between CWV and each IDS, CWV performs well for most

cases of all types of traffic traces. It is demonstrated that the

average percentage of FP and FN reduction for CWV and each

IDS are 21% and 58%, respectively.

However, CWV may make an incorrect decision in some

situations. For example, when processing a trace which trig-

gers a new alert in some IDSs, CWV can only use the corre-

sponding creditability of the IDs at the Protocol level (PL), but

not at the Alert level (AL), to determine the trace, which leads

to an incorrect decision. In addition, if an IDS significantly

updates or modifies its signature database, which means the

detection capability changes greatly, the corresponding cred-

itability would be almost useless; in this case, CWVmaymake

an incorrect decision on the trace. Hence, the frequency and

the duration of updating the training data are issues to resolve

in the future. Currently, this work does not distinguish be-

tween host-based and network-based alerts. Clearly, they

should be distinguished to adjust the IDSs’ creditability

further. Such work shall be performed in the future.

Another goal in the future is the automation of the analysis

because it could increase the productivity and practicability of

the proposed scheme. In the foreground, CWV keeps
f FP and FN.

NetBIOS TELNET

FP FN FP FN

21 58.69 �4.08 0 100

21 �4.35 90.8 0 100

42 76.08 �8.05 2.38 40.00

21 21.18 �1.62 0 100

49 47.82 0 0 0

63.04 �8.05 0 100

49 34.78 73.56 97.62 80.00

15 42.46 20.37 14.29 74.29
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Fig. 10 e Case study i.
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processing traffic traces one by one, while in the background,

the creditability table for each IDS is updated while consid-

ering the above issues to maintain the reliance on

creditability.

Finally, the ATC was used to extract actively and classify

suspicious traces from real-world traffic that were captured

on the NCTU Beta Site. Based on the collected dataset, CWV

can significantly reduce the numbers of false positives and

false negatives. However, the dataset used affects the evalu-

ation results. A large training dataset is required for CWV to

obtain more correct weights of IDSs. Recent work has been

conducted to collect more complete and typical datasets

(Creech and Hu, 2013; Vasudevan et al., 2011). These newer

datasets should be used in the future to validate the applica-

bility of CWV.
Fig. 11 e Case study II.
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