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Abstract—Taint tracking is a novel technique to prevent buffer 
overflow. Previous studies on taint tracking ran a victim's 
program on an emulator to dynamically instrument the code for 
tracking the propagation of taint data in memory and checking 
whether malicious code is executed. However, the critical problem 
of this approach is its heavy performance overhead. This paper 
proposes a new taint-style system called Embedded TaintTracker 
to eliminate the overhead in the emulator and dynamic 
instrumentation by compressing a checking mechanism into the 
operating system (OS) kernel and moving the instrumentation 
from runtime to compilation time. Results show that the proposed 
system outperforms the previous work, TaintCheck, by at least 8 
times on throughput degradation, and is about 17.5 times faster 
than TaintCheck when browsing 1KB web pages. 
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I. INTRODUCTION 
A buffer overflow attack occurs when a program writes data 

outside the allocated memory in an attempt to control a system. 
To launch a buffer overflow attack, an attacker must inject 
attack code to the address space of a victim program by any 
legitimate form of input, and then corrupt a code pointer in the 
address space by overflowing a buffer to make the code pointer 
point to the injected code. The most common and simplest type 
of attack, called stack smashing, hijacks a program by 
overflowing the buffer on the stack with the malicious code and 
changing the address to the start of the malicious code. This 
modifies the return address, causing the program to jump to the 
malicious code when it tries to return to its caller.  

Researchers have proposed many methods of defending 
against buffer overflow attacks using both static and dynamic 
approaches. Static approaches analyze potential buffer 
overflow vulnerabilities without execution. Dynamic 
approaches usually inject some code at compilation time to 
protect the code pointer or perform bounds checking to detect 
attacks at run-time. Dynamic approaches that apply detection at 
run-time can achieve better accuracy than static approaches, 
but they also suffer from a heavy performance overhead to 
protect against all forms of buffer overflow attacks. This heavy 
performance overhead means that dynamic approaches are only 
applied at testing time, and are impractical for detecting buffer 
overflow attacks. This is because the payload of such attacks is 

usually a particular and complicated pattern that is difficult to 
be generated in testing time. 

This paper proposes a run-time lightweight system called 
Embedded TaintTracker to defend against all forms of buffer 
overflow attacks. Embedded TaintTracker is based on a 
well-known dynamic technique called taint tracking, which 
defends against attacks by prohibiting the execution of the 
attack code. Based on this technique, TaintCheck [1] and 
TaintTrace [2] run the victim’s program on an emulator to 
monitor all its operations. These programs also track the 
propagation of taint data, which refers to data originating from 
untrusted sources, such as the Internet. However, these 
methods impose heavy performance overhead. The Embedded 
TaintTracker method proposed in this study implements a 
novel taint tracking approach that retains the advantages of the 
original taint tracking system while boosting its performance to 
acceptable levels for practical use.  

The rest of this paper is organized as follows. Section II 
presents some previous tools to defend against buffer overflow 
attacks. Section III describes the design concept and 
implementation of Embedded TaintTracker. Next, Section IV 
demonstrates this system’s ability to detect known buffer 
overflow attacks, showing excellent performance. Finally, 
Section V concludes this paper.  

II. BACKGROUND 
Tools for detecting buffer overflow operate in either a static 

or dynamic manner. Static tools used in development time 
analyze potential buffer overflow vulnerabilities without 
executing the program. These tools do not incur run-time 
overhead, but have theoretical and practical limits on accuracy. 
All static tools face a tradeoff between precision and scalability. 
Dynamic tools used in runtime do not have these limits, but 
their performance overhead will be a critical problem. Table I 
compares static solutions and a variety of dynamic solutions.  

Dynamic approaches can be classified into bounds checking, 
pointer protection, and taint tracking, according to what 
technologies they use. Bound checking provides perfect 
protection against buffer overflows via complex analysis and 
patch on source codes. However, tools based on bounds 
checking incur a substantial cost in compatibility with existing 
codes and performance. Pointer protection tools confine the 



 

pointer manipulation or modify the behavior of reference to and 
dereference from a pointer. These tools have excellent 
performance, but they do not leave any useful clues for 
developers to patch the holes. Developers must spend a lot of 
time on finding the bug to fix, and the victim program will 
remain vulnerable to the attack during this period, leading to 
denial of service. 

 
Table I. Techniques for buffer overflow detection 

Dynamic Solutions  
Criteria 

Static 
Solution Pointer 

Protection 
[3][4] 

Bound 
Checking 

[5][6] 

Taint 
Tracking 

[1][2] 
Accuracy      
Coverage      
Bug Fixing      
Signature 
Generation      

Performance 
Overhead  0 ~0 0.9x 4.7x 

: Complete  : Partial  : Not supported  
 

Taint tracking is the third dynamic defense against buffer 
overflow. This technique keeps track of the propagation of 
untrusted (taint) data during program execution. Taint data 
represents any data from an untrusted source such as a network 
or some specific devices. When a program executes a piece of 
code derived from an untrusted source, a tool based on this 
technique will produce an alarm to indicate a possible instance 
of malicious code execution. TaintCheck performs taint 
tracking for a program by running the program in an emulator 
Valgrind, which allows TaintCheck to monitor and control the 
program’s execution. Figure 1 illustrates how TaintCheck 
keeps track of taint data and examines how an attack code is 
executed. When the program is loaded into the Valgrind 
emulator, the instrumentation determines the kind of the 
instruction, and inserts codes for taint information maintenance 
and instruction pointer (IP) examination if needed. However, 
this way of implementing taint tracking imposes a heavy 
overhead up to thirty times, which is due to runtime 
instrumentation, a high frequency of checking malicious 
execution, and the emulator itself. Another solution, TaintTrace, 
is designed to decrease this overhead by leveraging 
DynamoRIO [7], which is a dynamic code modification system 
that includes a number of optimization techniques to maintain 
low overhead. However, experimental results show that 
TaintTrace still causes a 5-fold slowdown. 

 

 
Fig. 1. TaintCheck system architecture. 
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Fig. 2. Architecture of Embedded TaintTracker and the interaction with 
protected program. 

III. EMBEDDED TAINTTRACKER 

A. System Overview 
The proposed Embedded TaintTracker architecture has 

three components, Static Instrumentation, Taint Recorder, and 
Exploit Inspector, as Fig. 2 indicates. Static Instrumentation 
inserts taint-tracking codes into the original program at 
compilation time. Taint Recorder maintains the taint 
information table and provides a set of functions for the 
inserted codes to track taint propagation through the taint 
information table. Exploit Inspector is a kernel module that 
provides a checking subroutine to examine whether or not the 
program is executing code from a piece of tracked taint data. 
The first two components move the injection of taint-tracking 
code from execution time to compilation time. The last 
component reduces the frequency of checking malicious 
execution from each jump-instruction to each switch between 
user mode and kernel mode. We assume that a piece of 
malicious code will invoke a system call when invading a 
system. For example, to execute an external program, an 
attacker must invoke fork, vfork, or clone system calls. 

To enable detection mechanism of the proposed system in a 
program, the source code of a program must be injected at 
compilation time with a sequence of function calls near the 
memory copy operations to maintain taint information, so that 
the taint information is dynamically updated in runtime. These 
functions are provided by the Taint Recorder library, which 
should be linked to the instrumented program. When the 
program is executing and invoking a system call, Exploit 
Inspector will be triggered to examine the IP. If the IP points to 
taint data, then an arbitrary code execution is implicated. 
Exploit Inspector will terminate the victim’s process, provide 
an alarm of the attack to the administrator, and dump some 
useful information for further analysis. 

B. Static Instrumentation 
Static Instrumentation discovers copy operations and 

injects taint propagation tracking codes near these copy 
operations at compilation time. Several stages in source code 
transformation during compilation offer opportunities for 
discovering copy operations. There are four major compilation 
phases in GCC: the pre-processor, parser, code generator, and 
architecture-dependent optimizer. Since we did not want to 



 

modify the compiler, the preprocessed stage between 
pre-processor and parser, was finally chosen because source 
code at this stage has been processed by the preprocessor. Thus 
cleaner source has been yielded, as macros and comments have 
already been expanded and deleted, respectively. Moreover, the 
context required for optimization is still present at this stage. 
For example, any variable used in a loop as the increment 
counter is always untainted, so it is not necessary to set taint 
status repeatedly in each loop body.  

Taint data propagation at the preprocessed stage operates in 
two ways: undefined function invocations and assignment 
operations. A function in a program is either a defined function, 
which is defined within the project and the source code is 
available, or an undefined function, which is defined in another 
library and the source code is unavailable. Taint propagation 
tracking code can be inserted into a defined function,  while it 
has no way to be inserted into an undefined function. Thus, 
alternatively, a pre-defined taint propagation behavior can be 
associated with each undefined function. For example, 
memcpy(void *dest, const void *src, size_t n) 
is an undefined function that propagates n byte data from src 
to dest with no return value. Therefore, this study defines this 
propagation behavior by a pseudo code where the three 
parameters of memcpy are named $1, $2 and $3: 

memcpy($1,$2,$3): taint_copy($1,$3,$2) 
The subroutine taint_copy provided by Taint Recorder 

copies the taint status from address $2 to address $1 for length 
$3. This pre-defined behavior will be concatenated with 
memcpy, and $1, $2 and $3 will be mapped to actual 
parameters in memcpy upon injection. 

Assignment operations appear with a special identifier '=', 
and the taint data propagates from the RHS (right-hand side) 
operand address to the LHS (left-hand side) operand address. 
The LHS operand address is retrieved simply with address-of 
operator '&', but determining the taint status of the RHS 
operand is complicated because the RHS operand has many 
forms. Table II(a) summarizes common forms of the RHS 
operand and their corresponding processing of taint 
propagation. The first form of taint propagation, where the 
RHS is a constant value, sets the taint status of the LHS variable 
address to false. The second form, where the RHS operand is a 
variable, copies taint status of the address of the RHS variable 
to that of the LHS variable. In the third form, the RHS operand 
is a series of arithmetic operations, and the taint status of the 
LHS address is set true if any constituent operand of the RHS 
operations is tainted. The last form features a function call on 
the RHS. This form of propagation has different processes 
depending on the function type. When the function is a defined 
function, the taint status of the LHS variable is transferred from 
a global variable that stores the address for return variable in 
each function; otherwise, a pre-defined behavior for an 
undefined function determines the taint status of the LHS 
variable. 

Table II covers most processes of taint propagation through 
assignments. However, an exception transpires when data are 
propagated via deliberate control transfer. For example, codes 
like such as if (x==1) y=1; else if (x==2) y=2; … 
use tainted data x to influence the value of y. This problem is 

also faced by similar approaches proposed by earlier works. In 
this case, the system proposed in this study requires users to 
modify related code manually.  

To fix bugs easily, we adopt a global variable that preserves 
the IP and inject code for updating that value before each 
function invoked. The value can be translated to indicate the 
function in which the attack took place by addr2line, which is a 
tool in the GNU toolchain that can convert an address into a file 
name and line number in source code. 

 
Table II. (a) RHS variable forms and their corresponding processing of taint 
propagation; (b) exported functions in the Taint Recorder library. 
Variable forms Example  Propagation Description 
Constant D = ‘A’ Set taint status of LHS to be untainted. 
Variable D = S Transfer taint status from RHS to LHS 
Arithmetic 
operations 

D = S1 + S2 LHS will be set to taint if any operands in 
RHS are tainted. 

Function call D = func() If the function is defined, copy taint status 
from the address of return value; otherwise, 
append a pre-defined behavior. 
(a) 

Function prototype Description 
set_taint(void *to, 
size_t len) 

Set taint status to true from address to to 
to+len-1. 

clear_taint(void *to, 
size_t len) 

Set taint status to false from address to to 
to+len-1. 

taint_copy(void *to, 
size_t len, void 
*from) 

Copy taint status from address from address 
to address to for length len. 

(b) 

C. Taint Recorder 
Taint Recorder provides a set of functions and a taint 

information table for the victim program to record taint 
memory in its address space. The library exports three basic 
functions for operating taint information table, summarized in 
Table II(b). set_taint(void *to, size_t len) sets 
the taint status to be true from address to to to+len-1, which 
is used when reading data from socket. clear_taint(…) 
performs the opposite function, setting the taint status of a 
range of memory to be false. taint_copy(void *to, 
size_t len, void *from) copies length of len bytes 
taint status from address from to address to when copy 
operations are found in source code. 

Another component of the Taint Recorder, taint information 
table, records the taint status of each memory block. Bitmap 
data structure, which maps each byte of memory to one bit in 
taint information table, can be used. However, bitmap data 
structure requires an enormous amount of memory, so the 
proposed approach adopts a page-table-like structure that 
dynamically allocates a new page when taint propagation 
happens. Fig. 3 illustrates the page-table-like structure and how 
it acquires the taint status from an address. The taint 
information table consists of a page directory and a number of 
bitmap pages. The page directory keeps 1024 32-bit page 
addresses, so the size required is the same as the default page 
size 4 KB used in Linux memory management, and the size of a 
bitmap page is 219 Bytes = 512 KB. After acquiring the taint 
status from an address, Taint Recorder splits the address into 
three parts. The first part includes a 10 bit prefix of the address, 
which is used to look up the corresponding bitmap page 
location in the page directory. The next 19 bit segment  



 

 
Address: 1011 1111 1100 0000 0001 0010 0011 0110

0x00000000

0x08500000
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Page Directory

0x08530000
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in memory is 

untainted

 
Fig. 3. Obtaining taint status from the page information table. 
 
addresses the byte in the referred page, while the 3 bit suffix is 
the bit offset within the referred byte. Figure 3 shows the 
procedure of deriving the taint status from an address. The 10 
bit prefix of the address is indexed to the bitmap page at 
0x08500000. The next 19 bit segment addresses the byte in 
0x08500000, where the byte is (11100011)2. The 3 bit suffix 
(110) 2 of the address indicates that the 5th bit of (11100011)2 is 
untainted for the given address. 

D. Exploit Inspector 
Exploit Inspector is a kernel component that examines 

whether or not a program is executing code from a piece of 
tracked taint data. It consists of a checking subroutine and a 
cache of page directories for different processes to decrease the 
frequency of communication between the user space and the 
kernel space. After a system call is invoked, the checking 
subroutine will be triggered to examine whether the IP of user 
space points to taint data. The checking subroutine acquires the 
taint status of IP in the user-space, as Fig. 3 illustrates. To 
decrease the communication overhead between the user space 
and kernel space, the kernel caches the page directories 
accessed by IP for subsequent use. If the checking subroutine 
determines the pointed address is innocent, the system call will 
be invoked as usual; otherwise, the subroutine will terminate 
the process and dump the process status for analysis and 
defense as the memory near the IP value may be populated by 
the exploit’s execution code. If the execution code can be 
isolated, it can be used in IPS as an attack signature. 

IV. EVALUATION 
This study evaluates Embedded TaintTracker in terms of 

effectiveness and performance. In effectiveness evaluation, we 
reproduce a return address smashing attack against a vulnerable 
echo server. Performance evaluation uses the most widely-used 
web server, Apache, as a testing target and evaluates latency, 
throughput, and the sustainable number of requests per second. 

A. Effectiveness 
A buffer overflow attack must first inject malicious code 

into a victim’s memory space, and then corrupt different types 
of code pointers, including return address, function pointer, 
longjmp buffer, and GOT. Programmers have proposed many 
solutions for buffer overflow defense to prevent code pointer  

Attack 
Identification

Bug Fixing

Signature
Generation

 
Fig. 4. The log from Embedded TaintTracker after detecting an attack. 
 

 
Fig. 5. Experimental performance evaluation: a) latency in different page sizes 
requested, where th Y-axis is the slowdown factor which is the 
mechanism-enabled latency divided by native execution time; b) and c) are 
degradation on throughput and requests per second for different numbers of 
clients. The native results are listed in parentheses below the X-axis. 

 
corruption. The effectiveness of these approaches should be 
evaluated for enumerated code pointer types. However, the 
proposed system, which is based on the taint tracking technique, 
does not prevent code pointer corruption, but avoids malicious 
code execution since the final target of any type of corrupt code 
pointer is to execute malicious code. Thus, it is only necessary 
to verify whether our system can block malicious code 
execution to demonstrate its ability to defend against buffer 
overflow attacks.  

The test program in this study was an echo server with a 
synthetic vulnerability that copies the string received from the 
client into the local buffer without bound checking, and then 
sends it back to client. This vulnerability is exploited when the 
copied string exceeds the size of the local buffer, allowing an 
attacker to inject malicious code and overflow return address, 
and the malicious code adds a new account for the attacker. 
Figure 4 shows the system log after the attack was launched. As 
the figure indicates, Embedded TaintTracker successfully 
identified the attack and logged the system call, and where it 
was invoked. Besides, the log also recorded the value of IP 
pointing to the last invoked function for bug fixing and dumped 
the memory near the address of the system call invocation for 
signature generation.  

B. Performance 
This study measured the performance degradation of 

Embedded TaintTracker on an Apache web server, which is the 
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most widely used server on the Web. This performance 
evaluation uses three key criteria, including latency, throughput, 
and sustainable number of requests per second. Evaluation was 
performed on a system with an Intel Core 2 Duo T5600 CPU 
and 2 GB of RAM, running Ubuntu 7.10 on Linux kernel 
2.6.22.  

To compare with previous work, TaintCheck, and profile 
the source of overhead, this study also measures Apache 
performance with the kernel component of Embedded 
TaintTracker, Valgrind Nullgrind, and MemCheck. Figure 5 
denotes these as Embedded TaintTracker−Kernel, Nullgrind, 
and MemCheck, respectively. Embedded 
TaintTracker − Kernel measures the performance overhead 
when the mechanism, which only examines the execution on 
taint data, is enabled. Nullgrind and MemCheck, like 
TaintCheck, are extensions of the Valgrind emulator. These 
extensions have diverse degrees of instrumentation that can 
represent two primary sources of overhead in TaintCheck. 
Nullgrind does not instrument any additional instructions, 
which implies that the extra execution time is caused by the 
Valgrind emulator itself. MemCheck replaces TaintCheck in 
this experiment since the TaintCheck source code is 
unavailable. MemCheck looks for memory leaks and illegal 
memory access using the same data structure as TaintCheck to 
trace the status of memory and instrumentation on all memory 
operations. Furthermore, MemCheck performs better than 
TaintCheck because TaintCheck requires extra interception of 
each jump-instruction. The author of TaintCheck has also 
demonstrated that MemCheck offers superior performance [1]. 

To evaluate latency, the experiment requested differently 
sized web pages (from 1 KB to 10 MB) and timed how long it 
took to connect, send the request, receive the response, and 
disconnect from the server. To prevent resource contention in 
the test bed, the server was connected to another machine 
running the testing program. The testing program was executed 
five rounds, and each round requested the same page 60 times. 
The result is the average median in each testing round.  

Figure 5(a) shows the latency result with the slowdown 
factor, which is defined as the execution time of the target 
divided by the Apache execution time. The slowdown factor 
decreases as the requested page size grows because the server 
becomes less CPU-bound and more I/O bound. Embedded 
TaintTracker generates a 1.37 slowdown when a 1 KB page is 
requested and almost no overhead when the size of the accessed 
page exceeds 100 KB. MemCheck performance is much worse 
than the proposed system, especially when the page size is less 
than 100 KB. According to the latency ratios between 
MemCheck and TaintCheck described in [1], the slowdown 
factors of TaintCheck when accessing 1KB, 10KB, 100KB, 
1MB, and 10MB pages can be estimated as about 24, 5, 2.3, 1.2 
and 1, respectively. Thus, Embedded TaintTracker is about 
24/1.37=17.5 times faster than TaintCheck at accessing 1KB 
pages. 

Figures 5(b) and 5(c) show the results of evaluating the 
throughput and sustainable number of requests per second 
for different numbers of clients with WebBench. On average, 
the proposed system imposes only 9.3% (73.48 KB/sec) 
performance degradation which outperforms, by 8-fold, the 

75.2% (592.08 KB/sec) performance degradation caused by 
MemCheck. Running Apache under Valgrind already brings 
a great 60% (358.78 KB/sec) overhead in the degradation of 
MemCheck. Dynamic instrumentation of all memory access 
operations and memory information maintenance contributes 
the remaining 40% (233.3 KB/sec) overhead. This overhead 
increases in proportion to the number of instrumented 
operations. Also the overhead of TaintCheck is larger than 
MemCheck. For example, when there are twenty clients, 
memory access and jump represent 31% and 8% of the total 
operations, respectively. TaintCheck imposes extra overhead 
from instrumentation of the additional 8% jump operations 
for checking malicious execution. Therefore, we can 
reasonably deduce that Embedded TaintTracker outperforms 
TaintCheck by at least 8-fold on throughput degradation. 

Figure 5 also shows that Embedded TaintTracker – Kernel 
slightly influences performance, meaning that the majority of 
overhead in the proposed system is not from examining the 
execution on taint data, but from maintaining taint information. 
Thus we further measured the time consumed for maintaining 
taint information table. When 1 KB pages are requested 1000 
times, 61% of the extra time is spent on the bit-copy subroutine, 
which is used to copy taint status from one bit to another, and 
another 36% is spent on address translation for page tables. The 
overhead from these subroutines may be further reduced. For 
example, the time required for address translation can be 
diminished by changing the structure of taint information table 
to bitmap. 

V. CONCLUSIONS 
This paper proposes Embedded TaintTracker, a lightweight 

taint-style system to defend against buffer overflow attacks. 
This program is able to protect against various forms of buffer 
overflow attacks and achieves acceptable performance. 
Experimental results demonstrate that the proposed system 
only imposes 9.3% throughput degradation, which outperforms 
TaintCheck by at least 8-fold. This approach is also faster than 
TaintCheck by about 17.5-fold when browsing 1KB pages.  
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