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Abstract. This study investigates how the Constraint-based routing de-
cision granularity significantly affects the scalability and blocking perfor-
mance of QoS routing in MPLS network. The coarse-grained granularity,
such as per-destination, has lower storage and computational overheads
but is only suitable for best-effort traffic. On the other hand, the fine-
grained granularity, such as per-flow, provides lower blocking probability
for bandwidth requests, but requires a huge number of states and high
computational cost.

To achieve cost-effective scalability, this study proposes using hybrid
granularity schemes. The Overflowed cache of the per-pair/flow scheme
adds a per-pair cache and a per-flow cache as the routing cache, and
performs well in blocking probability with a reasonable overflow ratio
of 10% as offered load=0.7. Per-pair/class scheme groups the flows into
several paths using routing marks, thus allowing packets to be label-
forwarded with a bounded cache.

1 Introduction

The Internet is providing users diverse and essential Quality of Services (QoS),
particularly given the increasing demand for a wide spectrum of network services.
Many services, previously only provided by traditional circuit-switched networks,
can now be provided on the Internet. These services, depending on their inherent
characteristics, require certain degrees of QoS guarantees. Many technologies
are therefore being developed to enhance the QoS capability of IP networks.
Among these technologies, the Differentiated Services (DiffServ) [T2J3/4] and
Multi-Protocol Label Switching (MPLS) [BJ6J7I]] are the enabling technologies
that are paving the way for tomorrow’s QoS services portfolio.

The DiffServ is based on a simple model where traffic entering a network
is classified, policed and possibly conditioned at the edges of the network, and
assigned to different behavior aggregates. Each behavior aggregate is identified
by a single DS codepoint (DSCP). At the core of the network, packets are fast-
forwarded according to the per-hop behavior (PHB) associated with the DSCP.
By assigning traffic of different classes to different DSCPs, the DiffServ network
provides different forwarding treatments and thus different levels of QoS.
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MPLS integrates the label swapping forwarding paradigm with network layer
routing. First, an explicit path, called the label switched path (LSP), is deter-
mined, and established using a signaling protocol. A label in the packet header,
rather than the IP destination address, is then used for making forwarding deci-
sions in the network. Routers that support MPLS are called label switched routers
(LSRs). The labels can be assigned to represent routes of various granularities,
ranging from as coarse as the destination network down to the level of each sin-
gle flow. Moreover, numerous traffic engineering functions have been effectively
achieved by MPLS. When MPLS is combined with DiffServ and Constraint-
based routing, they become powerful and complementary abstractions for QoS
provisioning in IP backbone networks.

Constraint-based routing is used to compute routes that are subject to multi-
ple constraints, namely explicit route constraints and QoS constraints. Explicit
routes can be selected statically or dynamically. However, network congestion
and route flapping are two factors contributing to QoS degradation of flows. To
reduce blocking probability and maintain stable QoS provision, dynamic routing
that considers resource availability, namely QoS routing, is desired.

Once the explicit route is computed, a signaling protocol, either Label Dis-
tribution Protocol (CR-LDP) or RSVP extension (RSVP-TE), is responsible for
establishing forwarding state and reserve resources along the route. In addition,
LSR use these protocols to inform their peers of the label/FEC bindings they
have made. Forwarding Equivalence Class (FEC) is a set of packets which will
be forwarded in the same manner. Typically packets belonging to the same FEC
will follow the same path in the MPLS domain.

It is expected that both DiffServ and MPLS will be deployed in ISP’s net-
work. To interoperate these domains, EXP-LSP and Label-LSP models are pro-
posed [7]. EXP-LSP provides no more than eight Behavior Aggregates (BA)
classes but scale better. On the other hand, Label-LSP provides finer service
granularity but results in more state information.

Path cache [9] memorizes the Constraint-based routing decision and behaves
differently with different granularities. The coarse-grained granularity, such as
per-destination, all flows moving from different sources to a destination are
routed to the same outgoing link, has lower storage and computational overheads
but is only suitable for best-effort traffic. On the other hand, the fine-grained
granularity, such as per-flow, each individual flow is computed and routed in-
dependently, provides lower blocking probability for bandwidth requests, but
requires a huge number of states and high computational cost. In per-pair gran-
ularity, all traffic between a given source and destination, regardless of the num-
ber of flows, travels the same route. Note that in cases of explicit routing, per-
destination and per-pair routing decisions are identical.

This study investigates how the granularity of the routing decision affects
the scalability of computation or storage, and the blocking probability of a QoS
flow request. To reduce the blocking probability without sacrificing per-flow QoS
requirement, two routing mechanisms are proposed from the perspective of gran-
ularity. The Per_Pair_Flow scheme adds a per-pair cache (P-cache) and an over-
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flowed per-flow cache (O-cache) as routing cache. The flows that the paths of
P-cache cannot satisfy with the bandwidth requirement are routed individu-
ally and their routing decisions overflowed into the O-cache. The Per_Pair_Class
scheme aggregates flows into a number of forwarding classes. This scheme re-
duces the routing cache size and is suitable for MPLS networks, where packets
are labeled at edge routers and fast-forwarded in the core network.

The rest of this paper is organized as follows. Section 2 describes two on-
demand path computation heuristics which our study based on. Section 3 de-
scribes the overflowed cache Per_Pair_Flow scheme. Section 4 then describes
the Per_Pair_Class scheme, which uses a mark scheme to reduce cache size. Sub-
sequently, Sect. 5 presents a simulation study that compares several performance
metrics of various cache granularities, Finally, Sect. 6 presents conclusions.

2 Path Computation

WSP _Routing(F, s,d, b, D)
topology G(V, E); /* width b;; associate with e;; € E */
flow F; /* from s to d with req. b and D */
routing entry Sg;
/* set of tuple(length, width, path) from s to d */
shortest path o;
Begin
initialize Sg «— (;5, prune e;; if bij < b, Veij el
for hop-count h =1to H
Bs «— 00, Ds — 0
find all paths (s, ..., z,d) with h hops, and
Begin
update Dy < h
By «— Max{Min[Bg,bzad]}, Vx
o4 — o Ud
Sq < SaU(Dg, Ba,04)
End
if (Sq # ¢) pick path o4 with widest By, stop
endfor
End

Fig. 1. Widest-Shortest Path (WSP) Heuristic.

This paper assumes that link state based and explicit routing architecture
are used. Link state QoS routing protocols use reliable flooding to exchange
link state information, enabling all routers to construct the same Link State
Database (LSDB). Given complete topological information and the state of re-
source availability, each QOS-capable router finds the least costly path that still
satisfies the resource requirements of a flow. Two on-demand shortest path com-
putation heuristics are described as the basis in this study. QOSPF [10] uses the
Widest-Shortest Path (WSP) selection criterion. Figure 1 shows the algorithm
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to respond to the route query. Each routing entry of Sg = (DZ, Bg, Jf}) consists
of the shortest length D*, width B” and path ¢ to node d, with minimum hops
h.

This algorithm iteratively identifies the optimal (widest) paths from itself
(i.e. s) to any node d, in increasing order of hop-count h, with a maximum of
H hops, and where H can be either the value of diameter of G or can be set
explicitly. Afterwards, WSP picks the widest o of all possible shortest paths to
node d as the routing path with minimum hops.

CSP_Routing(F,s,d,b, D)
topology G(V, E);/* width b;; associate with e;; € E */
flow F; /* from s to d with req. b and D */
label L; /* set of labeled nodes */
shortest path o;

/* obtained by backtracking the inspected nodes */
Begin

1) prune e;; if b; < b,Ve;; € E

2) initialize L «— {s}, D; « ds;,Vi # s

3) find © ¢ L such that D, = Min,¢,[D;]

/* examine tentative nodes */

4) if D, > D, “path not found”, stop

5) L — LU{z}

6) if L =V, return(o) with length(o) = Dg, stop

7) update D; — Min[D;, Dy + dyi], Vi adjacent to z

8) go to 3)
End

Fig. 2. Constrained Shortest Path (CSP) Heuristic.

Another heuristic, Constrained Shortest Path (CSP), shown in Fig. 2, uses
“minimum delay with abundant bandwidth” as the selection criterion to find a
shortest path o for flow F. Step 1 eliminates all links that do not satisfy the
bandwidth requirement b. Next, the CSP simply finds a shortest path ¢ from
itself (i.e. s) to destination d, as in steps 2-8. Step 3 chooses a non-labeled node
2z with minimum length and « is labeled in step 5. Step 7 updates the length
metric for each adjacent node i. Meanwhile, CSP is terminated either in step 4,
as the length exceeds the threshold D before reaching destination d, or in step 6,
as all nodes are labeled. Consequently, CSP finds a QoS path, ¢ = s...d, such
that width(c) > b and length(c) < D, to satisfy the bandwidth requirement b
and length requirement D.

3 Cache with Per-Pair/Flow Granularity

This section introduces a routing scheme with per-pair/flow hybrid cache gran-
ularity. The architecture presented herein uses source routing and hop-by-hop
signaling procedure such as CR-LDP or RSVP-TE. Loop-free can be guaranteed
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in source routing and the signaling procedure prevents each packet of the flow
from carrying complete route information. Sets of labels distinguish destination
address, service class, forwarding path, and probably also privacy. In MPLS,
edge devices perform most of the processor-intensive work, performing applica-
tion recognition to identify flows and classify packets according to the network
policies.

Upon a flow request during the signaling phase, the path-query can be
through with by computing path on-demand, or extracting path from the cache.
When the query is successful, the source node initiates the hop-by-hop signaling
to setup forwarding state and destination node initiates bandwidth reservation
backward on each link in the path.

The routing path extracted from the cache could be misleading, i.e., flows
following a per-destination cache entry might not find sufficient resources along
the path, although there exist alternative paths with abundant resources. This
lack of resources is attributed to flows of the same source-destination (S-D) pair
are routed on the same path led by the cache entry, which is computed merely for
the first flow. Therefore, this path might not satisfy the bandwidth requirements
of subsequent flows. Notably, the blocking probability increases rapidly when a
link of the path becomes a bottleneck.

On the other hand, although no such misleading (assume no staleness of link
state) occur in the per-flow routing, flow state and routing cache size could be
enormous, ultimately resulting in poor scalability. Furthermore, due to the over-
heads of per-flow path computation, on-demand path finding is hardly feasible
in real networks (with high rate requests.) Therefore, path pre-computation is
implemented in [T0], which asynchronously compute feasible paths to destina-
tions.

The routing cache of this scheme is functionally divided into three parts,
a per-pair cache (P-cache), an overflowed per-flow cache (O-cache), and a per-
destination cache (D-cache). Shortest paths on the P-cache and the D-cache are
pre-computed at the system start-up or can be flushed and computed on-demand
under the network administration policy. Entry of the O-cache is created when
a request arrives and cannot find sufficient bandwidth on the path in P-cache.
By looking up the next-hop in the D-cache, best-effort traffic is forwarded as in
a non-QoS support OSPF router. QoS paths are extracted from the P-cache in
this scheme.

Figure 3 shows the Per_Pair_Flow scheme, is detailed as follows. When a
path query with multiple constraints is executed at the ingress LSR, lookup
the P-cache for routing information. If the lookup is a miss, it implies that no
routing path is stored for the particular request. Therefore, in this situation the
Per_Pair_Flow invokes the FindRouteLeastCost function to find a QoS path. If
the path o is found, this path is stored in the P-cache and the flow request F’
is sent through o explicitly. Otherwise, if no path can be found, the request is
blocked.

However, if the lookup of the P-cache is a hit, a resource availability check
must be made according to the latest link states to ensure the QoS of the flow.
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If the check is successful, the signaling message of F' is sent according to the P-
cache. Meanwhile, if the check fails, function FindRouteLeastCost is invoked to
find an alternative path based on the information in LSDB and on the Residual
Bandwidth Database (RBDB). If a QoS path ¢ is found, the path is stored in
the O-cache, i.e. overflowed to the O-cache and signaling of F' is sent through o.
Finally, if no path can be found, the flow is blocked.

Per_Pair_Flow(F,s,d,b, D)
flow F'; /* from s to d with req. b and D */
path o;
Begin
case miss(P-cache):
o «— FindRouteLeastCost(s,d,b, D)
if (o found)
insert(P-cache), label(F') & route(F') through o
else “path not found”
case o < hit(P-cache):
if (width(o) > b) and (delay(c) < D)
label(F') & route(F) through o
else /* overflow */
Begin
o «— FindRouteLeastCost(s,d,b, D)
if (o found)
insert(O-cache), label(F') & route(F) through o
else “path not found”
End
End

Fig. 3. Per_Pair_Flow Routing.

Function FindRouteLeastCost in Fig. 3 on-demand finds a QoS path using
WSP or CSP heuristics in Sect. 2. The link cost function in this computation
can be defined according to the needs of network administrators. For example,
hop counts, exponential cost [T1], or distance [T2] can be used as the link cost
metric in the computing function.

Assuming a flow arrival F' from s to d with requirement b, the probability of
overflowing the P-cache, namely 0, can be defined as § = Prob(width(c) < b),
where ¢ is the path between s and d held in the P-cache. Simulation results show
that € is between zero to 0.3 in a 100 nodes network, depending on the offered
load in the Per_Pair_Flow scheme. For example, 6 is 10% as offered load p=0.7,
if the forwarding capacity of the router is 100K flows, the Per_Pair_Flow scheme
can reduce the number of routing cache entries from 100K to 20K, including
P-cache and O-cache. Additionally, number of cache entries could be further
bounded by the scheme, Per_Pair_Class, presented in Sect. 4.
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4 Cache with Per-Pair/Class Granularity

This section presents another hybrid granularity scheme using a routing mark
as part of the label in MPLS. Herein, when a flow request arrives at an edge
router, it is routed to the nearly best path given the current network state, where
the “best” path is defined as the least costly feasible path. Flows between an
S-D pair are routed on several different paths and marked accordingly at the
source and edge routers. Notably, flows of the same routing path may require
different qualities of service. The core router in a MPLS domain uses the label
to determine which output port (interface) a packet should be forwarded to, and
to determine service class. Core devices expedite forwarding while enforcing QoS
levels assigned at the edge.

By limiting the number of routing marks, say to m, the routing algorithm can
route flows between each S-D pair along a limited number of paths. The route
pinning is enforced by stamping packets of the same flow with the same mark.
Rather than identifying every single flow, the forwarding process at intermediate
or core routers is simplified by merely checking the label. The size of the routing
cache is bounded to O(n?m), where n is the number of network nodes. Note
that if the Constraint-based routing is distributed at the edge nodes, this bound
reduce to O(nm).

Figure 4 illustrates the structure of the routing cache, which provides a max-
imum of m feasible routes per node pair. The first path entry LSP; can be
pre-computed, or the path information can be flushed and computed on-demand
under the network administration policy. Besides the path list of LSP, each path
entry includes the residual bandwidth (width), maximum delay (length), and
utilization (p). Information on the entry can be flushed by the management pol-
icy, for instance, refresh timeout or reference counts. Regarding labeling and
forwarding, the approach is scalable and suitable for the Differentiated Services
and MPLS networks.

sre, dst Lsp, 1 L LSP
s, d, T, width, |, delay,, p;; | ... T,
s, d, T, width,, delay,, Py | e e

Fig. 4. Routing Cache in the Per_Pair_Class Routing.

Figure 5 describes that upon a flow request F', the Per_Pair_Class algorithm
first attempts to extract the least costly feasible path 7 from the routing cache.
If the extraction is negative, the scheme attempts to compute the least costly
feasible path, termed o. If ¢ is found, Per_Pair_Class assigns a new mark to o,
inserts this new mark into the routing cache, and then labels/routes the flow
request F' explicitly through o. Meanwhile, if 7 is found and the path is only
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Per_Pair_Class(F, s, d, b, D)
flow F; /* from s to d with req. b and D */
cache entry I1(s,d);/* set of routing paths from s to d */
extracted path m;
computed path o;
Begin
initiate cost(NULL) < oo
extract m € II(s,d)
that cost(m) is the least & satisfy constraint
{ width(xw) > b, length(r) < D, ... }
case (7 not found):
o «— FindRouteLeastCost(s,d,b, D)
if (o not found) then “path not found”
insert/replace(o, I1(s,d)),
label(F') & route(F') through o
case (7 is found):
if (p(m) lightly utilized) then
label(F) & route(F) to m
endif
o «— FindRouteLeastCost(s,d,b, D)
if (o not found) then “path not found”
if (cost(c) < cost(m)) then /* o better */
insert/replace(o, II(s,d)),
label(F") & route(F') through o
else /* 7 better */
label(F) & route(F) to m
endif
End

Fig. 5. Per_Pair_Class Routing with Marks.

lightly utilized, the Per_Pair_Class marks the flow F' and routes it to path .
Otherwise the flow is blocked. If the utilization of path p(7) exceeds a pre-defined
threshold, the Per_Pair_Class can either route F' to a 7 held in the cache, or
route F' through a newly computed path o, whichever is least costly. Therefore,
traffic flows can be aggregated into the same forwarding class (FEC) and labeled
accordingly at the edge routers. Notably, flows of the same FEC may require
different service class. Consequently, flows between an S-D pair may be routed
on a maximum of m different paths, where m is the maximum number of routing
classes. In the Per_Pair_Class algorithm, function FindRouteLeastCost compute
the least cost path using the constrained shortest path or widest-shortest path
heuristics in Sect. 2.

5 Performance Evaluation

This section evaluates the performance of unicast QoS routing, and particularly
its sensitivity to various routing cache granularities. The performance of the
proposed Per_Pair_Flow and Per_Pair_Class schemes are evaluated.
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5.1 Network and Traffic Model

Simulations were run on 100-node random graphs based on the Waxman’s model
[13]. In this model, n nodes are randomly distributed over a rectangular coor-
dinate grid, and the distance between each pair of nodes is calculated with the
FEuclidean metric. Then, edges are introduced between pairs of nodes, u, v, with
a probability depending on the distance between u and v. The average degree of
nodes in these graphs is in the range [3.5, 5]. Each link is assumed to be STM-1
or OC-3 with 155Mbps.

The simulations herein assume that the token rate is used as the bandwidth
requirement which is the primary metric. Furthermore, this study assumes that
there are two types of QoS traffic, GS7 has a mean rate of 3 Mbps, while G.S; has
a mean rate of 1.5 Mbps. The flow arrival process is assumed to be independent at
each node, following a Poisson model. Flows are randomly destined to the else
nodes. The holding time of a flow is assumed to be exponentially distributed
with mean u. The mean holding time can be adapted to keep the offered load
at a constant. The link-states of adjacent links of a source router are updated
immediately while the states of other links are updated by periodically receiving
link state advertisements (LSAs).

5.2 Performance Metrics

From the perspective of cache granularity, this study expects to find QoS routing
techniques with a small blocking probability while maintaining scalable com-
putational costs and storage overheads. Thus, several performance metrics are
interesting here: (1) Request bandwidth blocking probability, P4, is defined as

> rejected_bandwidth
> rquest_bandwidth

Pyt is the routing blocking probability, defined as the probability that a request
is blocked due to no existing path with sufficient resources, regardless of cache
hit or miss. Ps;y denotes the signaling blocking possibility, namely the proba-
bility that a successfully routed flow gets rejected during the actual backward
reservation process, during the receiver-initiated reservation process of RSVP.
(2) Cache misleading probability, P;s1, is the probability of a query hit on the
routing cache but the reservation signaling being rejected due to insufficient
bandwidth. (3) Normalized routing cache size, or Negche, is the storage overhead
per flow for a caching scheme. (4) Normalized number of path computations, or
]\Nfcomp, is the number of path computations per flow in the simulated network.

Preq:

:Prout+Psig . (1)

5.3 Simulation Results

The simulation results are mainly to examine the behavior of the flows under
moderate traffic loading (e.g., p=0.7) where most of the blocking probabilities
would not go beyond 20%. Moreover, the 95% confidence interval lies within 5%
of the simulation average for all the statistics reported here.
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Blocking Probability. This experiment focuses on the effects of inaccurate
link-state information, due to their update periods, on the performance and
overheads of QoS routing. Figure 6 and 7 show the blocking probabilities, Py.qq,
on the 100-node random graph with an offered load p=0.7; the flow arrival
rate A=1; the mean holding time is adjusted to fix the offered load; the refresh
timeout of cache entry (flush)=100 units. As described in Sect. 2, CSP and WSP
heuristics are used. As expected, larger update periods basically increase flow
blocking. The larger update period results in the higher degree of inaccuracy
in the link-state, and more changes in network could be unnoticed. As links
approach saturated under the inaccuracy, link states and residual bandwidth
databases viewed from the source router are likely unchanged, might mistake
infeasible path as feasible. In that case, flows are blocked in signaling phase and
only admitted if other flows leave.

Tper-flov(

per-pair
0.14 |- per-pairfilow(
P

000
3333

per-flow(
per-pair(WS
per-pair/flow(WS
per-pair/class(WS

Blocking probability
Blocking probability

& per-flow(CSP) —o—

per-pair(C
per-pai/flow(CSP) —A— |

per-flow(
per-pair(W!

per-pair/flow(WSP) --a--

| per-pairlclass(WSP) v~

L I I L L
o 10 20 30 40 50 60 70 80 90 100 4 10 20 30 40 50 60 70 80 90 100

Link-state update period (unit) Link-state update period (unit)
WSP and CSP, p=0.7, =1, flush=100, b=3Mbps WSP and CSP, p=0.7, =1, flush=100, b=1.5Mbps

Fig.6. Blocking Probability with Fig.7. Blocking Probability with
Large Requirement. small Requirement.

However, blocking does not appear to grow even higher as the update period
goes beyond a critical value. Figure 7 shows results of the experiment as in
Fig. 6 but with the less bandwidth requirement and longer mean duration of
the flow. The climbing of the curves grow slower than those in Fig. 6. This
phenomenon suggests that to get more accurate network state and better QoS
routing performance, update period (namely the value MazLSInterval in OSPF)
should not go beyond the mean holding time of the admitted flows.

Per-pair routing gets higher blocking probability than other granularities.
Traffic in the pure per-pair network tend to form bottleneck links and is more
imbalanced than in other networks. Conversely, in the per-flow and per-pair/flow
networks, the traffic obtains a QoS path more flexibly and has more chances to
get alternative paths in large networks.

Intuitively, the finest granularity, per-flow scheme should result in the lowest
blocking probability. However, it is not always true in our experiments. In Fig. 6,
indeed, the per-flow scheme with CSP has the strongest path computation abil-
ity; it could find a feasible route for a flow under heavy load but with a longer
length. A flow with longer path utilizes more network resources than a flow with



150 Ying-Dar Lin, Nai-Bin Hsu, and Ren-Hung Hwang

shorter path. Though we limit the number of hops, namely H, of the selected
path to the network diameter, the per-flow scheme still admits as many flows as
it can. Eventually, network resources are exhausted, new incoming flow is only
admitted if other flows are terminated. That is why the per-flow scheme per-
forms similarly to or somewhat poor than the per-pair/flow and per-pair/class
schemes that we proposed.

In addition, with the large update periods, stale link-state information re-
duces the effectiveness of path computation of the per-flow scheme. It is possi-
bly to mistake infeasible path as feasible (optimistic-leading), or mistake feasible
path as infeasible (pessimistic-leading). Thus, it will get more signaling blocks
in former case and routing blocks in latter case; both are negative to the perfor-
mance of per-flow routing.

Obviously, by comparing the statistics of CSP with WSP, WSP heuristic per-
forms better than CSP in this experiment. WSP uses breadth-first search to find
multiple shortest paths and pick one with the widest bandwidth, and achieves
some degree of load balancing. On the other hand, traffic is more concentrated
in CSP-computation networks. To cope with this shortage in CSP, appropriate
link cost functions which consider the available bandwidth of the link should be
chosen. Studies with regarding to this issue can be found in [14].

This experiment also studies the effectiveness of different numbers of routing
classes, m, of Per_Pair_Class with per-pair/class granularity. Figure 8 illustrates
that when m = 1, all flows between the same S-D pair share the same path, just
the same as per-pair. When m = 2, the per-pair/class shows its most significant
improvement compared to m = 1, but there is very little improvement when
m > 3. The simulation results reveal that the Per_Pair_Class can yield a good
performance with only a very small number of routing alternatives.

Blocking probability
for per-pairiclass
Blocking probabilty

°

S

2

T

0.02 |- S-flow —o— |
Reflow —a—
#class=1 —0— S-pair —0—
0.02 | #class=2 —o— - R-pair —e—
#class=3 —A— S-pairfflow —A—

Holass=4 —v— R-pairfiow —a—
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Link-state update period (unit) Link-state update period (unit)
WSP, p=0.7, A=1, flush=100, b=3Mbps WSP, p=0.7, A=1, flush=100

Fig. 8. Blocking Probability of Per- Fig. 9. Routing Blocks vs. Signaling
Pair/Class. Blocks.

Misleading and Staleness. In our architecture, the path cache is used un-
der the link-state update protocol. Both cache-leading and staleness of network
state may cause misbehavior of routing schemes. Routing paths extracted from
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the cache could be optimistic-leading or pessimistic-leading that we mentioned
previously. The extracted path also could be misleading, that is, flows following
a misleading path might not find sufficient resources along the path, although
there exist alternative paths with abundant resources.

In Fig. 9, we have insight into the blocking probability, blocked either in
routing phase (prefix “R-”) or in signaling phase (prefix “S-”). Look at the
performance under accurate network state (i.e. period=0), the routing blocks
account for all blocked flow requests. As the update period getting larger, more
and more flows mistake an infeasible path as feasible path. Therefore, those flows
cannot reserve enough bandwidth in the signaling phase and will be blocked.
Situation of blocking shifting from routing to signaling phase is caused by the
staleness of network state. Rising (Ps;q) and falling (Pyoq:) curves of each scheme
cross over. The cross point is postponed in the per-pair cache scheme. As caching
mechanism usually does not reflect accurate network state immediately and thus
sensitivity of staleness is reduced.

Figure 10 shows the cache misleading probabilities due to caching, i.e.,

P,isi(scheme) = P,.q(scheme) — P,.q(per_flow), (2)

of various routing schemes. In case of no staleness of the network state, since the
per-flow routing requires path computation for every single flow, there is no mis-
leading, i.e., Pp;si(per-flow)=0, regardless of network load and size. Obviously,
the per-pair (or per-destination) scheme obtains the highest misleading from the
cache. On the other hand, the per-pair/flow and the per-pair/class have little
misleading probability. This is because when looking up the P-cache, if the fea-
sibility check fails due to insufficient residual bandwidth along the path held in
the P-cache, per-pair/flow and per-pair/class schemes will find another feasible
path for the flow. However, feasible path finding could fail due to some paths are
nearly exhausted and trunk reservation in [6] can slow down links from being
exhausted.
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Fig.10. Cache Misleading Probabil- Fig.11. Average Number of Cache
ity. Entries per Flow.
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Cache Size. Figure 11 gives the average number of cache entries for each single
flow, i.e. normalized Nigche. It indicates that the Negene of per-flow, per-pair,
and per-pair/class schemes remain nearly constant regardless of traffic loading.
On the other hand, ]\Nfcache of per-pair/flow increases as the traffic load increases.
Statistics in Fig. 11 can be verified by the storage complexities as follows.

The cache size of per-pair is bounded by (n — 1) with O(n?) complexity,
where n is the number of nodes. Metric ]Vmche(per—pair) is relative to the network
size and forwarding capacity. Assume the wire-speed router has the forwarding
capacity of 100K flows, N qche(per-pair) is near to 0.1. Similarly, cache of per-
pair/class is bounded by (n —1)?m and has a complexity of O(n?m), where m is
the number of classes. Negene(per-pair /class) is (n— 1)2m divided by the number
of forwarding flows.

Finally, ]Vmche(per—ﬂow)zl in Fig. 11, and thus, the cache size increases
dramatically as the number of flows increases in per-flow scheme, which disallows
it to scale well for large backbone networks. Compared to the per-flow, hybrid
granularity is used in the per-pair/flow and the per-pair/class schemes, both
significantly reducing the cache size to about 10% (in light load) to 20-40%
(in heavy load) without increasing the blocking probability, compared to the
per-flow in Fig. 7.

Number of Path Computations. Figure 12 compares the average number
of path computations per flow, i.e. normalized Ncopmp, of various schemes. This
metric primarily evaluates the computational cost. Note that in order to evaluate
the effect of granularity in QoS routing, the simulation only uses on-demand
WSP and CSP path computation heuristics. However, only plotting curves of
WSP are shown, statistics of CSP are almost the same as WSP. Obviously Fig. 12
and 13 have an upper bound, i.e. Neomp(per-flow)=1, and a lower bound, i.e.

Necomp(per-pair) which increases as the number of blocked flows increases. Note

that the Neomp(per-pair/flow) and ]\Nfcomp(per—pair /class) are quite influenced by
the refresh timeout of entry (i.e. flush).
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Figure 13 shows the number of path computations regarding to different flow
request rate within a specific twenty-four hours period. Statistics of the per-
flow, form the upper bound curve and the per-pair form the lower bound. The
per-pair/flow and the per-pair/class schemes are in between, and as the loading
increases they either increase and approach the upper bound, or decrease and
approach the lower bound. The upward-approaching routing schemes, whose
number of path computations is dominated by the number of flow request, in-
cluding per-flow and per-pair/flow schemes. On the other hand, the number of
path computations is dominated by its network size and connectivity, including
per-pair and per-pair/class schemes.

Figure 13 reveals that “caching” in the per-pair scheme, reduces number of
path computations as the loading increases. This is because there are sufficient
flows to relay and survive the life time of cache entry, and a greater percentage of
succeeding flow requests do not invoke path-computation. These requests simply
look up the cache to make routing decisions. On the other hand, in cases of
per-flow granularity, since every flow request requires path computation, the
number of path computations increases with the offered load. Notably, there is
an inflection point in the curve of per-pair/class. Multiple entries in the per-
pair/class cache lead to this phenomenon. The property of the basic per-pair
cache produces the concave plotting while the multiple entries produce the convex
plotting.

6 Conclusions

This study has investigated how granularity affects the Constraint-based rout-
ing in MPLS networks and has proposed hybrid granularity schemes to achieve
cost effective scalability. The Per_Pair_Flow scheme with per-pair/flow granu-
larity adds a P-cache (per-pair) and an O-cache (per-flow) as the routing cache,
and performs low blocking probability. The Per_Pair_Class scheme with per-
pair/class granularity groups the flows into several routing paths, thus allowing
packets to be label-forwarded with a bounded cache size.

Table 1. Summary of the Simulation Results.

Cache Compu. Storage
granularity = overhead overhead Blocking Misleading
Per-pair * * K * % K * *
Per-flow * * * kK * %
Per-pair/flow ok Hok * % K * % %
Per-pair/class  *x % * K * * K K * k%

* x x: good, xx:medium, *:poor
%' can be improved by using path pre-computation.
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Extensive simulations are run with various routing granularities and the re-
sults are summarized in Table 1. Per-pair cache routing has the worst blocking
probability because the coarser granularity limits the accuracy of the network
state. The per-pair/flow granularity strengthens the path-finding ability just as
the per-flow granularity does. Additionally, the per-pair/class granularity has
small blocking probability with a bounded routing cache. Therefore, this scheme
is suitable for the Constraint-based routing in the MPLS networks.
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