

On Event Reproduction Ratio in Stateless and Stateful

Replay of Real-World Traffic

Ying-Dar Lin, Chun-Nan Lu, Jose Miguel Sagastume, Jui-Tsun Hung, and Yuan-Cheng Lai

Abstract—Capturing and replaying network flows are

important for testing network devices. Replayed traffic should

reproduce effects similar to live traffic. This work presents

methods to measure the event reproduction ratio, and studies the

effectiveness of stateless and stateful traffic replayers based on the

events triggered by packets and connections. We use two

replayers, SocketReplay and Tcpreplay, and a networking device

supporting security services. SocketReplay is a stateful replayer

which keeps the state of a connection during replay, while

Tcpreplay is a stateless replayer that ignores the connection state.

Results indicate that SocketReplay replayed a smaller ratio of the

captured traffic and triggered fewer blocking events in

subsequent replay tests. Triggering blocking events denotes the

replayed traffic cannot fit the onsite context. SocketReplay only

replayed 38.74% of the captured TCP traffic, and resulted in an

effectiveness of 99.97% (0.00%) in passing (blocking) event ratio.

In contrast, Tcpreplay replayed 99.99% of the captured TCP

traffic, and resulted in an effectiveness of 99.73% (75.64%) in

passing (blocking) event ratio. The choice of a proper replayer

and the corresponding replay configuration should depend on the

contents of captured traffic and avoid to a significant drop of

event reproduction ratio and the effectiveness of replayers.

Index Terms—traffic replay, event reproduction ratio, replay

effectiveness

I. INTRODUCTION

HE testing of network devices has been a major focus on

the network research area. The goal is to create a range of

test scenarios similar to the scenarios experienced under live

deployment. The ultimate goal of network device testing is to

debug network device problems in a controlled and transparent

test bed that enables error reproducibility. One method for

network device testing is to generate or to replay traffic with

testing tools in order to check the behaviors of the devices

under test (DUTs).

The traffic that is used on network device testing can be

classified into Model-based and Trace-based. The former uses

mathematical models to generate artificial network traffic;

while the latter is based on real-world traffic captured from live

deployments. The tools that generate model-based traffic are

 Manuscript received November 07, 2013; revised January 08, 2014.

 Ying-Dar Lin and Chun-Nan Lu are with the Department of Computer

Science, National Chiao Tung University, Taiwan. E-mail: {ydlin,

cnlu}@cs.nctu.edu.tw.

 Jose Miguel Sagastume, and Jui-Tsun Hung are with the Department of

Computer Science, National Chiao Tung University, Taiwan. E-mail:

{josesagas, Jason.hung.sb}@gmail.com.

 Yuan-Cheng Lai is with the Department of Information Management,

National Taiwan University of Science and Technology, Taiwan. E-mail:

laiyc@cs.ntust.edu.tw.

not difficult to implement; however, they are limited by the

numerical properties found in the mathematical model. The

trace-based traffic is captured under real-world network

environment, thus it includes all properties found in live

deployment. However, it has the issues of storage overhead and

efficiency when it comes to trace-based traffic. Trace-based

traffic usually need more storage and take more time than

model-based traffic searching for specific traffic because the

latter can be generated based on some features.

A traffic replay tool can be either stateless or stateful. A

stateless replay tool replays captured network traces based on

timestamps or sequence order and does not modify the packets

in the traces. Therefore, the content of the replayed traffic is

verbatim to the content captured in the network traces.

Tcpreplay [1] is a particular stateless replayer. Since the traffic

replayed by a stateless replay tool is verbatim to the recorded

traces, a DUT that keeps track of the states of its network

connections (such as TCP streams) might not understand the

replayed traffic correctly.

On the other hand, a stateful replay tool modifies the content

of the network traces so as to adapt the test conditions of the

DUT, and would alter the content of subsequent packets in the

network traces based on the responses of the DUT. An example

of stateful replay tool is SocketReplay [2], which can mimic the

TCP/IP stack (including IP addresses and port numbers) and

replay payloads to maintain the TCP semantics.

A traffic replay tool is designed to replay the network traces

correctly and to reproduce the same events occurred in live

traffic such as packet blocking, packet modification, and log

triggering. The traffic replayed by a replay tool must be

understood by the DUT and must be able to represent the onsite

context while the live traffic was captured. Therefore, we

design a metric, called effectiveness, to measure the similarity

between the events shown in live traffic and replayed traffic.

Specifically, the effectiveness is based on the event

reproduction ratio on a DUT between live traffic and replayed

traffic. It is challenging to directly calculate the effectiveness

due to the complexity of real-world traffic and different

response mechanisms of distinct types of DUTs. In later

experiments, we select Tcpreplay and SocketReplay to be the

representatives of the stateless and stateful replayers,

respectively, and evaluate their performances based on live

traffic and replayed traffic. Tcpreplay is able to classify traffic

as client or server, rewrite packet header information and replay

traffic back onto the network and through other networking

devices, such as switches and routers. SocketReplay supports

loss recovery, which recovers incomplete connections to replay

T

212 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 4, DECEMBER 2013

1845-6421/12/8313 © 2013 CCIS

mailto:cnlu%7d@cs.nctu.edu.tw
mailto:laiyc@cs.ntust.edu.tw

a complete TCP stream.

This work presents methods to measure the event

reproduction ratio, and studies the effectiveness of stateless and

stateful traffic replayers based on the events triggered by

packets and connections. Given a captured live traffic and its

corresponding triggered logs of five types of events, including

blocking events, modifying events, passing events, logging

events, and non-logging events. The captured live traffic is

thenreplayed by a replay tool, which would trigger another

corresponding logs based on the five types of events. The

effectiveness is measured by comparing the number of events

occurred in live traffic with that in replayed traffic.

The rest of this paper is organized as follows. In Section II,

we survey relevant replay tools and projects. Section III

describes the definitions, terminologies, and the problem

statements. Section IV presents the issues of event reproduction

ratios and the proposed measurement method. Section V

evaluates the replay tools using our metric. Finally, we

conclude in Section VI.

II. RELATED WORK

In order to accurately replay the traffic so that it is recognized

as valid network traffic by a DUT, a replay tool must be able to

send out the correct packets in the correct order and direction to

test the DUT. A number of projects developed replay tools or

plug-ins to solve the problems of traffic replay, and the

developed tools can be divided into two types, namely stateless

and stateful, based on whether the replayer modifies and tracks

the replayed traffic or not.

A. Stateless Replay

Stateless replay means that the replay tool does not modify

the TCP sequence numbers or acknowledgement numbers to

reflect the states of the TCP streams. For example, Tcpreplay

simply replays the packets of the captured traces in the order of

the packet timestamps at a specified rate. Tcpreplay does not

actively alter the information of the transport layer header and

payload of a packet. Tomahawk [5] is another stateless replayer

and is designed to test the throughput and blocking capability of

network-based intrusion prevention systems (NIPS). Both

Tcpreplay and Tomahawk divide the captured traffic into traffic

originating from the client and traffic originating from the

server and replay the trace between two network interfaces.

B. Stateful Replay

Some replayers can maintain the states of the network layer

and those of the transport layer during replay. SocketReplay

supports stateful replay in the network and transport layers

because many DUTs, including NAT devices, proxies, and

security appliances, may modify transport layer headers.

SocketReplay could update the response states to prevent these

DUTs from replaying blocked connections.

Each traffic replayer developed distinct methods to measure

its own effectiveness. TCPopera [3] uses four heuristics to

follow the TCP/IP states and calculates the number of replayed

traffic flows using statistical methods based on short-term and

long-term profiles, the number of packet reorderings and

session duration. WirelessReplay [4] uses the connection states

defined in IEEE 802.11 protocol to be representative of

different events and computes the reproduction rate of the

events in the replayed traffic. SocketReplay measures the

effectiveness using the reproduction rate of triggered attack

sessions on a security appliance appeared in the replayed

traffic.

Monkey [6] replays web application traffic by emulating the

TCP stack to reproduce network conditions. Monkey infers

delays caused by the client, the applications, the server, and the

network in each captured flow and replays each flow according

to its inferences. Although the work in [7, 8] support traffic

replay at the application layer, they fail to replay traffic

captured from a large network.

III. PROBLEM STATEMENT

In this section we describe the details of our framework, the

terminology definitions, and our target problems.

A. Framework

(a) The framework of capturing live traffic

(b) The framework of capturing replayed traffic

(c) Live traffic passing through a DUT

Fig. 1. Frameworks of capturing live and replayed traffic

Y-D. LIN et al.: ON EVENT REPRODUCTION RATIO IN STATELESS AND STATEFUL REPLAY 213

Our frameworks are illustrated in Fig. 1. Fig. 1(a) and Fig.

1(b) are the frameworks used to capture live traffic and

replayed traffic, respectively. The frameworks have four major

components, namely a DUT, a traffic generator (TG), a traffic

mirror (TM), and a traffic recorder (TR). The DUT can be a

router, a firewall, or a proxy. TG can be the Internet, a local

network, or a traffic replay tool that can generate or include

network traffic inside. TM is a layer-2 switch, and TR is a

server that captures live and replayed traversing traffic.

Furthermore, TR also records live logs and responses from the

DUT during replay. Fig. 1(c) focuses on the two interfaces of

the DUT.

In Fig. 1(a), the DUT works in in-line mode between the

local network and the Internet. TG here is the live traffic

between the Internet and the local network. Two instances of

TM, before and after the DUT in the link, are used to duplicate

the input and the output traffic to the TR, which connects and

monitors the status of the DUT. In Fig. 1(b), TG is replaced

with a traffic replay tool to send out the captured packet traces.

During replay, the TM duplicates all traffic traversing the DUT;

the TG then transfers the duplicate to the TR. Afterwards, we

parse and analyze the two logs separately obtained from the two

frameworks to evaluate the effectiveness of the traffic replay

tool.

B. Terminologies Definitions

A term event is defined as a log of how a packet or

connection with some attributes is processed while traversing a

networking device. For packet events, there are two specific

attributes: blocking (b) and modifying (m). If a packet is

blocked, a blocking event is logged; if a packet is not blocked

and not modified, a passing event is logged; if a packet is

modified but not blocked, a modifying event is logged. Packets

that are neither blocked nor modified are identified as events

with passing, a non-specific attribute. For a connection, it may

or may not trigger a log while traversing a networking device.

Once a connection triggers a log, a specific event with a logged

attribute is recorded, which is a logging event. If a connection

does not trigger a log, the connection is identified as a

non-specific event with a non-logged attribute, which is a

non-logging event. Therefore, there are a total of five types of

event attributes that can be derived: (1) blocking event; (2)

modifying event; (3) passing event; (4) logging event; and (5)

non-logging event. For a connection, if it triggers a log on the

DUT, a logging event is marked with the connection;

otherwise, a non-logging event is marked. Different types of

DUTs may have distinct things of interest. Whenever such

things are found, the DUTs will generate corresponding logs.

For an IDS or IDP, it is important whether a pre-defined pattern

appeared in the packet payload or not; for a firewall, it is vital

whether an IP address on the blacklist fails to transfer packets

through the firewall or not.

Considering or excluding the logs would not affect the

accuracy of the framework and the metrics proposed in this

work. This work pays attention to the traffic replay test on

network devices. If a log is generated by the DUT during replay

test, a logging event can be took into consideration about the

event reproduction effectiveness; if a log is not generated by the

DUT or it is not important during replay test, the logging event

can be ignored or regarded as non-logging events. Traffic

replaying test can be used to test network devices which are

designed to handle packets passing by or passing through.

Therefore, there are individual triggered events for all packets

and connections in live and replayed traffic, which helps our

later analysis on effectiveness.

In this way, both live traffic and replayed traffic trigger a

number of events during replay. In order to compute

effectiveness, some related terminologies are defined as

follows. TL and TR refer to the live traffic and the replayed

traffic, respectively. TL and TR may trigger events with blocked

(b), modified (m) and logged (l) attributes. Events triggered in

TR are compared with those triggered in TL, and the outcomes

can be classified into true positive (eTP), true negative (eTN),

false positive (eFP), and false negative (eFN). Tabularized

relations between truth and falseness of event reproduction are

shown in Table I.

With respect to each attribute, the variable |eTP| is the number

of events with one type of attributes in the live traffic that are

reproduced in the replayed traffic; |eFN| is the number of events

with the same type of attributes that do appear in the live traffic,

but are not reproduced in the replayed traffic; |eTN| is the number

of events without the specific attribute in the live traffic but are

reproduced with that attribute in the replayed traffic; |eFP| is the

number of events such that a specific attribute is marked neither

in the replayed traffic nor in the live traffic.
TABLE I.

THE TRUTH AND FALSENESS OF EVENT REPRODUCTION

WITH SPECIFIC ATTRIBUTE
Type / Traffic Live Replayed Comparison outcome

Event with specific

attribute

1 1 eTP

1 0 eFN

Event without specific

attribute

0 0 eTN

0 1 eFP

In Table I, “1” signifies an event occurred with a specific

attribute, and “0” signifies an event occurred without any

specific attributes. An event that was unblocked, unmodified,

or non-logged would be identified as an event without specific

attribute. If an event is reproduced successfully, the outcome

should be either eTP or eTN. Otherwise, the outcome should be

eFN or eFP.

We introduce three metrics to measure the effectiveness of a

replay tool: (1) the event reproduction ratio; (2) the

effectiveness of event reproduction; and (3) the consistency

ratio.

At the beginning of this section, we define five types of event

attributes to represent five possible outcomes when an event

occurs at a DUT. Therefore, the event reproduction ratio can be

obtained by the combination of the events with specific

attributes and those with non-specific attributes, which include

blocking reproduction ratio (br), modifying reproduction ratio

(mr), logging reproduction ratio (lr), passing reproduction ratio

(pr), and non-logging reproduction ratio (nlr). Equation 1,

1
()

100%

n L R

i ii
E E

Reproduction ratio
n

 (1)

214 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 4, DECEMBER 2013

is used to compute the event reproduction ratio for br, mr, lr, pr,

and nlr, where ┓is the negation operator; ⊕, the xor operation;
L

iE , the i-th event in the live traffic; R

iE , the event

corresponding to L

iE in the replayed traffic; and n, the total

number of packet events or connection events of a network

trace.

During replay, an event would be marked as having specific

or non-specific attribute by a DUT. In order to describe the

effectiveness of reproduction of events with specific and

non-specific attributes separately, two equations are designed

to compute the effectiveness as | |
100%

| | | |

TP

TP FN

e
TP Rate

e e

 (2)

for the events with specific attributes and

| |
100%

| | | |

TN

TN FP

e
TN Rate

e e

 (3) for the events with non-specific

attributes.

For each connection event in the live traffic, it is crucial that

the connection can be reproduced in the replayed traffic. Thus,

we define consistency to refer to the condition that a connection

in a replayed trace has the same number of packets as that of its

corresponding connection in the original live traffic. Otherwise,

the connection is regarded as inconsistent. Duplicated packets

are not taken into account. The degree of consistency of a

replayed trace can be measured by

1 100%

n

ii
c

consistency ratio
n

 , where ci is the i-th consistent

connection, and n is the total number of replayed connections.

The binary value ci can be either 0 (inconsistent) or 1

(consistent).

Besides, in order to compare the results from different

aspects, several metrics are defined. To measure the ratio of

replayed traffic, a term Replayed Traffic Ratio was defined as

| |
100%

| |

R

L

T
Replayed Traffic Ratio

T
 , where |TR| is the number of

replayed packets and |TL| is the number of captured packets.

To measure the ratios of the occurrence of live events and

replay events for a specific attribute, two terms Live Event

Ratio and Replay Event Ratio were defined as

| | | | | |
100%

| | | | | | | | | | | |

TP FN LP

TP FP TN FN LP LN

e e e
Live Event Ratio

e e e e e e

and

| e | | e | | e |
100%

| e | | e | | e | | e | | e | | e |

TP FP RP

TP FP TN FN LP LN

Replay Event Ratio

,

where |eLP| and |eLN| are the number of events with and without

one type of attribute only in live traffic, and |eRP| and |eRN| are

the number of events with and without one type of attribute

only in replayed traffic. In the ideal case, |eLP| should be equal to

|eRP| and |eLN| should be equal to |eRN|; however, in most cases,

they are different. Therefore, we separate the notations of the

events triggered in live traffic and triggered in replayed traffic

in order to avoid confusion.

To measure the ratio of the logs generated, a term Logging

Event Ratio was defined as

| |
100%

| |

logs
Logging Event Ratio

connections
 , where |logs| is the

number of logs generated during the process of capturing TL or

TR and |connections| is the number of TCP connections and

UDP pseudo connections for TL or TR.

C. Problem Statement

With the help of the three equations, namely Reproduction

ratio (1), TP_Rate (2) and TN_Rate (3) defined in the previous

subsection, the problem of measuring the effectiveness of a

replay tool can be defined as follows.

During a test for a networking device, live and replayed

traffic separately produce a sequence of live and replayed

events, EL and ER, respectively. If the value of the i-th event of

EL or ER is marked as 0, it means that the event does not have

any specific attributes. On the other hand, if the value of an

event is marked as 1, it means that the event has one of the

specific attributes, namely blocking, modifying, or logging.

Given a captured live traffic TL and its corresponding

triggered logs, we mark a sequence of events EL with various

attributes, such as blocking events EL,b, modifying events EL,m,

logging events EL,l, or non-specific events. The captured traffic

TL is then replayed by a replay tool, which may trigger another

sequence of events ER with various attributes, such as blocking

events ER,b, modifying events ER,m, logging events ER,l, or

non-specific events. For a successful replay test, ER should be

as consistent to EL as possible. The consistency can be

quantified by the consistency ratio of replayed traffic

mentioned above.

Therefore, the objectives of this work can be formally

described as: (1) to measure the event reproduction ratio; and (2)

to compute the effectiveness of the event reproduction with

specific or non-specific attributes in the replayed traffic TR.

IV. EFFECTIVENESS OF REPLAYED TRAFFIC

There are three challenging issues in comparing events

between the live and the replayed traffic: (1) issue on network

behaviors; (2) issue on captured traffic; and (3) issue on traffic

identification. We detail these issues in subsection A, and

propose a solution to measure the effectiveness of replayed

traffic in subsection B.

A. Event Comparison Issues

Issue on network behaviors. The behavior of a connection

or an activity captured in TL may affect the completeness of the

captured traffic. For example, if an event happens in live traffic,

such as a packet loss, receiving a duplicate packet, or receiving

an out-of-order packet, it would be challenging to reproduce the

event in the replayed traffic because of missed or blocked

packets/connections.

Issue on captured traffic. A DUT might alter its traversing

traffic, which in turn affects the consistency of the replayed

traffic; thus it is better to capture the live traffic right before it

reaches the DUT to avoid this inconsistency. If we capture the

traffic after it has traversed the DUT, the captured traffic may

not be able to reproduce the same sequence of events as the live

traffic because some packets are blocked or modified by the

DUT.

Y-D. LIN et al.: ON EVENT REPRODUCTION RATIO IN STATELESS AND STATEFUL REPLAY 215

Issue on traffic identification. In order to analyze and

verify the correctness of marked event attributes, it is necessary

to have the knowledge of the content of the captured traffic.

Only when the characteristics of the captured traffic are known

clearly, can the outcomes of the effectiveness of replayed traffic

be confirmed.

B. Solutions to Measuring the Effectiveness of Replayed

Traffic

In order to measure the effectiveness of replayed traffic, we

proposed a four-phase solution, including (1) capture network

traffic, (2) process live and replayed traffic, (3) identify

blocking and modifying events, and (4) compare the two

sequences of events EL and ER by computing the event

reproduction ratios and the effectiveness. Fig. 1(c) illustrates an

example of live traffic passing through a DUT and each phase is

described as follows.

Capture traffic. There is one pair of live traffic flows on

each of the client side and the server side: L

cT and L

sT ,

respectively. Flow ,L b

cT is the flow initiated from a client to the

DUT, flow ,L a

cT is the flow initiated from the DUT to the client,

flow ,L b

sT is the flow initiated from a server to the DUT, and

flow ,L a

sT is the flow initiated from the DUT to the server.

TL and TR are captured, respectively, and a set of live logs LL

from the live traffic and a set of replay logs LR from the

replayed traffic are also recorded. First, the live traffic traces

(L

cT and L

sT) and the logs (LL) are captured and recorded.

Second, the traffic trace L

cT is split into two sub-traces based

on the source and destination IP addresses, which are ,L b

cT and

,L a

cT . In the same way, the trace L

sT is also split into two parts,

namely ,L b

sT and ,L a

sT . Next, the two traces, ,L b

cT and ,L b

sT , are

merged into a new trace that is not processed by the DUT. The

steps mentioned here are also applied to the replay test, and the

replayed traffic traces ,R

cT , ,R

sT , ,R

cT , and ,R

sT are obtained

for further event reproduction analysis. The roles of flow
,R

cT

and flow
,L b

cT are similar except the former is used in replayed

traffic and the latter is used in live traffic. The relationship

between
,R

cT
and

,L a

cT ,
,R

sT
and

,L a

sT , and
,R

sT
and

,L b

sT are the

same cases.

Process live and replayed traffic. The traces ,L

cT , ,L

sT ,

,L

sT , ,L

cT , ,R

cT , ,R

sT , ,R

sT , and ,R

cT , are further processed

into corresponding sets of connections, ,L

cC , ,L

sC , ,L

sC ,

,L

cC , ,R

cC , ,R

sC , ,R

sC , and ,R

cC . The connections are

identified by a five-tuple {Src IP, Dst IP, Src Port, Dst Port,

Proto}, and each packet within each connection is identified by

its IP identification number, TCP sequence number, and packet

payload. We use these connection sets because the packets

within these connections haven’t been modified or blocked by a

DUT. Therefore, we can use them to compare all the events

produced by the live and the replayed traffic.

Suppose EL (ER) is generated by a live (replayed) traffic trace

with a corresponding log LL (LR). The pair of connections (,L

cC ,

,L

sC) is used to create a sequence of live events E
L,b

 and E
L,m

.

The pair of connections (,R

cC , ,R

sC) is used to create a

sequence of replayed events ER,b and ER,m. Packets within the

above pairs of connections are treated as packet events. Logs

are compared against each other to generate the connection

events. Each entry on LL and LR is mapped to a connection event,

associated with its corresponding connection. Connections that

are not registered in LL or LR are taken as connection events

with non-specific attribute, i.e. events with non-logged

attribute.

In order to log packets in the specific and regular traffic, the

anomaly-based rules and the signature-based rules [10] are

invoked. Signature-based logging events could be found in all

three replay configurations, while few anomaly-based logging

events are found and triggered.

Compare packets within pairs of connections (,L

cC ,

,L

cC), (,R

cC , ,R

cC), (,L

sC , ,L

sC), and (,R

sC , ,R

sC) to

identify blocked and modified packets. This information is

used to assign modifying and blocking events. The packets that

are not logged in the result are treated as passing events.

Compare the sequences of events E
L,b

, E
L,m

, E
L,l

, E
R,b

, E
R,m

,

and E
R,l

 to compute the event reproduction ratios and the

effectiveness of the replayed traffic. The event orders in the

sets of EL must be in the same order as that in the set of ER. The

order of the event sets ensures the correctness of the event

comparison between a live traffic trace and a corresponding

replayed traffic trace. The packet events are ordered based on

the TCP sequence number and the IP address. Connection

events are not required to be in order for computing the

percentage of event reproduction because they are compared

against each other using the 5-tuple information of a packet. If

the replayed traffic is different from the live traffic, we use

identifiers which link the live and the replayed traffic to

compare events. The identifiers show the changes in the fields

of live traffic packets, such as IP address and port numbers.

V. EXPERIMENTS AND RESULTS

We use SocketReplay and Tcpreplay to evaluate the

effectiveness of stateless and stateful traffic replay tools.

ZyWAll USG1000 with installed services of anomaly

detection, intrusion detection/prevention, and firewall was used

as the DUT.

A. Experiment Settings

The test bed on Fig. 1(a) was configured to capture TL. The

same procedure was also done for the replayed traffic using the

test bed in Fig. 1(b). It is important to simultaneously capture
L

cT and L

sT because they should contain identical packets

except those blocked by the DUT. The size of each packet

captured on the traffic recorder (TR) was restricted to be less

than 24,000 bytes to avoid possible packet loss caused by

SocketReplay. Before starting to replay traffic, the traffic traces

were padded with zeroes to fill any missing bytes. Without

216 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 4, DECEMBER 2013

padding, a DUT would automatically block the packets for

having incorrect size in the payload field. A DUT has three

types of actions when it encounters malicious traffic: (1) it

rejects the connections containing malicious contents, (2) it

blocks some packets containing malicious contents, and (3) it

still forwards the packets containing malicious contents. In our

experiments, Tcpreplay was configured to invoke the pcap

pre-processor, Tcpprep [9], to create a cache file, which is used

to split traffic into two sides, one network that contains the

hosts and the other network that do not.

In fact, if we use Tcpreplay to replay traffic with two

network interfaces, Tcpprep determines which interface from

each packet will initiate. Tcpprep supports multiple modes of

replay operation, and two of the modes used in our experiments

were bridge mode and the mode of IPv4/v6 matching Classless

Inter-Domain Routing (CIDR) as defined in RFC 4632 [11]. In

bridge mode, Tcpprep parses a packet trace and keeps track

each instance a host either behaves like a client or like a server.

The traffic in the client side is defined as “Sending the traffic

contains the following messages.” The traffic in the server side

is defined as “Receiving and responding to the incoming

messages.” In CIDR mode, a user can specify, in CIDR

notation, one or more networks that contain hosts. Then, the

traffic can be split into two different sides, one network that

contains the hosts and the other network that do not.

B. Data Analysis

TABLE II. RELATED EXPERIMENT STATISTICS
A. THE PROFILE OF PACKET TRACES

 Live traffic SoccketReplay traffic

Type
,L

cT

,L

cT

,L

sT

,L

sT

,R

cT

,R

cT

,R

sT

,R

sT

File Size

(MB)
3.9 7.2 7.4 3.8 2.8 4.9 4.9 2.8

Number

of packets
33407 29420 3273 33143 19370 8087 8093 19374

Number

of TCP

connec-
tions

7287 7291 8861 7286 462 462 462 462

Number

of UDP

connec-
tions

3628 2183 2174 3608 11410 499 499 11410

 Tcpreplay traffic

(bridge mode)

Tcpreplay traffic

 (CIDR mode)

Type
,R

cT

,R

cT

,R

sT

,R

sT

,R

cT

,R

cT

,R

sT

,R

sT

File Size

(MB)
3.9 6.9 7.3 3.6 4.9 7.9 8.4 4.4

Number

of packets
34537 32017 32503 33743 44905 39952 44105 42064

Number

of TCP

connec-

tions

677 613 685 599 7287 7272 8858 5776

Number

of UDP

connec-

tions

2481 2178 2179 2479 3628 2172 2175 3608

B. PROFILES OF THE TWO TYPES OF TRAFFIC

Fields Specific traffic Regular traffic

Number of TCP connections 8870 5960

% of TCP closed connections

with FIN
6.61% 89.45%

% of TCP closed connections

with RST
75.85% 3.27%

% of TCP unclosed

connections
17.54% 7.28%

Number of UDP pseudo

connections
3632 5560

C. THE STATISTICS OF REPRODUCED EVENTS

 Blocking Modifying

Replayer Tcpreplay SocketReplay Tcpreplay SocketReplay

|eTP| 38 0 1 5

|eFP| 202 3 0 0

|eTN| 13299 12466 13662 12553

|eFN| 118 84 0 0

|eLP| 168 236 13 9

|eLN| 16516 17548 16852 17884

|eRP| 0 3 0 0

|eRN| 5 513 0 515

D. THE STATISTICS OF CONNECTIONS AND RELATED

LOGS OF THE LIVE AND REPLAYED TRAFFIC

Traffic information /

Traffic direction
Client Server Server Client

Number of live

connections
7281 7291

Number of LL
 206

Number of replayed

connection
599 612

Number of LR
 57

Two types of traffic were used in our experiment. One type

of traffic containing malicious activities, called specific traffic

was generated from several security websites [12, 13, 14, 15,

16]. The other type of traffic, namely regular traffic was

captured from the National Chiao Tung University. For packet

events we only compared the TCP traffic because there’s no

state involved in UDP traffic and therefore is not applicable for

SocketReplay. For connection events we use logs originated

from TCP traffic or UDP traffic.

We profile and calculate separate traces and tabulate the

results in Table II. Table II (A) gives the profiles of the packet

traces that were captured for our experiments, and Table II (B)

compares the profiles of the specific traffic and the regular

traffic based on the number of connections, the way how a

connection is terminated, and the number of TCP and UDP

pseudo connections. Fig. 2 illustrates the comparison results of

the metric Replayed Traffic Ratio.

Fig. 2. The ratio of replayed TCP traffic

For regular traffic, the ratios of replayed traffic of these three

types of configurations are all over 80%, namely 81.10%,

96.24%, and 90.18%, respectively. For specific traffic

containing malicious contents, the differences of the ratios of

replayed traffic were great, namely 44.33%, 99.99%, and

38.74%, respectively.

For Tcpreplay using bridge mode, the replay tool behaved

either like a client or like a server and simply sent out the traffic

solely based on the packet timestamps. Therefore, some packets

Y-D. LIN et al.: ON EVENT REPRODUCTION RATIO IN STATELESS AND STATEFUL REPLAY 217

were blocked or discarded by a DUT because they didn’t fit the

onsite context, which resulted in a poor replayed traffic ratio.

For SocketReplay, although it can recover incomplete TCP

connections by inserting dummy bytes or packets, it failed to

recover the traffic because some of the lost packets were critical

to trigger connection events. For Tcpreplay using CIDR mode,

the ratio of replayed traffic was high because it could modify

the IP addresses of packets and successfully replay them to

traverse the DUT.

Table II (C) shows the results of the number of reproduced

events defined in Table I, and Table II (D) shows the statistics

of connections and related logs of the live and the replayed

traffic. The replayed traffic was obtained from using Tcpreplay

using bridge mode.

C. The Ratio of Events with Various Attributes on Live and

Replayed Traffic

In this experiment, the occurrence ratios of events in TL and

TR are calculated using regular and specific traffic based on the

three metrics, namely Live Event Ratio, Replay Event Ratio,

and Logging Event Ratio. We use SocketReplay and Tcpreplay

to generate the replayed traffic. We then calculate the

occurrence ratios of blocking, modifying, passing, logging, and

non-logging events for both the live and the replayed traffic.

Fig. 3 shows our results.

Fig. 3 yields several interesting observations: (1) in both

types of traffic, the ratios of passing events are the highest

among the five types of event attributes; (2) the ratio of

blocking events in the traffic generated by Tcpreplay is higher

than that in the live traffic; (3) the ratio of modifying events in

the replayed traffic generated by replay tools is lower than that

in the live traffic except the ratio of events generated by

Tcpreplay using CIDR mode with regular traffic; (4) the ratio of

logging events in the traffic generated by Tcpreplay is higher

than that in the live traffic; with the ratio of logging events in

the traffic generated by SocketReplay being the one exception

that yields lower ratio of logging events than that in the live

traffic.

(a) Specific traffic

(b) Regular traffic

Fig. 3. The occurrence ratios of events for TL
 and TR

The possible reasons are described as follows. For regular

traffic, the ratio of blocking events in Tcpreplay traffic is high

because Tcpreplay replayed traffic only based on the

timestamps and the connection states of the replayed traffic

does not necessarily conform to the TCP protocol (e.g.,

Tcpreplay is unable to synchronize SYN-ACKs to create valid

TCP sessions); whereas the ratio of blocking events in

SocketReplay traffic is low because SocketReplay keeps the

connection states. For specific traffic, packets having malicious

patterns in the packet payload or having incorrect contents in

the packet header would trigger modifying events. Each packet

of the traffic replayed by Tcpreplay using CIDR mode triggers

a modifying event because the header must be modified;

however, only packets with malicious contents trigger

modifying events when replaying traffic using Tcpreplay in

bridge mode. The modifying events of packets with incorrect

header were not triggered. Similarly, each packet with

malicious pattern triggers a modifying event when replayed by

SocketReplay; however, packets with incorrect contents in the

packet header do not trigger modifying events. The modifying

events do not occur in regular traffic on the live traffic platform,

but they might be triggered in replayed traffic platform

(0.0001% of Tcpreplay events using CIDR mode) because of

malformed packets by the DUTs.

D. Replayed Traffic Effectiveness

In this experiment, the event reproduction ratios for the

traffic replayed by SocketReplay and Tcpreplay are compared

and discussed. We calculate the results using Equation 2 and 3.

Only traffic of high consistency are included to evaluate the

event reproduction ratio. The degree of consistency is

calculated based on the consistency ratio metric. Fig. 4

illustrates the consistency ratios for the traffic replayed by

SocketReplay, by Tcpreplay using bridge mode, and by

Tcpreplay using CIDR mode, respectively. The traffic replayed

by Tcpreplay using CIDR mode had higher ratios in both

specific and regular traffic.

Fig. 4. The consistency ratios of three replay configurations

SocketReplay seeks to mimic the hosts to generate traffic

without breaking protocol semantics, and seeks to reconstruct

TCP connections during replay, and these properties causes the

traffic replayed by SocketReplay to be inconsistent with the

live traffic. The traffic replayed by Tcpreplay also incurs

inconsistencies because Tcpreplay would remove the

acknowledgement packets, such as TCP keep-alive messages,

from the client side of the replayed traffic, and would randomly

remove duplicate packets and FIN packets.

Fig. 5 illustrates the combination of event reproduction ratios

218 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 4, DECEMBER 2013

of the three replay configurations for specific and non-specific

events. The event reproduction ratios of the combination of

modifying and non-modifying events for both types of traffic

are all 100%. The reproduction ratios of blocking and

non-blocking events of the three configurations were close.

However, the reproduction ratios of the combination of logging

and non-logging events were different. The reproduction ratios

of Tcpreplay using CIDR mode in both types of traffic were

higher than the other two replay configurations; this is because

Tcpreplay using CIDR mode could emulate the interaction

between a client and a server and hence generates more

complete logs.

(a) Specific traffic

(b) Regular traffic

Fig. 5. The event reproduction ratios for specific and regular traffic

Fig. 6 shows the effectiveness of replayers for blocking and

non-blocking events; the effectiveness is derived from the

results of True Negative (TN), True Positive (TP), False

Negative (FN), and False Positive (FP). Neither the specific nor

the regular traffic replayed by SocketReplay triggers TP. The

TP rates yielded by Tcpreplay using bridge mode and using

CIDR mode are 38.14% and 75.64% for specific traffic and

42.86% and 50.70% for regular traffic, respectively. The TP

rate yielded by Tcpreplay using CIDR mode is higher than that

yielded by using bridge mode.

(a) Specific traffic

(b) Regular traffic

Fig. 6. The effectiveness of blocking and non-blocking events

In the preprocessing phase, SocketReplay removes packets

that bear TCP sequence numbers greater than or equal to the

FIN packet within a connection. Blocked packets which are

dropped by a DUT or a destination host in the live traffic are

eliminated in this stage as well. Therefore, the TP rate of

blocking events of the replayed traffic by SocketReplay is 0%.

The TP rate of blocking events generated by Tcpreplay using

CIDR mode was higher than that generated by Tcpreplay using

bridge mode because the replayed TCP traffic ratio of the

former was higher than the latter. In other words, the ratio of

replayed traffic directly impacts the ratio of event reproduction.

Packets blocked in live traffic cannot be reproduced in

replayed traffic, resulting in differences between the live and

the replayed traffic. Therefore, the rates of FN and FP are high

for all three replay configurations.

Fig. 7 illustrates the effectiveness of modifying and

non-modifying events. Here only the packets with modified

payload trigger the type of the modifying event. The

effectiveness of the modifying events incurred by modified

packet header is not calculated because it cannot trigger the

type of modifying event. For specific traffic, the TP rates of the

events of the traffic replayed by three replay configurations are

all 100% and the TN rates are all 100% as well. For regular

traffic, the TP rates of the three replay configurations are all 0%,

and the TN rates are all 100%. Because none of the three replay

configurations produces any modifying events, the TP rates are

all 0% for regular traffic.

(a) Specific traffic

Y-D. LIN et al.: ON EVENT REPRODUCTION RATIO IN STATELESS AND STATEFUL REPLAY 219

(b) Regular traffic

Fig. 7. The effectiveness of modifying and non-modifying events

(a) Specific traffic

(b) Regular traffic

Fig. 8. The effectiveness of logging and non-logging events

Fig. 8 illustrates the effectiveness of logging and

non-logging events. The TP rate of the traffic replayed by

SocketReplay is lower than the other two replay configurations

for both specific and regular traffic. The type of logging event

triggered by these three replay configurations are

signature-based logging events. Tcpreplay using CIDR mode

achieves 56.31% and 53.25% of TP rates for specific and

regular traffic, respectively, and Tcpreplay using bridge mode

achieves 24.76% and 37.66% of TP rates for specific and

regular traffic, respectively. For regular traffic, some packets

that are not related to the onsite context but trigger

signature-based logs would be ignored by SocketReplay;

therefore, SocketReplay achieved 0.97% and 0.00% of TP rates

for specific and regular traffic, respectively.

The anomaly-based logging rules are developed by heuristics,

and thus the activities appeared in the live and the replayed

traffic does not always trigger anomaly-based logging events.

Consequently, Tcpreplay using bridge mode triggers 75.24%

and 62.34% of FN rates for specific and regular traffic,

respectively; Tcpreplay using CIDR mode triggers 43.69% and

46.75% of FN rates for specific and regular traffic, respectively.

SocketReplay does not reproduce the anomaly-based logging

events, and therefore it triggers 99.03% and 100% of FN rates

for specific and regular traffic, respectively.

On the other hand, replayed traffic for all three replay

configurations triggers new anomaly-based logging events, and

therefore all configurations generate different FP rates of

logging events. The three configurations, Tcpreplay using

bridge mode, Tcpreplay using CIDR mode, and SocketReplay,

generate 0.60%, 0.84%, and 2.79% of FP rates for specific

traffic, and 0.37%, 0.15%, and 0.05% of FP rates for regular

traffic, respectively.

VI. CONCLUSIONS

This work proposes methods to measure and compare the

event reproduction ratios and the effectiveness of stateful and

stateless replay tools based on packet events and connection

events. A stateless replayer replays network traces solely base

on the timestamps without maintaining the state-dependent

protocol fields while a stateful replayer updates the

state-dependent protocol fields to reflect the different states of

the different hosts for replay. We design test frameworks and

define several metrics to differentiate the two types of traffic

replayers. In our experiments, we choose Tcpreplay and

SocketReplay to be representatives of a stateless replayer, and a

stateful replayer, respectively.

Throughout our experiments, the event reproduction ratios

are affected by replay configurations, traffic contents, and the

processing rules of packets of a DUT. Results indicate that

traffic contents, which have fewer incomplete connections and

use fewer RST packets to terminate a connection, have higher

replayed ratios of the traffic and higher event reproduction

ratios. SocketReplay replayed a smaller ratio of the captured

traffic and triggered fewer blocking events in subsequent replay

tests. Triggering blocking events denotes the replayed traffic

cannot fit the onsite context. The processing rules of a DUT

were other important factors in triggering specific events.

Heuristic-based rules could lead to 100% of FNs if they can’t be

applied to the replayer.

Therefore, the choice of a proper replayer and the

corresponding replay configuration should depend on the

features of captured traffic, such as the proportion of

incomplete connections and the requirement to fit a certain

application state machine. For example, if the effectiveness of

blocking events is the concern, a stateful replayer like

SocketReplay would be better than a stateless one. If the

consistency ratio is the concern, Tcpreplay using CIDR mode

would be the better choice.

REFERENCES

[1] Tcpreplay, available: http://tcpreplay.synfin.net

[2] Ying-Dar Lin, Po-Ching Lin, Tsung-Huan Cheng, I-Wei

Chen, Yuan-Cheng Lai, “Low-Storage Capture and Loss

Recovery Selective Replay of Real Flows,” IEEE

Communications Magazine, Vol. 50, Issue 4, pp.114-121, April

2012.

220 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 4, DECEMBER 2013

[3] Seung-Sun Hong and S. Felix Wu, “On Interactive Internet
Traffic Replay,” Proceedings of the 8th international

conference on Recent Advances in Intrusion Detection (RAID),

pp. 247-264, 2005.

[4] Chia-Yu Ku, Ying-Dar Lin, Yuan-Cheng Lai, Pei-Hsuan Li,

kate Ching-Ju Lin, “Real Traffic Replay over WLAN with

Environment Emulation,” IEEE Wireless Communications and

Networking Conference (WCNC), April 2012.

[5] Tomahawk, available: http://tomahawk.sourceforge.net/

[6] Yu-Chung Cheng, Urs Holzle, Neal Cardwell, Stefan

Savage, and Geoffrey M. Voelker, “Monkey see, Monkey Do:

A tool for TCP Tracing and Replaying,” Proceedings of 2004
USENIX Annual Technical Conference, June 2004.

[7] Weidong Cui, Vern Paxson, Nicholas C. Weaver, Randy H.

Katz, “Protocol-Independent Adaptive Replay of Application

Dialog,” Proceedings of Network and Distributed System

Security Symposium (NDSS), 2006.

[8] James Newsome, David Brumley, Jason Franklin, and

Dawn Song, “Replayer: automatic protocol replay by binary

analysis,” Proceedings of the 13th ACM Conference on

Computer and Communications Security (CCS), 2006.

[9] Tcpprep, available: http://tcpreplay.synfin.net/wiki/tcpprep

[10] Snort Rules, available: http://snort.org/snort-rules/

[11] Classless Inter-Domain Routing (CIDR), RFC 4632,
available: http://tools.ietf.org/html/rfc4632.

[12] PC Flank, available: http://www.pcflank.com

[13] AuditMyPC, available: http://www.auditmypc.com

[14] Security Space, available: http://www.securityspace.com

[15] eicar, available: http://www.eicar.org

[16] SpinRite, available: http://www.grc.com

Ying-Dar Lin is Professor of Computer

Science at National Chiao Tung

University (NCTU) in Taiwan. He
received his Ph.D. in Computer Science

from UCLA in 1993. He served as a

visiting scholar at Cisco Systems in San

Jose during 2007–2008. Since 2002, he

has been the founder and director of

Network Benchmarking Lab (NBL), which reviews network

products with real traffic. His research interests include quality

of services, network security, deep packet inspection, P2P

networking, and embedded hardware/software co-design. His

work on “multi-hop cellular” was the first along this line, and

has been cited over 600 times and standardized into IEEE

802.11s, WiMAX IEEE 802.16j, and 3GPP LTE-Advanced. He
is an IEEE Fellow and currently on the editorial boards of

several IEEE journals and magazines. He published a textbook

"Computer Networks: An Open Source Approach", with

Ren-Hung Hwang and Fred Baker (McGraw-Hill, 2011).

Chun-Nan Lu received his B.S. and M.S.
degrees in Computer Science from

National Tsing Hua University in 2000

and 2002. He is a Ph.D. student in

Computer Science at National

Chiao-Tung University. His researches

focus on network security and traffic

measurement/analysis. He can be

reached at cnlu@cs.nctu.edu.tw.

Jose Miguel Sagastume Jacobo

received bachelor’s degree with a
major in Computer Science which was

awarded to him by Don Bosco

University in EI Salvador in 2009. He

received his master degree in

Department of Computer Science in

National Chiao Tung University in

2012. He hold a certification on Cisco Certified Network

Associate CCNA and CCNA Security. His research interests

includes network testing.

Jui-Tsun Hung received his M.S. and Ph.D.

degrees in Electrical and Computer
Engineering from the State University of

New York at Stony Brook, New York, USA,

in 2001 and 2003, respectively. In 2004, he

joined Memes Technology as a senior

engineer in IC design for audio broadcast

systems. He was a visiting scholar in

Computer Science, Stony Brook University, USA, during

2006-2009. Since 2009, he has been a Post Doc researcher in

Computer Science, National Chiao Tung University, Taiwan.

His current research interests include computer networks,

computer architecture, wireless communications, and signal
processing.

Yuan-Cheng Lai received the Ph.D.

degree in Computer Science from

National Chiao Tung University in 1997.

He joined the faculty of the Department

of Information Management at National

Taiwan University of Science and

Technology in 2001 and has been a

professor since 2008. His research

interests include wireless networks, network performance

evaluation, network security, and content networking. He can
be reached at laiyc@cs.ntust.edu.tw.

Y-D. LIN et al.: ON EVENT REPRODUCTION RATIO IN STATELESS AND STATEFUL REPLAY 221

mailto:cnlu@cs.nctu.edu.tw
mailto:laiyc@cs.ntust.edu.tw

