
4 IEEE COMMUNICATIONS LETTERS, VOL. 15, NO. 1, JANUARY 2011

NAT-Compatibility Testbed: An Environment to
Automatically Verify Direct Connection Rate

Cheng-Yuan Ho, Member, IEEE, Fu-Yu Wang, Chien-Chao Tseng, Member, IEEE,
and Ying-Dar Lin, Senior Member, IEEE

Abstract—In this article, an NAT-compatibility testbed is de-
signed to automatically conduct the repeated experiments, collect
the test results, and verify the direct connection rate (DCR) of
any NAT traversal programs. Achieving a high DCR is important
because using relays may unnecessarily increase the bandwidth
cost, processing load of the relay servers, and the end-to-end
packet delay. The NAT-compatibility testbed is constructed with
4 components: two peers, an automatic execution mechanism,
NAT devices, and signaling/intermediate servers such as STUN,
TURN, and SIP. It is also called the fully meshed testbed because
the test result of all NAT combinations is a square. It measures
the DCR of ICE, KeyStone, and PJNATH as 53.7%, 59.87%, and
50.93%, respectively. Experimental results show that asymmetric
and unexpected direct connectivity check results occur in the
real Internet. In order to enhance NAT traversal capability,
the findings, like “port prediction” and “call-role sensitivity
problem,” are also described in the experimental results.

Index Terms—NAT, NAT traversal, direct connection, testbed.

I. INTRODUCTION

NETWORK address translation (NAT) is a common so-
lution to the IP address depletion problem of Internet

Protocol version 4 (IPv4). The basic NAT concept is that
it maps an address in one realm to an address in another,
while providing transparent routing for the hosts behind the
NAT called internal hosts [1]. Traditional NATs adopt network
address port translation (NAPT) and can translate many inter-
nal network addresses and their transport ports into a single
external network address and many transport ports, called
mapped-addresses. Thus, with NAPT, an NAT can serve many
internal hosts in a private network with a public IP address.

However, an NAT also introduces the NAT traversal prob-
lem. A host external to an NAT can not originate connections
to an internal host unless the NAT has previously established a
mapped-address for the internal host. Moreover, an NAT may
employ filtering rules to block unauthorized inbound traffics.
Hence, it is why NAT traversal is an important problem today.

Several protocols have been proposed to facilitate NAT
traversal. Session Traversal Utilities for NAT (STUN) [2],
[3] provides a protocol that allows an internal host to dis-
cover the presence and type of its NAT and mapped-address.
Traversal Using Relays around NAT (TURN) [4] is a protocol
that allows two hosts to control the operation of the relay
and exchange packets with each other through the relay.

Manuscript received September 12, 2010. The associate editor coordinating
the review f this letter and approving it for publication was F.-N. Pavlidou.

C.-Y. Ho is with the D-Link NCTU Joint Research Center, National Chiao
Tung University, Taiwan (e-mail: cyho@csie.nctu.edu.tw).

F.-Y. Wang is with the Network Benchmarking Lab (NBL), NCTU, Taiwan
(e-mail: sagual@nbl.org.tw).

C.-C. Tseng (corresponding author) and Y.-D. Lin are with the
Department of Computer Science, NCTU, Taiwan (e-mail: {cctseng,
ydlin}@cs.nctu.edu.tw).

This work was supported in part by D-Link Co., Taiwan.
Digital Object Identifier 10.1109/LCOMM.2010.102810.101700

Interactive Connectivity Establishment (ICE) [5] makes use
of both STUN and TURN for any two peers to discover
and exchange three candidate transport addresses including
host (itself), mapped (on the NAT), and relayed (on the
relay server) transport addresses. Furthermore, it also provides
a connectivity check algorithm that two hosts can use to
determine and agree on which candidate pair to use for NAT
traversal. Therefore, ICE is currently the most promising NAT
traversal technique.

The concept of ICE is used in many NAT traversal pro-
grams, such as PJSIP NAT Helper (PJNATH) [6] and Key-
Stone [7]. PJNATH is an open source library while KeyStone
is a commercial program of Teltel. However, experiment
results, in the NAT-compatibility testbed, show that direct con-
nection rates (DCRs) of NAT traversal programs are different.
Moreover, the NAT-compatibility testbed is constructed with
4 components: two peers, an automatic execution mechanism,
NAT devices, and signaling/intermediate servers. Different
NAT traversal ability may affect the test results; for example,
ICE might fail to discover a direct connection that in fact exists
between the two peers while KeyStone succeeded. Failure in
direct connection tests suggests the use of a relay to forward
packets on behalf of peers; however, using relays unnecessarily
increases the bandwidth cost and processing load of the relay
servers, and, even worse, the end-to-end packet delay, which
is especially harmful to real-time P2P applications [8].

In this work, we present the design of our NAT-
compatibility testbed and experiment results of ICE, Key-
Stone, and PJNATH, and summarize the findings. The remain-
der of this article is organized as follows. In Section II, we
introduce NAT types and describe the design, attribution, and
operations of our fully meshed testbed. Section III presents
experiment results and summarizes the findings. Finally, we
provide suggestions for further research in Section IV.

II. NAT TYPES AND NAT-COMPATIBILITY TESTBED

A. NAT Types

NATs can be classified into four types: full cone, address
restricted cone, port restricted cone, and symmetric [2], ac-
cording to the mapping and filtering rules1. All cone NATs
have the mapping rule that all requests from the same internal
transport address are mapped to the same mapped-address;
whereas, in a symmetric NAT each request from the same
internal transport address to a specific remote transport address
is mapped to a unique mapped-address. A full cone NAT
allows any external host to send packets to an internal host if
the NAT already has a mapped-address for that internal host.

1In [3], Rosenberg et al. suggest that STUN remove four NAT types, but it
will be difficult to explain our experimental results and findings. Therefore,
we stay with the original classification in [2] for the clearer explanation.

1089-7798/11$25.00 c⃝ 2011 IEEE

HO et al.: NAT-COMPATIBILITY TESTBED: AN ENVIRONMENT TO AUTOMATICALLY VERIFY DIRECT CONNECTION RATE 5

Successful

Failed

FC FC: Full Cone NAT

AR AR: Addr. Restricted NAT

PR PR: Port Restricted NAT

SM SM: Symmetric NAT

FC Callee

Caller
SMPRAR

Fig. 1. Direct connectivity of ICE.

However, an address restricted cone NAT allows an external
host with a particular IP address to send packets to a mapped-
address only if the NAT had previously sent a packet with the
mapped-address to the IP address. A port restricted cone NAT
is like a restricted cone NAT, but the restriction includes port
numbers. A symmetric NAT adopts the same filtering rule as
a port restricted cone NAT.

Accordingly, the ability of two hosts behind different NATs
to establish direct connection depends on which host initiates
the communication. For example, suppose host1 and host2 are
behind a full cone NAT and a port restricted NAT, respectively,
and know each other’s mapped-address by some signaling
protocol such as Session Initiation Protocol (SIP) or STUN.
Host1 cannot establish a direct connection to host2 if host1
initiates the communication because the packets sent by host1
will be dropped by the port restricted NAT of host2. However,
because of the loose restriction rule of the full cone NAT, host2
can establish a direct connection to host1 by initiating the
communication. ICE resolves the problem by having each of
two hosts initiate a connectivity check for each candidate pair.
Figure 1 summarizes the cases where ICE should establish a
direct connection under various NAT combinations.

Among the various NAT types, port restricted and symmet-
ric NATs employ the most stringent filtering rule. However,
when both peers are behind the port restricted NATs they still
can establish a direct connection because both can initiate a
connectivity check for the same mapped-address pair, and at
least one of them will pass through the NAT at the other end.
On the other hand, when one peer is behind a symmetric NAT
and the other peer is behind a port restricted or symmetric
NAT, it is not easy for the two peers to establish a direct
connection [9]. This is because, for each outgoing connection
of an internal host, symmetric NATs assign a unique mapped-
address.

B. NAT-Compatibility Testbed

Conducting the repeated experiments, collecting test results,
and verifying the DCR of any NAT traversal programs can
be done by hand, but this may waste a lot of manpower
and time. For example, one needs to pull the power and
wired lines out an NAT device and then plug them into the
other NAT device for one NAT combination test. Therefore,
an NAT-compatibility testbed is designed for automatically
accomplishing above mentioned works. The testbed is con-
structed with 4 components: two peers, an automatic execution
mechanism, NAT devices, and STUN, TURN, and SIP servers.
Figure 2 shows the testbed. The functions of 4 components are
as follows.

1) One peer plays as a caller and the other is a callee.
Both two peers execute the same NAT traversal program to

NAT x18

Automatic
execution
mechanism

Caller

Callee

Internet

SIP server

STUN/TURN server

NAT x18

switch

switch

switch

switch

NAT x18

Automatic
execution
mechanism

Caller

Callee

Internet

SIP server

STUN/TURN server

NAT x18

switch

switch

switch

switch

Fig. 2. NAT-compatibility testbed environment.

TABLE I
NAT BRANDS AND MODELS IN EXPERIMENTS

No Brand Model No Brand Model
1 Dlink Di-604 10 Edimax Br-6204wg
2 Smc Smcwbr14-g2 11 Linux Iptables
3 Corega Cg-barmx2 12 Linksys Befsr41
4 Planex Blw-54mr 13 Linksys WRT150N
5 Smc SmcWGBR-14n 14 Abocom Fsm410
6 3com 3crwer 100-75 15 Asus Rx3041
7 Belkin F5d8231tw4 16 Netgear Pr614
8 Draytek vigor2104p 17 Zyxel P334
9 Lemel Lm-wlg6400 18 Freebsd Pf

do the connectivity check to see whether they can find a direct
connection in some NAT combination.

2) The automatic execution mechanism is to setup the
private IP addresses, subnet masks, and gateways of two peers,
assign which peer to be the caller or callee, and decide when
the connectivity check begins automatically.

3) Different NAT devices lead to various NAT combinations.
In this work, 18 NAT devices are used, and therefore, there are
324 NAT combinations in experiments. There are two reasons
for wiring NAT devices like Fig. 2. One reduces the human
careless plug-in errors which will affect experiment results,
and the other is easy to extend or change the number and
brand of NAT devices.

If a caller’s request is to go through NAT 3, for example,
the caller’s gateway is set to the internal IP address of NAT 3.
If it is to go through NAT 5 at the callee’s side, its destination
address is set to the callee’s mapped-address which equals the
external IP address and some transport port of NAT 5. The
brand and model of NAT devices are shown in Table I.

4) STUN, TURN, and SIP servers are located in a public
IP domain to provide services such as NAT mapped-address
notification, registration, and relay, when requested by NAT
traversal programs. All NAT traversal programs need to get
NAT mapped-address from the STUN server, for instance, but
would not use the TURN server to relay packets if a direct
connection can be found.

Only the hardware environment of NAT-compatibility
testbed cannot make experiments work, so the following is
about how to enable the experiments and related steps. During
each test, all procedures are controlled by the scripts in the
automatic execution mechanism and packet flows are recorded
for the future analysis. The steps for each test are as follows.

Step 1: Set up IP addresses, subnet masks, and gateways of
two peers behind NATs sequentially (i.e., from NAT 1 to 18).

Step 2: Two peers execute the same NAT traversal program.
Moreover, the IP addresses of the STUN/TURN and the SIP
servers are filled, if necessary.

6 IEEE COMMUNICATIONS LETTERS, VOL. 15, NO. 1, JANUARY 2011

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

 Failed in all methods

 Succeeded in KeyStone only Failed in PJNATH only

SM

 Succeeded in all methods

PR SM

PR

FC

AR

FC AR

Fig. 3. Experimental results of ICE, KEYSTONE, and PJNATH.

Step 3: The caller makes a connection to the callee. The
caller initiates a connection, and the callee accepts this. This
connection is kept alive for 60 seconds.

Step 4: After 60 seconds, both peers not only end the
connection but also shut down the NAT traversal program.

Step 5: Two peers stop recording packet flows and save to
a separate packet trace file.

If two peers receive each other’s packets with the source
IP address and port number being the IP address and port
number of each other’s NAT device, then this connection is
direct. Otherwise, this means that packets are relayed by the
TURN server since the relay truncates the connection into two
and changes the source address and port.

III. EXPERIMENTAL RESULTS

Figure 3 shows experimental results of three NAT traversal
programs: ICE, KeyStone, and PJNATH, respectively. From
Fig. 3, we observe all of three NAT traversal programs have
asymmetric direct connectivity check results. For example,
when the callee is behind one of NATs 6 to 18 and the caller
is behind NAT 2, they cannot establish a direct connection.
However, they can communicate with each other directly while
the caller is behind one of NATs 6 to 18 and the callee is
behind NAT 2. This is because though NAT 2 is a Linux-based
full cone NAT, it acts like a symmetric NAT for connections
originated by an internal host if that host attempts to create
several connections simultaneously within a short period.

Furthermore, among 18 NATs as shown in Table I, NATs
1 and 2 are full cone, NATs 3 to 5 are address restricted,
NATs 6 to 13 are port restricted, and NATs 14 to 18 are
symmetric. According to the direct connectivity of ICE (as
shown in Fig. 1), two peers should establish a direct connection
when the caller is behind one of NATs 10 to 13 and the callee
is behind one of NATs 6 to 13. However, none of these three
NAT traversal programs can let two peers communicate with
each other directly. After analyzing pcap files, we observe that
the caller’s NAT not only drops the connectivity check request
sent by the callee, but also assigns a new mapped-address for
the request sent by the caller. This request originated from
the new mapped-address will also be dropped by the port

restricted cone or symmetric NAT at the callee’s side because
the NAT did not send packets to that IP address before. Such
a problem is caused by the connection tracking, one feature
built within the Linux kernel, and called call-role sensitivity
problem [10]. Also, this kind of NATs is named Linux-based
NATs in [10].

The behavior of PJNATH is similar to that of call-role
sensitivity problem when the caller is behind NAT 5 and
the callee is behind one of NAT 10 to 18, as shown in
Fig. 3. However, compared to ICE and KeyStone, it seems
programming errors or logical fallacies happen in the PJNATH
because others can get direct connectivity check results.

Among three NAT traversal programs, only KeyStone has
chance to make two peers establish a direct connection, al-
though it may be asymmetric, when both are behind symmetric
NATs. After tracing pcaps, we find KeyStone implements so-
called port prediction mechanism [9].

From experimental results, we could observe that, out of the
324 possible combinations, the DCR of ICE, KeyStone, and
PJNATH is 53.7% (i.e., 174 direct connections), 59.87% (194),
and 50.93% (165), respectively. Furthermore, the DCR will be
increased when the asymmetric direct connection problem and
call-role sensitivity problem are solved or more powerful port
prediction mechanism is developed.

IV. CONCLUSIONS

In this article, we designed an NAT-compatibility testbed
which can automatically conduct the repeated experiments,
collect test results and verify any NAT traversal programs’
direct connection rate. Experimental results show that the fully
meshed testbed really works and testifies the DCR of ICE,
KeyStone, and PJNATH. From experimental results, the call-
role sensitivity and asymmetric direct connection problems,
and the port prediction mechanism are found. Furthermore,
this testbed is not only to save manpower and time to auto-
matically accomplish repeated works on UDP but also suitable
for TCP because STUN, TURN, and ICE support TCP now.

REFERENCES

[1] K. Egevang and P. Francis, “The IP Network Address Translator (NAT),”
IETF RFC 1631, May 1994.

[2] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - Simple
Traversal of User Datagram Protocol (UDP) through network address
translators (NATs),” IETF RFC 3489, Mar. 2003.

[3] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal
Utilities for NAT (STUN),” IETF RFC 5389, Oct. 2008.

[4] J. Rosenberg, R. Mahy, and P. Matthews, “Traversal Using Relays
around NAT (TURN): relay extensions to Session Traversal Utilities
for NAT (STUN),” IETF RFC 5766, Apr. 2010.

[5] J. Rosenberg, “Interactive Connectivity Establishment (ICE): a protocol
for network address translator (NAT) traversal for offer/answer proto-
cols,” IETF RFC 5245, Apr. 2010.

[6] PJSIP NAT Helper, URL: http://www.pjsip.org/
[7] KeyStone, URL: http://www.teltel.com/en/index.html
[8] H. Khlifi, J.-C. Gregoire, and J. Phillips, “VoIP and NAT/firewalls:

issues, traversal techniques, and a real-world solution,” IEEE Commun.
Mag., vol. 44, no. 7, pp. 93-99, July 2006.

[9] Y. Wang, Z. Lu, and J. Gu, “Research on symmetric NAT traversal in
P2P applications,” in Proc. International Multi-Conference on Comput-
ing in the Global Information Technology (ICCGI), p. 59, 2006.

[10] C.-Y. Ho, C.-C. Tseng, F.-Y. Wang, J.-T. Wang, and Y.-D. Lin, “To call
or to be called behind NATs is sensitive in solving direct connection
problem,” IEEE Commun. Lett., to appear.

