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On-the-Fly Capture and Replay Mechanisms for
Multi-Port Network Devices in
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Abstract—Testing network devices in a live environment is
desirable due to its reality. However, the defects are not repro-
ducible, and the network connectivity will be broken if the device
is down. For effective defect reproduction from real traffic, we
design a new mechanism, which allows the device under test
(DUT) to be automatically online/offline, and supports multi-
port replay for multi-port network devices with an OpenFlow
switch. The defect traces are captured when the DUT is online.
When a DUT failure is detected, the DUT will be offline, and
the defect-triggering traces will be replayed to identify the defect.
For efficient replay, we keep only partial payloads in a reduced
number of packets in the defect traces that are sufficient to
trigger the defects. For defect identification, reduction based on
a binary search algorithm is presented to deal with the defects
caused by payload anomalies and by overloading. The downsizing
ratios in the cases of payload anomalies and overloading are up
to 98.8% and 96%, respectively. The minimum outage time of
the failover during the DUT failure is obtained when the check
interval is 1 second and the number of tolerable consecutive
failures is 2.

Index Terms—Network devices, failover, OpenFlow switch,
multi-port replay, downsizing.

I. INTRODUCTION

NETWORK device testing, which is intended to find out
the defects of network devices and fix them before mar-

keting, can improve the correctness and robustness of network
devices. The traffic to trigger the defects of the network
devices in a testbed can be classified into artificial traffic and
real traffic. The former is generated with protocol modeling
[1]–[3]. It is easy to produce test cases for specific protocols.
Although the traffic can be generated from a realistic model,
it still lacks the sufficient diversity and complexity in a real
network. The latter is captured from an operational network
[4]–[6]. It contains diverse network scenarios such as peer-to-
peer (P2P), on-line games, and probably zero-day attacks. The
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scenarios are hard to be emulated by known modeling. Thus,
real traffic is more effective to discover unexpected defects
than artificial traffic.

Capturing the bulk traffic in an operational network and then
replaying it to identify potential defects of network devices
are usually impractical due to the huge volume of traffic.
The cost of storage and the time of replaying the bulk traffic
are also prohibitively high. Moreover, if a device under test
(DUT) is deployed in an operational network for live testing,
triggering its defects may disrupt the network connectivity.
This problem is unacceptable to the users in the network. The
defects are also not reproducible if the right packet traces
causing the network disruption are not captured and replayed.
Thus, an on-the-fly mechanism to capture and replay the piece
of problematic traffic triggering the defects of the DUT is
required to help reduce the storage requirement and debug
with the traffic. This mechanism should also minimize the
outage time of the operational network due to the DUT failure.

Replaying traffic to a DUT can be either two-port or
multi-port, depending on the number of ports of the DUT.
The two-port replay sends traffic from one port to the other
through the DUT to reproduce defects. To the best of our
knowledge, existing replay tools all support replay with only
two ports. However, replaying with multiple ports on a DUT
faces a particular problem: Some defects are triggered by the
interaction of traffic from multiple ports. Replay tools working
with only two ports are unable to reproduce the scenario. If a
multi-port DUT is tested in the replay, splitting the traffic to
each port and synchronizing the ports during the replay are a
challenge.

We focus on network failover, replay accuracy and debug-
ging efficiency to address the above issues. When the DUT
is broken down due to a defect, the operational network will
be disconnected. A mechanism is needed to allow the traffic
to bypass the DUT as soon as possible to reduce the outage
time of network disconnection. For the replay accuracy, since
most replay tools are not supposed to work well for multi-port
DUTs, a new replay mechanism is needed to split the traffic to
the ports on such DUTs in a live environment. For debugging
efficiency, the raw captured packet traces are usually huge.
A method is needed to identify the minimum subset of the
defect-triggering traffic, so that replaying it can reconstruct
the status in which the defects occurred.

In this work, we present a mechanism, namely OFCR (i.e.,
On-The-Fly Capture and Replay), to realize automatic multi-
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port network device testing in an operational network. When a
DUT is in a normal state, we perform live testing for the DUT
and buffer ongoing traffic simultaneously. While the DUT is
broken down, we bypass the live traffic and shift the DUT to
a replay testbed automatically. When the DUT is in the replay
testbed, we replay the captured traffic before the breakdown
to reproduce and identify the defect. These operations are
implemented on an OF switch (short for OpenFlow switch;
www.openflow.org/wp/documents) instead of on an expensive
device such as a bypass switch and an aggregator switch. The
contributions of this work are summarized as follows:

• We realize testing a multi-port network device in an
operational network, the connectivity of which can be
restored automatically as soon as possible to avoid dis-
rupting normal network usage. The process is achieved
by cleverly adopting an openflow switch.

• The captured packet traces can be replayed to multiple
ports on the DUT like the scenario in the live environ-
ment, also by the use of an openflow switch.

• The minimum subset of the defect-triggering traffic can
be identified and replayed to reconstruct the status in
which the defects occurred.

The remainder of this paper is organized as follows. Sec-
tion II presents the background and related work. Section III
describes the terminology and assumption, and Section IV
describes the architecture and implementation of OFCR. The
experimental results and case study are presented in Section V.
Finally, we conclude this work and discuss the future work in
Section VI.

II. BACKGROUND AND RELATED WORK

This section underlines the overview of network device
testing, as well as the architecture of the OpenFlow network.
Finally, the related work is discussed.

A. Network Device Testing

We categorize network device testing with network traffic
into four types: (1) artificial traffic replay testing, (2) live
testing, (3) real traffic replay testing and (4) real-time capture
and replay testing. Figure 1 illustrates the testbeds of the four
types of testing.

Figure 1(a) illustrates the artificial traffic replay testing.
The DUT and the traffic generator are deployed in a closed
testbed, in which the traffic generator sends the testing traffic
to the DUT. The traffic is produced by traffic generators
such as SmartBits (www.spirent.com), Codenomicon (www.
codenomicon.com). The traffic generators can generate artifi-
cial traffic at very high speed, and thus have an indispensable
advantage for stress testing to benchmark the performance
of network devices. Some studies presented the methods to
model realistic traffic for high-performance traffic generation
[2], [3]. Malicious traffic from some known attack vectors
can be also modeled and generated in [7]. Nonetheless, a
fundamental limitation of this approach is that it is difficult
for the generated traffic to fully reflect the great heterogeneity
and rapid change of real traffic [8]. Thus, real traffic from
an operational network is desired to complement this type

(a) artificial traffic re-
play testing.

(b) live testing.

(c) real traffic replay
testing.

(d) real-time capture and replay testing.

Fig. 1. Testbeds for the four types of testing.

of testing, particularly for identifying unexpected defects of
network devices.

Figure 1(b) illustrates the live testing, in which the DUT is
deployed in a live environment. The monitor keeps checking
the DUT, and the bypass switch allows the traffic to bypass the
DUT to avoid network disruption when the DUT fails. The live
testing is in the normal mode when the DUT works correctly.
In this mode, the traffic passes through the bypass switch as
if the DUT were connected to live network directly. When the
monitor detects a failure, the testing will be switched to the
bypass mode. In this mode, the ports connected to the DUT
will be closed and the traffic will bypass the DUT.

Figure 1(c) illustrates the real traffic replay testing, which
is also in a closed testbed. This testing replays the traffic
captured from a live environment by a replay tool such as
TCPreplay (tcpreplay.synfin.net). Figure 1(d) illustrates the
real-time capture and replay testing. This testing has two
modes: live mode and replay mode. The live mode is similar
to that in the live testing, but the difference is that the capturer
not only checks the DUT but also buffers the live traffic. When
a failure is detected, the bypass switch will allow the traffic
to bypass the DUT. The testing will be switched to the replay
mode, and the replayer can replay the traces buffered earlier
to reproduce the defects for debugging.

The four types of testing are compared in Table I. Despite
the simplicity of traffic, the advantages of the artificial traffic
replay testing are the ability of reproducing the defects and
good customization of test cases. The latter is feasible because
the characteristics of the traffic from most traffic generators
is configurable. On the contrary, the live testing keeps the
reality of traffic, but it may sacrifice the service quality for
unexpected network disruption due to the DUT. Moreover, it
cannot reproduce the defects and has poor customization of
test cases.

The real traffic replay testing is a compromise between
the first two types of testing. It uses captured real traffic to
improve the diversity of traffic, and keeps the ability of defect
reproduction, but the ability is worse than that in the live
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TABLE I
COMPARISONS OF FOUR TYPES OF TESTING.

Artificial
traffic
replay
testing

Live test-
ing

Real traffic
replay test-
ing

Real-time
capture
and replay
testing

Traffic source artificial
traffic

live traffic captured
traffic

live traffic/
captured
traffic

Network
service quality

yes no yes no

Traffic diver-
sity

low high middle middle-high

Defect repro-
duction

fully re-
producible

no partially re-
producible

mostly re-
producible

Test case cus-
tomization

high low middle low

testing because of the limitation of replay tools and replay
scenarios. It does not affect the service quality because of a
closed testbed. The customization is also better than that in the
live testing because the collected traces can be categorized into
several groups for testing. The real-time capture and replay
testing has higher traffic diversity than the real traffic replay
testing because it deploys the DUT in a live environment, and
it has better defect reproduction because the replay scenario
is closer to that in the real deployment. The tradeoff is the
network disconnection during switching the modes. Because
the test cases depend on the live traffic, its customization is
as low as the live testing.

B. OpenFlow Network

OpenFlow is a protocol which provides access to the data
plane of network devices. It separates the control plane and
the data plane, so that a remote controller can decide the for-
warding path of network devices. Administrators can change
the network topology from a software controller. Thus, the
flexibility of network traffic management can be significantly
enhanced.

An OpenFlow network consists of two components: an
OF switch and an OF controller. The OF switch transmits
data packets according to a flow table and interacts with
the OF controller through a secure channel. When a packet
arrives, the OF switch will check its flow table first. If the
packet does not match any rule in the flow table, it will
be sent to the controller through the secure channel. The
OF controller will make a decision for this packet and add
a rule into the flow table. When the next packet of the
same flow arrives, the OF switch can handle it according
to this rule. There are many powerful OF controller imple-
mentations such as NOX/POX (www.noxrepo.org), Beacon
(openflow.stanford.edu/display/Beacon/Home) and Floodlight
(floodlight.openflowhub.org). We can control the OF switch
by programming the controller for replaying the traffic to the
multi-port DUT in this work.

C. Related Work

We review existing studies and tools on capturing, gener-
ating and replaying network traffic. The studies of reducing
traffic traces are also covered in this subsection.

High-performance packet capturing is critical to avoid
dropping packets during the capturing process. Commercial
products such as DAG Packet Capture Cards [9] are designed
for zero-loss packet capture. Besides commercial solutions, the
nCap architecture is presented to create a straight path from
the network adapter to the user-space by means of memory
mapping for wire-speed packet capture [10]. Although high-
performance packet capture is not the purpose of this work,
this work can adopt these solutions if the live environment is
a high-speed network.

Several popular replay tools are compared in Table II.
Replay tools can be either stateless or stateful. Stateless
replay tools send the packets in the order according to the
timestamps of packets. TCPreplay [11] can split the packet
traces to simulate the behavior between the server and the
client through two interfaces. Tomahawk [12] is similar to
TCPreplay, but it can retransmit packets when the packets
are dropped. TCPivo [13] was designed for high-performance
packet replay by novel mechanisms of managing trace files,
low-overhead timers, low-latency kernel patches, and priority
scheduling.

Stateful replay tools can keep the states of connections
(usually TCP) during replay. SocketReplay [14] mimics the
TCP/IP stack and replays the payloads to maintain the TCP
semantics with respect to the connection states. It also sup-
ports loss discovery to recover incomplete connections due to
capture loss. Monkey [15] focuses on TCP replay. It uses the
socket interface to keep the connection state and simulate the
delays in the connections. TCPopera [16] emulates the state
for each TCP connection, and replays the traces interactively
based on the TCP connection-level and the IP flow-level
parameters. Volume control replay in [17] focuses on the
effectiveness of stateful replay. It can dynamically change the
volume of generated traffic during replay. However, it still
does not keep the states during the replay.

To improve the effectiveness of defect reproduction, we
need to reconstruct a replay environment as similar as possible
to the defect-triggering environment. The above replay tools
are unable to reconstruct the replay environment for multi-
port network devices. Since these tools cannot split traffic
during replay, they cannot reproduce the defects caused by the
interactions in the multi-port traffic, such as that overloading
two different VLANs on a switch.

Several studies aim to reduce the huge volume of traffic in
an operational network in the packet capture [4], [14], [18]–
[23]. The primary purpose is to reduce the storage space for
the packet traces while the important characteristics of the
packet traces are kept. Lin et al. developed a tool named
SocketReplay [14] to extract the subset of packet traces with
events such as attacks or viruses, besides its support of stateful
replay described earlier in this subsection. However, it does not
deal with testing a DUT for its defects in a live environment,
the support of multi-port replay, or the mechanism to sustain
the operational network due to a DUT failure. Kornexl et al.
[4] presented a Time Machine to buffer and save up to the first
K bytes in the network connections (e.g., K = 20, 000). The
mechanism can save a large amount of storage space, while
retaining the traces of high interest for later forensics due to
the heavy-tailed nature of network traffic. Kyriakopoulos et
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TABLE II
COMPARISONS OF POPULAR REPLAY TOOLS.

Capture Replay Feature

TCPreplay [11] N/A stateless,
2 ports

divide traffic to server
and client

Tomahawk [12] N/A stateless,
2 ports

traffic retransmission

TCPivo [13] high volume
traffic

stateless,
2 ports

high-performance
packet replay

SocketReplay [14] high volume
traffic

stateful,
2 ports

long connection cutoff,
payload cutoff, socket
connection

Monkey [15] low volume
traffic

stateful,
2 ports

delay simulation

TCPopera [16] N/A stateful,
2 ports

TCP state emulation

Volume control
replay [17]

N/A stateful,
2 ports

replay traffic volume
control

al. in [18] and Aceto et al. in [19] presented the compression
schemes to reduce the storage requirement for packet traces,
whereas this work reduces the packet traces to exclude those
unrelated to triggering the defects of the DUT. The purpose
and the method in this work are virtually different from theirs.
Liu et al. [20] took an information-theoretic approach to the
study of compressibility of packet traces and the information
in the traces of different paradigms. Pescapè [21] reduced
packet traces so that they are as informative as the original
ones in terms of characteristics such as inter-arrival time. Amer
et al. [22] and Tammaro et al. [23] studied the selections of
statistical sampling methods for reducing packet traces and
how they impact on the later analysis. Compared with these
studies, this work aims to keep the minimum subset of the
defect-triggering traffic for reconstructing the status in which
the defects occurred, instead of reducing packet traces for later
traffic analysis. Reducing packet traces for replaying defect-
triggering traffic is not addressed in prior studies at all.

III. TERMINOLOGY AND NOTATIONS

In this work, a defect trace means a trace recording the
traffic that causes failures of the DUT. Not all defects can
be reproduced, such as those due to race conditions. For a
defect trace with reproducible defects, we call it a defect-
triggering trace. We classify reproducible defects into two
types: overload defect and protocol defect. The former is
caused by a busy condition in the DUT such as overloading
the capacity of hardware and overflowing a table, while the
latter is triggered by anomalous packets, such as too short (or
too long) payloads and content anomaly.

The procedure in OFCR can be divided into three modes:
live mode, live-to-replay failover mode and replay mode.
OFCR spends most of the time in the live mode. It records
the defect traces when the DUT fails from a normal state. To
extract the right defect traces, the number of captured packets
and the maximum packet lengths are both limited. The live-to-
replay failover mode is a transition from the live mode to the
replay mode when the network breaks down due to the DUT
failure. The flow table on the OF switch is modified to keep
the network alive and to deploy a multi-port replay circuit.
Similarly, the failover can switch from the replay mode to the
live mode when the DUT is recovered from a failure. In the

TABLE III
DESCRIPTIONS OF THE NOTATIONS.

Categories Notation Descriptions

DUT N The number of ports of the DUT
Ui Port i of the DUT

OF switch Di Port i of the OF switch to the DUT
Pi Port i of the OF switch to the live

network
R1, R2 Ports to the replayer in the OF switch

Trace T = {ti,j |i ≤
i ≤ N, i ≤ j ≤
ucj}

Defect trace in the captured traffic,
where ti,j is the j-th packet (con-
nection) replayed to Ui

uci Packet (connection) count to port Ui

in T
c Packet (connection) count in T
l Maximum packet length in T
Tr = {ri,j |i ≤
i ≤ N, i ≤ j ≤
ucri}

Defect trace derived from T with
recalculated checksums for replaying
the defects, where ri,j is last j-th
packet (connection) replayed to Ui

ucri Packet (connection) count to port Ui

in Tr

cr Packet (connection) count in Tr

lr Maximum packet length in Tr

To Reduced trace by overload defect re-
duction

Tp Reduced trace by protocol defect re-
duction

Tmin Minimum trace after reduction
Reduction Tin Input trace of packet/payload reduc-

tion
Tout Output trace of packet/payload reduc-

tion
cini Packet (connection) to port Ui in Tin

couti Packet (connection) to port Ui in
Tout

lin Maximum packet length in Tin

lout Maximum packet length in Tout

headi Index of the first packet (connection)
to Ui in Tr

taili Index of the last packet (connection)
to Ui in Tr

cut/p Cut unit in packet/payload reduction
tc/tp Cut unit in packet/payload reduction

replay mode, OFCR replays the defect trace to the multiple
ports on the DUT. If the DUT fails again after replay, then
the trace is a defect-triggering trace.

Table III summarizes the notations used in this work. There
are three types of ports on the OF switch. Di represents port
i of the OF switch to the DUT port Ui, Pi represents port
i to the live network. R1 and R2 denote the ports to the
replayer. T denotes the defect trace in the captured traffic
with the total count of packets (connections) c and maximum
packet length l. Inside T , ti,j represents the last j-th packet
(connection) to Ui. If the DUT is a layer-2 or layer-3 device,
the unit is packet; otherwise, the unit is connection. uci is the
count of packets (connections) to Ui. Some packets in T are
incomplete because their original length is longer than l. The
incomplete packets will be dropped by a network interface,
so we recalculate the checksums of the incomplete packets in
T by two packet modification tools, [24] and [25] to derive
Tr for replaying the defects. When OFCR operates the hybrid
defect reduction, the reduced traces, To, Tp and Tmin will be
generated.
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Fig. 2. The architecture of OFCR.

IV. ON-THE-FLY CAPTURE AND REPLAY (OFCR)
MECHANISM

The trace T captured before the DUT failure may face
several problems for debugging the DUT. First, the packet
count c and the maximum packet length l of T may be
insufficient to trigger the defects. Second, the defects may
not be triggered because the replayer cannot forward traffic to
multiple ports Ui like the original defect-triggering scenario.
Finally, even though the defect trace Tr is small, it is not easy
to identify the defect-triggering packets in Tr.

In this section, we state the OFCR mechanism and the
details of each module in it. The implementation issues are
also discussed. The objectives of OFCR is as follows. Given a
DUT with N ports connecting to the network by an OF switch
and a trace T captured when the DUT fails, the objectives are
(1) to find out the minimum c and l in T that can trigger
defects, (2) to replay packet ri,j in Tr to multiple ports Ui on
the DUT, and (3) to derive the minimum defect-identifying
trace Tmin from Tr.

A. Overview of OFCR

As illustrated in Figure 2, the architecture of OFCR is
composed of two modes: (1) the live mode for the DUT
normal state and (2) the replay mode for the DUT failure
state. In the live mode, as illustrated in the left part of Figure 2,
the OF switch not only forwards bidirectional traffic between
live network (the intranets and the Internet) and the DUT, but
also mirrors traffic to the RRCA (Remote Replay and Control
Agent). The RRCA checks the DUT states and buffers the
mirrored traces. In the right part of Figure 2 is the replay mode,
in which the OF switch separates the network into two parts.
The left part is the live network, and the other is the multi-
port replay network. The RRCA extracts the defect traces from
the buffered traces, and then replays them to the DUT. OFCR
uses existing two-port replay tools and splits replayed traffic
on the OF switch for multi-port replay. If the defects can
be triggered by multi-port replay, OFCR will perform hybrid
defect identification to find the minimum defect-triggering
trace. The identification involves overload defect reduction and
protocol defect reduction sequentially to identify defects. The
former assumes the defect is an overload defect, and the latter
assumes the defect is a protocol defect. Finally, the minimum
defect-triggering traces will be derived.

The mechanism switching between the two modes is called
live-to-replay failover. Its major objective is to recover from

Fig. 3. The architecture of RRCA.

network disconnection caused by the DUT failure in the live
mode as soon as possible. The details will be discussed later.

All the modules in RRCA are shown in Figure 3. Which
modules are active depends on the mode in which OFCR is. In
the live mode, two modules are active: the buffer module and
the check module. The former is used to buffer the mirrored
traces, and the latter checks the DUT state. In the replay
mode, there are four operating modules: the check module, the
capture module, the replay module and the reduction module.
The check module is the only module used in both modes.
The capture module is used to store the defect traces. The
replay module performs multi-port replay, and the reduction
module identifies the defect in the defect trace.

The bypass module belongs to neither the live mode nor the
replay mode. It performs live-to-replay failover in OFCR. This
module changes the flow table in the OF switch according to
the mode of OFCR. In the live mode, the OF switch forwards
incoming packets from port Pi to Di on the OF switch, where
Pi is port i to the live network and Di is port i to the DUT (see
Figure 4). Thus, packets pass through the DUT for testing.
When OFCR switches to the replay mode due to the DUT
failure, this module needs to cut off the connections between
Pi and Di and builds a backup circuit. Therefore, a pre-defined
configuration is essential for this module to modify rules in
the flow table to let packets pass through Pi.

Figure 4 is an example of live-to-replay failover. The DUT
connects to two dorms (i.e., the intranets) and the Internet
through an OF switch. The entries in the flow table are one-
to-one mapping between Pi and Di in the live mode. There
is no entry between Pi and Di in the replay mode. The
entries about Di will be excluded, and the bypass module
will build the rules of relationship between Pi by a pre-defined
configuration.

The DUT to be tested could be any network devices as long
as a backup device is available for failover. The OF switch
can serve as the role of the backup device (if a dedicated
one is unavailable), if it is implemented or equipped with the
functions of the DUT. With a dedicated backup device, an
example of live-to-replay failover is illustrated in Figure 5;
otherwise, the example had been illustrated in Figure 4.

B. The Live Mode of OFCR

Figure 6 presents the behavior of the modules in the live
mode. The check module monitors and records the DUT states,
and the buffer module records the mirrored traffic T from Pi

of the OF switch. The trace T will be reserved for a while. If
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t]

flow table entry
in_port P1, nw_dst=140.113.244.254/24, actions = out : P2
in_port P1, actions = out : P3
in_port P2, nw_dst=140.113.248.254/24, actions = out : P1
in_port P2, actions = out : P3
in_port P3, nw_dst=140.113.248.254/24, actions = out : P1
in_port P3, nw_dst=140.113.244.254/24, actions = out : P2

flow table entry
in_port P1, actions = out : D1
in_port P2, actions = out : D2
in_port P3, actions = out : D3
in_port D1, actions = out : P1
in_port D2, actions = out : P2
in_port D3, actions = out : P3

Fig. 4. An example of live-to-replay failover.

flow table entry
in_port P1, actions = out : P6
in_port P2, actions = out : P5
in_port P3, actions = out : P4
in_port P4, actions = out : P3
in_port P5, actions = out : P2
in_port P6, actions = out : P1

flow table entry
in_port P1, actions = out : D1
in_port P2, actions = out : D2
in_port P3, actions = out : D3
in_port D1, actions = out : P1
in_port D2, actions = out : P2
in_port D3, actions = out : P3

Fig. 5. An example of live-to-replay failover with a backup device.

the DUT keeps normal, this trace will be removed because it
is irrelevant to triggering the defects.

1) Check module: The check module is responsible to
check the DUT states by probing the DUT (to be explained
in Section IV-D). To collect defect information, this module
accesses and records the DUT states through SNMP or the
console port. The states can be categorized into common states
and specific ones. The former states are CPU usage, memory
usage, bandwidth usage and error logs. The latter states can
be those in the MAC table and the ARP table on a switch, or
in the ARP table and the routing table on a router, depending
on the layer of the DUT.

2) Buffer module: The buffer module captures mirrored
traffic T continually with c packets (connections) and the
maximum packet length, l bytes. The capture size has a
tradeoff between memory storage and defect effectiveness.
Because common network devices usually have 1∼4 ports for
traffic mirroring, it is likely that the mirroring ports encounter
bandwidth overloading. The buffer module can apply many-
to-many mirroring by setting the flow table rules on the OF
switch. This approach can reduce packet losses by relieving
the bandwidth overloading, and can also allocate diverse
mirroring groups for the intranet and the Internet to reduce

the overloading in the replay pre-processing.

C. The Replay Mode of OFCR

Figure 7 presents the modules in the replay mode. The
check module does the same job as it is in the live mode.
It is used to determine the effectiveness of replaying the
defect trace. The capture module extracts the defect trace Tr

from the buffer module in the live mode. The replay module
forwards packet ri,j to different ports Di, in order to transmit
to the proper ports Ui in the DUT, where ri,j is the last j-th
packet (connection) to the DUT port Ui in Tr. The reduction
module downsizes the defect-triggering trace Tr to derive the
minimum trace Tmin. The reduction module can use different
reduction approaches according to the detection type.

1) Capture module: The capture module extracts the defect
trace from the buffered trace T . The defect trace Tr has the
same capture size cr = c, lr = l. The packet (connection)
count to DUT port Ui, ucri, may not be equal to uci because
the DUT ports for replay can be different from those in the
live mode during the multi-port replay. The maximum packet
length l may lead to incomplete packets during capturing, so
the module needs to recalculate the checksum of each packet
in Tr to derive packet ri,j .
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Fig. 6. The live mode of OFCR.

2) Replay module: The replay module replays Tr to trigger
defects. To reconstruct the scenario similar to that in which
the DUT is in the live mode, we replay each packet in Tr to
the original DUT port in the live mode. This module splits Tr

into the intranet side and the Internet side, and then replays
Tr from ports R1 and R2, depending on which side the
packet (connection) belongs to. To forward packets ri,j to the
corresponding port Di, the OF switch splits incoming packets
by their source IP addresses. The relations between the source
IP addresses and the ports should be also specified in the pre-
defined configuration to configure the flow table on the OF
switch. Figure 8 presents an example of the replay module.
There are two dorms in the live mode, so the OF switch splits
the packets from R1 to D1 and D2 according to their subnets.
Thus, we need the pre-defined configuration to configure the
flow table to implement the forwarding paths on the right side
of Figure 8 accordingly, so that OFCR can quickly switch to
the new forwarding paths for the replay.

3) Reduction module: The reduction module identifies
defect-triggering traces by hybrid defect reduction. It assumes
the defect may be an overload defect or a protocol defect,
and then applies both the overload defect reduction and the
protocol defect reduction. As illustrated in the left part of
Figure 9, the hybrid defect reduction performs two reductions
sequentially, and generates two reduced traces To and Tp. We
can determine Tmin by comparing To, Tp and the original
defect trace Tr.

There are two conditions to derive the minimum trace Tmin.
(1) If To = Tr = Tp, it means that Tr is not a defect-triggering
trace or that Tr is the minimum defect-triggering trace with
no redundant packets. We set Tmin to Tr. (2) Otherwise, we
keep both reduced traces Tmin = To∪Tp. Because To and Tp

Fig. 7. The replay mode of OFCR.

may be different in packet (connection) count and maximum
packet length, we preserve both traces to keep the information
for debugging.

In the right part of Figuree 9 are the procedures of both
reductions. Because the overload defects are usually caused by
flooding packets and the number of defect-triggering packets
is unclear. When the packets are reduced, the results may be
quite different each time. Therefore, to minimize the reduced
trace size, the overload defect reduction removes redundant
payloads first, and then concentrates on reducing the packet
count. In contrast, protocol defects are caused by one or a few
packets. To save the processing time of replay in the reduction,
the protocol defect reduction downsizes the number of packets
first, and then finds the critical parts of payloads.

Figure 10 presents the flow chart of packet reduction and
payload reduction with binary search. The input trace is Tin,
which is a subset of Tr, and has two parameters cini and
lin, where cini is the packet (connection) count through DUT
port Ui and lin is the maximum packet length. The output
trace of the reduction is Tout. Similarly, Tout has couti and
lout. The two reductions may increase or decrease the packet
(connection) count by cut or p (i.e., the cut unit), and they set
the thresholds tc and tp to stop the reduction. When cut or p
meets the thresholds, the reduction stops and generates Tout.
Packet reduction removes redundant packets before and after
the defect-triggering part. We use headi and taili to represent
the indexes of the first and the last packet (connection) to port i
in Tin. The packets with an index between headi and taili will
be kept in Tout. The left and right parts of this figure present
the packet reduction before and after the defect-triggering part,
respectively. If the device is a layer-4 or layer-7 one, the packet
reduction will cut the trace in the unit of connection because
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flow table entry
in_port D1, actions = out : R1
in_port D2, actions = out : R1
in_port D3, actions = out : R2
in_port R2, actions = out : D3
in_port R1, nw_src=140.113.248.254/24, actions = out : D1
in_port R1, nw_src=140.113.244.254/24, actions = out : D2

flow table entry
in_port P1, actions = out : D1
in_port P2, actions = out : D2
in_port P3, actions = out : D3
in_port D1, actions = out : P1
in_port D2, actions = out : P2
in_port D3, actions = out : P3

Fig. 8. Example of the replay module.
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Fig. 9. The procedure in the reduction module.

an incomplete connection cannot reproduce the connection
state. The payload reduction is simpler than packet reduction
because it only reduces the maximum packet length of Tin.

D. Implementation Issues

In this subsection, we discuss the implementation issues
of traffic capture and failure detection. The captured traffic
may lose packets in the mirroring module on the network
devices and the capture interfaces in the RRCA. To re-
duce packet losses in the traffic mirroring, we use the OF
switch to deploy several mirroring ports. For packet losses
on the network interfaces in the RRCA, we add memory
(up to 8GB) and use an enhanced traffic capture tool, Gulp
(staff.washington.edu/corey/gulp), which uses a ring buffer,
and allocates the packet reader and writer in different CPUs to
reduce packet losses. Furthermore, the buffer module records
traces by appending a number which is in a loop to the end of
trace file name. It is used to prevent the situation in which the
defect-triggering packets are recorded in the end of the first
trace and the beginning of the second trace, but because we

buffer a single trace at a time, we only get the second trace
finally.

Failure detection is important because it determines mode
switching in the RRCA. The tool used in the check module,
namely CheckDev, was developed by NBL (www.nbl.org.tw).
It sends ARP, ICMP and HTTP requests to the DUT so as
to probe the DUT status. Moreover, it retrieves the DUT
states by the SNMP and console ports. Because of the diverse
commands in the console port for different DUTs, we write
specific scripts by Expect (www.nist.gov/el/msid/expect.cfm)
to dump the state information from the DUT. Another imple-
mentation issue in the failure detection is the failure criteria.
If the failure criteria are too loose, some defect traces will be
lost; otherwise, we will get more defect traces and process
more live-to-replay failover. The defect traces may contain
normal traces. It is hard to distinguish normal traces and non-
reproducible defect traces from defect traces because they both
do not trigger any failure during replay. The failure criteria
involves three parameters: check interval, check timeout and
tolerant consecutive failure time. They determine live-to-
replay failover and keep the effectiveness of defect traces.
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Fig. 10. Packet reduction and payload reduction.

V. EXPERIMENTS AND ANALYSIS

The experimental environment and results will be discussed
in this section. First, we introduce the testbed in this work, and
then discuss the experimental results from the perspectives of
the vendors and users. Finally, we analyze the cases of the
defect traces.

A. Experiment Testbed

The real traffic in an operational network cannot be cus-
tomized. In other words, it cannot be expected that certain
defects of a specific protocol will happen on a specific
DUT and their packet traces can be collected in a live
environment. We use network debugging tools, TestCenter
(www.spirent.com/Ethernet Testing/Software/TestCenter) and
Codenomicon, to emulate the appearance of certain defect-
triggering traffic. Therefore, we can evaluate the performance
of OFCR for debugging certain defects of the DUT in the
experiments; otherwise, the defects may not appear in a live
environment. If the generated traffic triggers a defect on the
DUT and it can trigger the defect by replaying, we capture it as
a defect-triggering trace for the experiments. For reproducing
the experiments, we also capture the dorm traffic over a period
as the normal trace used in the experiments.

The testbed presented in Figure 11 is composed of two
steps. The first step is collecting normal and defect-triggering
traffic, as illustrated on both sides of the figure. On the left
side is the collection of normal traffic from the dorms of
our campus, and on the right side is the collection of defect-
triggering traffic. The multi-port DUTs are ZyXEL GS-2750
(a layer-2 switch) and SuperMicro SSE-G24-TG4 (a router)
in the experiments. The RRCA is a PC equipped with an Intel
i3-2130 processor, 8GB memory and 9 network interfaces.

After collecting normal and defect-triggering traffic, we
conduct the second step, as illustrated in the middle part

of Figure 11. Because the OF switch TL-WR1043ND is a
SOHO AP (controlled by FloodLight, www.projectfloodlight.
org/floodlight), it is not capable of handling the amount of
captured dorm traffic. We use a subset of the traffic to
perform multi-port replay and live-to-replay failover with the
OF switch. It is noted that we could conduct the experiments
with a high-end OF switch, but another higher-end OF switch
we have does not have full support of the functions we
need. Specifically, we are unable to change the flow table
in it due to its immature design (still a prototype so far).
Thus, we still use the SOHO AP as the OF switch in the
experiments. Fortunately, the observations we get depend on
the functionality of the OpenFlow switch, instead of the
capacity of it. Using a high-end OF switch will not change
the main observations in the experiments.

The multi-port replay sends traffic from the RRCA to
the OF switch, which then passes traffic to the DUT. The
connectivity tester is used to measure the effectiveness of
live-to-replay failover. We conduct the live-to-replay failover
experiment by replaying defect-triggering traces from the
RRCA to the DUT directly and at the same time probing the
connectivity tester though the OF switch, which transmits the
probe messages to the connectivity tester directly or through
the DUT according to the DUT state. We use the RRCA and
the DUT without the OF switch in the experiment of traffic
capture and reduction because the traffic can overload the OF
switch. Once the DUT fails, RRCA will start to replay after
reducing the packet traces via multiple links, as illustrated in
the middle of Figure 11 (only two links for replaying traffic
are shown in the figure).

The compositions of the normal traces and defect-triggering
traces are presented in Table IV. The normal traces are col-
lected from one dorm and two dorms in the campus. Around
65% of them are TCP traffic, and the others are UDP traffic.
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Fig. 11. Experimental environment.

TABLE IV
TEST TRACES.

Trace Type Trace count Average
size

Packet
count

two-dorm traffic normal 1 918.5MB 818,970
one-dorm traffic normal 1 446.3MB 368,238
IP payload
anomaly

protocol 10 56.7KB 873

Dense ARP re-
quests

overload 1 72.1MB 540,012

Dense ICMP re-
quests

overload 1 864KB 6,331

OSPF payload
anomaly

protocol 3 20.3KB 243

There are dozens of application protocols in them, including
BitTorrent, STUN, SSH, etc., and none of them are dominant
ones. Codenomicon produces the traces with protocol defects,
including the IP payload anomalies on the ZyXEL switch and
the OSPF payload anomalies on the SuperMicro router. The
former anomalies are packets with anomalous fields in the
IP header (90% of the packets are ICMP packets, and the
others are fragmented IP packets), and the latter anomalies
are OSPF packets with anomalous fields. We select the above
anomalies because they are the only ones from Codenomicon
that can break down the DUTs in the experiments. TestCenter
generates the traces with the overloading defect on the ZyXEL
switch. All the packets in them are two types of requests for
overloading: (1) dense ARP requests to overflow the MAC
table and (2) dense ICMP (from ping) requests to overflow
the ARP table. They can overflow the MAC table and the
ARP table on the ZyXEL switch.

We mix a normal trace and a defect-triggering trace to
emulate the defect-triggering traffic in the live network. The
procedure of traffic mixing is replaying a normal trace and a
defect-triggering trace from two different network interfaces
to the DUT simultaneously, and capturing them as a defect
trace from the DUT. As a result, the mixed packet traces will
contain the packets from normal traffic among those from the
defect-triggering trace.

If the number of normal packets into the mixed traces is
changed, the downsizing ratio, the packet count and the pro-
cessing time will be certainly affected, but not the maximum
packet length (see Section V-B). We use the normal packet
traces from one dorm and two dorms to study the impact of

this change on the results in Section V-B. It is also noted that
the order of the packets in the defect-triggering trace should
be preserved for OSPF payload anomaly because the defect
occurs after a certain state transitions in the OSPF operation.
The order is not so critical for the other anomalies because
the DUT will be still busy or unable to properly handle the
fragments. The position of the defect-triggering trace in the
mixed traffic may affect the processing time of reductions, but
not the other results because amount of the defect-triggering
trace is the same.

For L2 devices, we have 12 mixed defect traces for the
one-dorm environment and 12 for the two-dorm environment.
In both environments, the mixed defect traces combine the
normal traffic with 10 IP payload anomaly traces, a dense
ARP requests trace and a dense ICMP requests trace, so
there are 10 protocol defect-triggering traces and 2 overload
defect-triggering traces in these 12 mixed defect traces. For
L3 devices, we only have 3 OSPF payload anomaly traces.
After traffic mixing of a two-dorm normal trace and an OSPF
anomaly trace, we derive 3 protocol defect-triggering traces
for L3 devices.

B. Experimental Results

The experimental results can be viewed from the perspec-
tives of the vendors and the users. Vendors care about the
effective capture size in the OFCR live mode, the diversity
of reduction for various types of defects, and the efficiency
of reduction thresholds in the OFCR replay mode. The only
thing users are concerned about is the outage time during the
live-to-replay failover, so the relationship between the failure
criteria and the outage time is also discussed.

1) Capture size: The capture size is the first we need to
decide when starting OFCR. The parameters c and l influence
the effectiveness and the size of the captured defect traces,
and their optimal values should be found to balance the above
two things for DUTs of different layers. The results of the
ZyXEL switch in the one-dorm and two-dorm environments
are presented in Figure 12 and 13, and those of the SuperMicro
router are presented in Figure 14.

Figure 12 presents the effectiveness of defect reproduction
for different packet count c and maximum packet length l
in the two-dorm testbed. The results show that the first 46
bytes of the payload (only ARP/ICMP headers) are suffi-
cient to trigger all the defects. Moreover, capturing 10,000
packets (c/cr = 1.2%) in the trace is sufficient to keep the
protocol defect-triggering packets, and c = 50, 000 packets
(c/cr = 6.1%) in the trace are required to keep all defect-
triggering packets in the 12 mixed defect traces because the
overload defect traces need a large number of packets to
break down the DUT. When l is less than 46 bytes, only one
overload defect trace can be reproduced with c/cr ≥ 6.1%.
This is because this overload defect is triggered by too
many broadcast packets. Even though these captured broadcast
packets only include their IP headers, they still can paralyze
the DUT.

The L3 SuperMicro router is also tested with the 12 mixed
defect traces in the two-dorm testbed. We find out that 10
protocol defect traces are ineffective because they are defects
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Fig. 12. Capture size of L2 switch in the two-dorm testbed.
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Fig. 13. Capture size for the L2 switch in the one-dorm testbed.

specific to the ZyXEL switch, but the two overload defect
traces still can trigger the defects when l is 46 bytes and c
is 50, 000 (c/cr = 6.1%). Thus, the captured traffic with a
maximum packet length l = 46 bytes is sufficient to keep the
overload defect for the router.

Figure 12 presents that the capture sizes of the L2 switch in
the one-dorm environment. The difference between Figure 12
and Figure 13 is the traffic scale of the environment; the
other factors in both experiments are the same. Because the
traffic volume in the one-dorm environment is much smaller
than that in the two-dorm environment and thus the overload
defect traces occupy a larger proportion of the total trace, we
can reproduce the overload defect traces with c = 10, 000
(c/cr = 2.7%) rather than 50, 000 (c/cr = 6.1%) in the two-
dorm environment, and the reproduction effectiveness of the
protocol defect trace is improved slightly with c = 3, 000
(c/cr = 0.8%) and 5, 000 (c/cr = 1.4%). To reproduce all
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Fig. 14. Capture size for the L3 router in a two-dorm testbed.

protocol defect traces, the capture size of packet count c is
10, 000 (c/cr = 2.7%), and the maximum packet length l
is 46 bytes. The capture packet count c = 10, 000 with the
maximum packet length l = 46 bytes can also reproduce all
overload defect traces. Therefore, capturing 10, 000 (2.7%)
packets in a trace and the maximum packet length 46 bytes
is sufficient to reproduce all 12 defect-triggering traces in the
one-dorm environment.

Figure 14 presents the results of the L3 router in the two-
dorm environment. There are only three protocol defect traces
in this experiment. We need to capture the first 154 bytes of the
payloads to trigger the protocol defects. These protocol defects
are triggered by LS (Link State) update packets in the OSPF.
The OSPF component of the DUT is unable to handle the
inconsistency in the fields of OSPF packets when it processes
the LSA (Link State Advertisement) information following the
LSA header in the LS update packet. Because these protocol
defects need the OSPF payloads to trigger the defects, the
maximum packet length l depends on the maximum LSA of
the router. In our experiment, the SuperMicro router needs the
first 154 bytes to trigger defects.

2) Diversity of reductions: Because of the different prop-
erties of the protocol and overload defects, a single reduction
will not be suitable for both types of defects. The effectiveness
of different reductions is evaluated by the processing time and
the downsizing ratio. The former is the time from receiving
the trace to finishing the test, and the latter is the relationship
between the trace size after reduction and the original trace
size. The formula is expressed as

downsize ratio = (1− trace size after reduction

original defect trace size
) ∗ 100

(1)
We compare five reductions in the OFCR with the protocol

defects and overload defects in Figure 14 and 15. The original
defect traces have 50,000 packets and the maximum packet
length is 1,522 bytes. The reduction thresholds tc and tp are
1,000 and 10 bytes.

In Figure 15, either the packet reduction and payload
reduction alone is not good on trace downsizing. The protocol
defect reduction and overload defect reduction have the same
downsizing ratio (98.8%) on the protocol defects, but the latter
has better downsizing ratio on the overload defects (up to
96%). The hybrid defect reduction chooses the best result from
the protocol defect reduction and overload defect reduction, so
its efficiency is as high as expected.

Figure 16 shows the results of processing time of different
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reductions. The processing time of the protocol defects is
longer than that of the overload defects in each reduction.
The reason is that there are few defect-triggering packets in
the protocol defect traces, so protocol defect traces need more
rounds to replay the reduced trace during the reduction. Be-
cause the packet count influences the replay time significantly,
the packet reduction and protocol defect reduction which
reduce packet counts first will spend shorter processing time
than other reductions. However, considering the downsizing
ratio, protocol defect reduction is more efficient than packet
reduction because it spends additional 200 seconds to reduce
more 6% of the size (up to 98% for protocol defect). The
downsizing ratio of the protocol defect reduction is insufficient
for overload defect (91.6%). The overload defect reduction
spends 230 more seconds to remove additional 4% of the
size (up to 96%). The hybrid defect reduction has the longest
processing time because it performs both protocol defect
reduction and overload defect reduction.

3) Efficiency of reduction thresholds: The efficiency of the
reduction is controlled by tc and tp, which are the thresholds
of the cut unit for packet count and the maximum packet
length. The results of choosing diverse thresholds in the hybrid
defect reduction are presented in Figure 17. The defect traces
also have 50,000 packets and maximum packet length 1,522
bytes. Large thresholds tc and tp will save the processing time
but lower the downsizing ratio. However, when the thresholds
tc and tp are too small, the processing time will increase
significantly but the downsizing ratio will rise limitedly. Given
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Fig. 17. The efficiency of reduction thresholds.

the thresholds tc = 5,000, 1,000 and 500, and tp = 50, 10
and 5, we can derive the best downsizing ratio 98.8% when
tc ≤ 1, 000 (2% of the packet count) and tp ≤ 10. Considering
the processing time, the reduction is the most efficient when
tc = 1, 000 and tp = 10.

4) Outage time vs. failure criteria: The defects affect
different parts of the DUT. Some defects make the DUT fail
slightly, and the DUT can recover from the failure by itself
in a short period of time. Some break down the DUT, which
cannot be recovered until the administrators reboot it. The
outage time is the time when the OFCR spends in switching
from the live to the replay mode during the DUT failure and
from the replay to the live mode when DUT is recovered. The
users will experience disconnection in this period.

To reduce the outage time, we detect a failure with different
check intervals and numbers of tolerable consecutive failures.
The live-to-replay failover will be executed when the number
of consecutive DUT failures exceeds a threshold. The response
timeout is the waiting time for the reply of the probing request.
Figure 18 presents the outage time resulting from different
check intervals and numbers of tolerant consecutive failures
with 1-second response timeout for the ZyXEL switch. Either
a defect or no defect will be triggered in the experiment.
The leftmost bar presents the outage time without failover (19
seconds), which is the real failure time of the DUT. We can
find out that most failure criteria can reduce the outage time
except (7, 3). Given the same tolerant consecutive failure time,
the smaller the check interval is, the shorter the outage time
is. A small number of consecutive failures can also reduce
the outage time, but it is better to be larger than one. If the
number is one, we may presume a DUT failure just because
of incomplete reply packets or packet losses, and then proceed
to meaningless live-to-replay failover.

C. Case Studies

We also interpret the protocol defect traces in the test traces.
When Codenomicon is used to test the ZyXEL switch with
IP anomaly traces, the ICMP module of the switch crashes,
but the switch itself does not detect it. We try to analyze the
packets in the IP anomaly defect trace without any error logs,
and find out that the anomaly is in the flags and fragment
offset fields of the IP header. Figure 19 is the details about
the IP anomalies.
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Fig. 19. The example of IP anomaly.

Figure 19(a) presents the anomaly in the flags field. The
first bit in this field is a reserved bit, and it should be 0, but
here it is 1. Figure 19(b) presents the anomalies in both the
flags and fragment offset fields. The more bit in the
flags field is set to 1, meaning there is another fragment,
but the fragment offset value is the maximum value. It is
impossible to have another fragment after this fragment. This
anomaly is hard to be detected because if these two fields
are checked separately, either is correct, but they become an
anomaly when appearing together.

Although the logs in the DUT have no error messages, we
still can analyze the defects by accessing other DUT states.
We find out that there is no overflow in any tables, and the
CPU and memory are not in the busy states. Combining with
the information and the behavior of the DUT failure, we can
conjecture that a single anomalous packet may generate an
exception, but it does not break down the relevant component
in the DUT. However, consecutive IP fragment anomalies
could break down the component because of the queues for
the fragment buffer. The protocol defects may not be caused
by just a single anomalous packet. They could be generated
by a sequence of anomalous packets, which are much fewer
than the packets triggering overload defects.

VI. CONCLUSION

The OFCR mechanism can extract the defect-triggering
traffic in the live network on the fly, and implement multi-port
replay to emulate the situation in which a defect happens in a
multi-port network device under test. In the live mode, the OF
switch passes the live network traffic to the DUT and mirrors
the traffic to the RRCA. OFCR switches to the replay mode
when detecting a DUT failure. The OF switch lets the live
traffic bypass the DUT and connects the DUT to the RRCA
to replay the captured defect trace to the proper DUT ports. If
the defect can be reproduced, the OFCR performs the defect
identification by hybrid defect reduction. The framework is at
National Chiao Tung University and is available to vendors

who need to have their products tested. Thus, the framework
is available to the industry. It is not in the form of an open
source tool.

We demonstrate the efficiency of defect reproduction and
ability of failover in OFCR, even though the numerical re-
sults will certainly vary with a different DUT (thus different
defects) and the real traffic in the operational network. (1)
Only a small portion of the captured traffic is required for
the replay because the downsizing ratio can be up to 98.8%
for the protocol defects, and 96% for the overload defects.
(2) The outage time of the operational network is only a few
seconds. If the system were deployed in a larger environment
and suppose there were more normal traffic (like the discussion
of one-dorm vs. two-dorm environment), the proportion of
defect-triggering traffic would be decreased, and more overall
packets would be required for the replay. If the anomalies are
in the packet payloads instead of the packet headers, longer
packet lengths should be kept. The bottom line is that the
anomalies should be preserved in the reduced packet traces.

We plan to test more upper-layer DUTs to find suitable
capture sizes for them in the future. Improving the accuracy
of failure detection is also a direction of our future work. So
far, CheckDev only sends ARP, ICMP and HTTP requests
to probe the DUT, but sometimes a specific component in
the DUT breaks down, and the DUT can still serve those
probe messages. In this case, CheckDev cannot detect such a
failure, so its functionality should be expanded to support more
types of service probing like IGMP or RIP. Moreover, some
failures are caused by the medium instead of the DUT, and
it is impossible to reproduce this kind of failure by replaying
traffic to the DUT. We hope to develop a checking mechanism
on the OF switch to detect the failure of medium between the
DUT and RRCA.
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