SOAP Request Scheduling for Differentiated
Quality of Service

Ching-Ming Tien', Cho-Jun Lee?, Po-Wen Cheng?, and Ying-Dar Lin!

! Department of Computer and Information Science,
National Chiao Tung University, 1001, Ta Hsueh Road,
Hsinchu, Taiwan 300
{cmtien, ydlin}@cis.nctu.edu.tw
2 Computer and Communications Research Laboratories,
Industrial Technology Research Institute, 195 Chung Hsing Road,
Section 4, Chu Tung, Hsinchu, Taiwan 310
{ChoJunLee, sting}@itri.org.tw

Abstract. This paper presents a SOAP request scheduling algorithm
for differentiated quality of service. The scheduling algorithm can be
deployed on a Web services server or any server that processes SOAP
requests. Due to the resource-intensive security processing of SOAP mes-
sages, this research implements the scheduling algorithm on a QoS se-
curity server. The security server schedules the requests forwarded from
the Web services server for the security processing and then sends the
valid requests back to the Web services server for executing the Web ser-
vices. The design of the scheduling algorithm is derived from the tradi-
tional deficit round-robin scheduling. However, the scheduling algorithm
schedules requests according to the probed CPU resource consumption
of requests. In the evaluation, the scheduling algorithm reveals the ser-
vice differentiation on the throughput and response time and the little
scheduling overhead. The resource utilizations are measured to prove
the security processing is much more resource-intensive than the Web
services execution.

1 Introduction

Web services are self-describing and modular business applications that expose
the business logic as services over the Internet through programmable interfaces
and standard Internet protocols. A Web services can be invoked by different ser-
vice requesters; thus, a service provider may wish to offer different Service Level
Agreements (SLAs) to different consumers to guarantee different levels of Qual-
ity of Service (QoS) [I]. The QoS issues of Web services can be discussed from
two perspectives: service consumers and service providers. From the service con-
sumer perspective, a Web services potentially could be provided by many service
providers with different SLAs. A service consumer can invoke one or more Web
services to accomplish a task after the discovery of the Web service. Many re-
searches have presented QoS brokers and middlewares between service providers

M. Dean et al. (Eds.): WISE 2005 Workshops, LNCS 3807, pp. 63-72] 2005.
© Springer-Verlag Berlin Heidelberg 2005

64 C.-M. Tien et al.

and consumers for service selection and composition [2] [3][4] [5][6]. However, these
help a service provider little to guarantee the service levels described in the SLAs.
From the service provider perspective, requests for a Web services should be con-
trolled in order to meet the guarantees in the negotiated SLAs. Some researches
have proposed request scheduling and resource allocation algorithms to allow a
service provider to provide service differentiation to multiple classes of service
consumers [7][8][9][L0]. Through prioritizing a request or estimating the resource
requirement of a request, the throughput or response time can be differentiated
among service classes.

In this paper, a SOAP (Simple Object Access Protocol) request scheduling
algorithm that manages the system resource for differentiated quality of ser-
vice is presented. The scheduling algorithm can be deployed on a Web services
server or any server that processes SOAP requests. This research chooses to
implement the scheduling algorithm on a security server because the security
processing of SOAP messages, such as message integrity, message confidential-
ity, and message authentication, often consume more system resources than the
Web services execution. The security server accepts SOAP requests forwarded
from the Web services server. Then the request scheduling algorithm schedules
the requests to determine the order and time of forwarding requests to the se-
curity processing. The Deficit Round Robin (DRR) scheduling [I1] is emulated
by the scheduling algorithm. However, the presented scheduling algorithm dif-
fers from the traditional DRR scheduling in that the former schedules requests
but the latter schedules packets. The DRR scheduling requires packet size to be
known, whereas the presented scheduling algorithm requires the amount of the
server resource consumed by a request to be known. Another difference is that
the traditional DRR scheduling is work-conservative, it never idles a link if it
has a packet. The presented scheduling algorithm is also work-conservative in
order to keep the server busy. However, it is non-work-conservative because it
chooses to remain idle when there is no enough server resource, even if it has
requests to service.

The presented QoS security server is implemented using the open source
packages of the Apache XML project [12]. The security server has a request
thread pool and a security thread pool for accepting requests from the Web ser-
vices server and performing the tasks of the security processing, respectively. In
the evaluation, the throughput and response time of each service class are mea-
sured to demonstrate the effectiveness of the service differentiation. The CPU
and memory resource utilizations of the Web services server and security server
are measured during the evaluation to prove the security processing actually
consume much more resource than the Web services execution.

The rest of this paper is organized as follows. Section 2 introduces the re-
lated work regarding the Web services differentiation. Section 3 presents the
architecture of the QoS security server and the design of the request schedul-
ing algorithm. Section 4 describes the implementation and the evaluation of the
presented solution. Section 5 finally gives the conclusion and the future work of
this research.

SOAP Request Scheduling for Differentiated Quality of Service 65

2 Related Work of Web Services Differentiation

If a service provider wants to offer differentiated levels of services to multiple
classes of service consumers, the SOAP requests destined to a server should be
controlled for service differentiation. The general way to achieve this is to deploy
a QoS broker or middleware in front of a server to determine the number, order,
or time of requests to be forwarded to the server. The following introduces some
researches related to Web service differentiation.

A QoS architecture consisting of a broker and proxies to map the QoS require-
ments from higher layers onto the underlying network layer has been presented
in [9). The proxies mark priorities of requests and responses in the IP packets
and let underlying transporting technologies control the QoS. Although this so-
lution can close the gap between the Web services layer and network layer, the
prerequisite of success is the underlying transport technology must support QoS.
However, the fact is QoS technologies are not widely deployed in the practical
networks.

A smartware for according scheduling priorities to requests has been pre-
sented in [7]. Its scheduling algorithm adjusts the priorities accorded to requests
dynamically to maintain the ratio of the request throughputs, measured by the
number of requests per second, with respect to the incoming request traffic. A
lower than normal arrival of a request category will penalize the priority, while
the greater than expected arrivals will reinforce the priority positively. A con-
cern of this solution is that the overhead of encoding service priority levels in
the request header is high. This would affect the performance of the middleware.

A QoS broker that manages the server resource to be allocated to requests
has been presented in [I0]. The broker employs two resource allocation algo-
rithms, homogenous resource allocation (HQ) and non-homogenous resource al-
location(RQ), for legacy and QoS servers respectively. The HQ algorithm sets
many threshold points and a step size and calculates the amount of the server re-
source to be allocated to a client. The RQ algorithm allocates different amounts
of resources to different clients according to their requirements. It creates a vir-
tual client to reserve some unused resource to reduce instability. If the reserved
resource is not enough, it reconfigures the resource allocation among some ex-
isting clients to let the incoming client receive a satisfactory service quality. The
purposes of the algorithms is to achieve a high average system utility and avoid
making frequent resource reconfigurations. Nevertheless, the nature of the re-
source reconfiguration is not good for the scheduling. The scheduling algorithms
should accurately allocate needed resource to a request rather than correcting
the allocation after a reconfiguration.

An architecture and prototype implementation of a performance manage-
ment for cluster-based Web services has been presented in [8]. The management
tasks of the system include resource allocation, load balancing, and server over-
load protection. Its global resource manager periodically computes the number
of concurrent requests to be sent to a server. It uses a simple queuing model
to predict the response time of request for different resource allocation values.
However, the omitted fact of this research is that different types of requests

66 C.-M. Tien et al.

bring different amounts of resource consumptions. Only counting the number
of concurrent requests processed on a server would lead to a bottlenecked or a
non-fully-utilized resource.

3 QoS Security Server and Request Scheduling Algorithm

Web services security offers message integrity, message confidentiality, and mes-
sage authentication in SOAP communications. All XML Web services security
functions, such as XML schema validation, XML encryption, XML signature,
Web services security and others, require extensive XML processing. If all these
security functions are executed on a Web services server, the performance of the
Web services would be downgraded seriously. Therefore, the secure XML pro-
cessing should be offloaded from the Web services server. Here a QoS security
server and a SOAP request scheduling algorithm are presented to offload the se-
curity processing of SOAP messages and provide service differentiation to Web
services consumers.

The architecture of the QoS security server is shown in Fig.[Il The Web ser-
vices server accepts requests from the Internet. The requests are then forwarded
to the security server for the security processing. The request classifier classi-
fies the requests into different service classes according to the pre-defined QoS
policies and puts the requests into the corresponding class queues. The request
scheduler checks the availability of the CPU resource. If the available resource is
enough for the requirement of a request, the request scheduler fetches the request
from the queue and determines the order and time the request being sent to the
security processor. The security processor performs the security processing for
the request. The valid requests will be sent back to the Web services server for
executing the Web services, whereas the invalid ones will be dropped. The Web
services server returns the response to the requester. The detailed design of the
QoS security server is discussed as follows.

Request Profiling. A service provider may assign different security levels to
different requesters. Hence, securing SOAP requests could go through different
steps. XML schema validation, XML encryption, and XML signature are pos-
sible steps. A request could go through one step only, whereas another request
could go through two or more steps. This means different requests would lead
to different resource consumptions when being processed. In order to manage

[Classt — TTTTTTTTTT} -
Request [Class2 T TTTTTTTT—|» Request Security
Web Services Classifier | |y oiasss ——TTTTTTTTTT} " Scheduler [*|Processor
Server Class Queue

QoS Security Server

Fig. 1. Architecture of the QoS security server

SOAP Request Scheduling for Differentiated Quality of Service 67

the resource of the security server for the service differentiation, the resource
consumption of the security processing of a request has to be known. The re-
quest profiling is a process to profile the resource requirement of a request. The
resource consumption of every security function is measured. The amount of the
resource requirement of a request is derived from summing all the resource con-
sumptions of the needed security functions. The profiled information is stored
in a resource requirement table. The request classifier refers to this table when
estimating the resource requirement for a request.

Request Classification. The SLAs of the service provider and its clients define
the service treatments the service provider should provide. The service provider
therefore defines QoS policies for the request classifier to classify clients into
different service classes. The QoS policies are defined in a QoS policy table that
describes the rules of classifying requests and the service weights of the service
classes. The request classifier accepts a request from the Web services server and
inspects the HT'TP header and the metadata contained in the SOAP request,
such as user id, subscriber id and service name, etc. The header information and
metadata are compared with the rules in the QoS policy table. If matched, the
request will be classified into a service class; otherwise, it will be dropped. Once a
request is classified, the request classifier lookups the resource requirement of the
request from the resource requirement table. The request classifier then tags the
resource requirement onto the request and puts the request into an appropriate
class queue. The requests in the classes queue will wait for being scheduled to
the security processor.

Request Scheduling. The key idea of designing the request scheduler is derived
from the Deficit Round Robin (DRR) scheduling. A traditional DRR scheduler
schedules packets to manage the bandwidth of a link. Whereas in this research,
the request scheduler schedules SOAP requests to manage the resource of the se-
curity server. The request scheduler determines which request to be fetched next
from the class queues and when to forward a request to the security processor
for the security processing.

The operation of the request scheduler is shown in Fig. 2l The numbers
in the blocks in the queues represent the amounts of resource requirements of
the queued requests. The request scheduler uses a deficit counter to record the
unused service quantum of a class and a round-robin pointer to point to the
class queue to be serviced. It services the request at the head of each non-empty
class queue which the value of the deficit counter is greater than the resource
requirement of the request. In addition, the request scheduler checks the amount
of the available resource for deciding whether to forward a request to the security
processor or not. If the available resource is enough for the requirement of the
request to be serviced, the request scheduler forwards the request to the security
processor; otherwise, the request scheduler stops the scheduling and waits for the
resource released from the finish of the security processing of a request. A deficit
counter is decremented by the resource requirement of a request being serviced.
When the value of the deficit counter is lower than the resource requirement of

68 C.-M. Tien et al.

Deficit Counter

Class 1 ———>[60 | Class 1

Round-robin of the requests
Class 2 Pointer Class 2 —» L H
cesss [[8 80] cussa |

Class Queue Request Scheduler

Fig. 2. Operation of the request scheduler

the request that at the head of the queue, this means the service quantum in this
round is already not enough for the requirement of this class. The round-robin
pointer at this time moves to the next queue and the next deficit counter is
incremented by the defined quantum size. Through the request scheduling, the
resource of the security server is shared among the classes according to the ratio
of the quantum sizes assigned to the classes.

The presented request scheduler and the traditional DRR scheduler are dif-
ferent in several aspects. First, the presented scheduler schedules requests in-
stead of packets. Then, the presented scheduler schedules requests according
to the resource requirement of a request, not packet size. Finally, the presented
scheduler is work-conservative to the security server; that is, it keeps the security
server busy at any time. On the other hand, the presented scheduler is non-work-
conservative to the class queues because it may choose to remain idle if there is no
enough resource. However, the traditional DRR scheduler is work-conservative.
The DRR scheduler keeps scheduling packets if there is any packet in the queues.

4 Implementation and Evaluation

4.1 Implementation

The implementation of the QoS security server is based on the open source
packages of the Apache XML project, including XML Security, Xerces, Xalan,
Log4j, Jakarta Discovery, and Jakarta HttpClient. The security server has two
thread pools, the request thread pool and security thread pool. The threads in
the request thread pool perform the tasks of accepting requests from the Web
services server; whereas those in the security thread pool perform the tasks of the
security processing. Each thread pool is given some fixed number of threads to
use. The request thread pool size is larger than the security thread pool size so as
to make the class queues accumulate enough requests for the request scheduling.
The purpose of using the thread pools is to increase the performance through
multi-threading and avoid too much thread switching overhead. When the Web
services server forwards a request to the security server, the request thread pool
assigns the request to one of its threads. The request classifier classifies the
request and puts the request into an appropriate class queue. The request thread
is released to accept a new request. Similarly, the security thread pool assigns a
security thread to perform the security processing for a scheduled request. Once
the security processing of the request is finished, the security thread is released
for an upcoming request.

SOAP Request Scheduling for Differentiated Quality of Service 69

4.2 Evaluation

Evaluation Environment. The evaluation environment consists of three
SOAP request generators, a Web services server, a database server, and a QoS
security server. The platform of each generator and server is an Intel Pentium 4
2GHz system with 2GBytes of main memory and a 100 Mbps Ethernet network
adaptor. Each request generator emulates 50 service requesters to sends a large
amount of requests to the Web services server. Therefore the total number of the
emulated service requesters is 150. Each request generator sends a new request
to the Web services server after the generator has received a response. More
request generators put more load on the Web services server. The Web services
server forwards the requests to the security server for the security processing
and service differentiation. The valid requests are sent back to the Web services
server to execute the Web services, whereas the invalid ones are dropped. The
Web services server submits queries to the database server and response to the
service requesters.

In the evaluation, the QoS disabled and QoS enabled scenarios are com-
pared. The QoS disabled scenario is that the security server processes the re-
quests immediately without any request scheduling mechanism, whereas the
QoS enabled scenario is that the security server performs the presented request
scheduling algorithm to manage the CPU resource. In the QoS enabled scenario,
three services classes are defined and the ratio of the quantum sizes is set to
6:3:1. The throughput, response time, resource utilization of the Web services
server and security server of the both scenarios are recorded for analyzing the
results.

Service Differentiation. The effectiveness of the service differentiation can be
observed mainly from the throughput of the Web services server and the average
processing time of requests. Fig. Bl(a) shows the throughputs in the QoS disabled
and QoS enabled scenarios. In the QoS disabled scenario, it is obvious that there
is no service differentiation among the three classes because the throughput of
each class is almost the same, i.e. 86 requests per second. The throughputs of the
three classes in the QoS enabled scenarios are 148, 75, and 26 requests per second
respectively, and the ratio of the throughputs is 5.75:2.92:1, very close to the
defined ratio of 6:3:1. The QoS enabled scenario demonstrates the effectiveness
of the service differentiation. On the other hand, the total throughput in the
QoS enabled scenario (248 requests per second) is a little bit lower than that in
the QoS disabled scenario (258 requests per second). This reveals the overhead
of the presented scheduling algorithm is very little.

Another result that can demonstrate the effectiveness of the service differ-
entiation is the response time of processing a request. The response time is the
time interval between the time a client issues a request and the time the client
finishes receiving a response. The duration of the response time may contain
the transmission delay, classification delay, queuing delay, and security process-
ing delay, and Web services execution delay. Fig. [B(b) shows the response times
in the QoS disabled and QoS enabled scenarios. In the QoS disabled scenario,

70 C.-M. Tien et al.

Throughput Response Time
T 300 2,000 1.930
g 258 248 1,800
& 250 B £ 1,600
2 S 1,400
200 — o 1
¢ 148 E 1,200
=
g 150 — o 1,000 539
S0 |84 88 86 | 5 |_||| § 800 583 563 570 572 574
£l g 600 A
-§, 50 26 1] & 400 — —
3 200 L
£ 0 L 0 L
QoS Disabled Scenario QoS Enabled Scenario QoS Disabled Scenario QoS Enabled Scenario
\DCIass 1 B Class 2 OClass 3 DTotaI\ \DCIass 1 B Class 2 OClass 3 DAverage\
(a) Throughput. (b) Response time.

Fig. 3. Throughput and response time in the QoS disabled and QoS enabled scenarios

CPU Resource Utilization Memory Resource Utilization
100% 900 853 845
o 800
g 8 & 700
S 60% = 600
= S 500
N 40% = 400
S 27% 27% g
S 20% i o = 300
8% 8% 12% > 200
0% : i 1 100 27 26
QoS Disabled QoS Eabled QoS Disabled QoS Enabled 0 — L = | .
Web Services Web Services Security Security QoS Disabled QoS Eabled QoS Disabled QoS Enabled
Server Server Server Server Web Services Web Services Security Security
O System B User Server Server Server Server
(a) CPU resource utilizations. (b) Memory resource utilizations.

Fig. 4. Resource utilizations in the QoS disabled and QoS enabled scenarios

the three classes of clients perceive about 572 ms of response time. There is
no service differentiation on response time in the QoS disabled scenario. How-
ever in the QoS enabled scenario, the three classes of clients perceive 312, 639,
and 1930 ms of response time respectively. The response time in the QoS en-
abled scenario is differentiated among the three classes, even through the ratio
of the response times of the three classes is not 6:3:1. Comparing the average
response times of the three classes in the QoS enabled scenraio, the response
time of the class 1 is rewarded, whereas the response times of the class 2 and
class 3 are penalized. The average response time in the QoS enabled scenario
(574 ms) is almost the same as that in the QoS disabled scenario (572 ms). This
tells the presented scheduling algorithm only make the response time a little bit
longer.

Resource Utilization. The need of offloading the security processing from
the Web services server is based on the prerequisite that the security process-
ing actually consumes more resource than the Web services execution. Fig. [
compares the CPU and memory resource utilizations of the Web services server
and security server. The majority of the CPU resource utilization is spent in

SOAP Request Scheduling for Differentiated Quality of Service 71

the user space due to the Web services execution and security processing. Both
the CPU and memory resource utilizations reveal the security processing is very
resource intensive. An interesting finding is that there is no obvious difference
on the resource utilization between the QoS disabled and QoS enabled scenar-
ios. However, the QoS enabled scenario has demonstrated its effectiveness of the
service differentiation and the little overhead.

5 Conclusion and Future Work

Quality of service of Web services allows a service provider to offer different
service level agreements to different consumers. This paper presents a SOAP
request scheduling algorithm to manage the system resource for differentiated
QoS. The presented scheduling algorithm can be deployed on a Web services
server or any server that processes SOAP requests. This research chooses to im-
plement the scheduling algorithm on a QoS security server to offload the security
processing of SOAP messages from the Web services server and provide service
differentiation to Web services consumers. The security server schedules the re-
quests forwarded from the Web services server for the security processing and
then sends the valid requests back to the Web services server for executing the
Web services. The design of the scheduling algorithm is derived from the tradi-
tional deficit round-robin scheduling. However, it schedules requests according
to the probed CPU resource consumption of requests.

The QoS security server is implemented based on the open source packages
of the Apache XML project. It uses a request thread pool and a security thread
pool to perform the tasks of accepting requests from the Web services server
and security processing, respectively. The request thread pool size is larger than
the security thread pool size so as to make the class queues accumulate enough
requests for the request scheduling. In the evaluation, the presented schedul-
ing algorithm reveals the service differentiation on the throughput and response
time and the little scheduling overhead. The CPU and memory resources of the
Web services server and security server are measured to prove that the secu-
rity processing is much more resource-intensive than the Web services execution
and it is necessary to offload the security processing from the Web services
server.

The presented scheduling algorithm only manages one server resource for
the service differentiation. Actually, the requests accessing Web services may
consume multiple server resources. Hence, a future direction of this research
is on multiple-resource request scheduling. The scheduling algorithm should be
capable of managing multiple resources to maximum the resource utilizations
and at the same time provide service differentiation. Another future direction
is enforcing QoS on compositive Web services. The execution of a Web ser-
vice may rely on executing several related Web services or tasks on different
servers. Therefore, the scheduling algorithm should keep a Web services dif-
ferentiated when a request is processed sequentially or parallelly on several
servers.

72 C.-M. Tien et al.
References
1. Schmietendorf, A., Dumke, R., Reitz, D.: SLA Management - Challenges in the

10.

11.

12.

Context of Web-Service-Based Infrastructures, Proceedings of the 2004 IEEE In-
ternational Conference on Web Services (2004) 606613

. Zeng, L., Benatallah, B., Dumas, M.: Quality Driven Web Services Composition,

Proceedings of the 12th International Conference on World Wide Web (2003) 411—
421

Zeng, L., Benatallah, B., et al.: QoS-Aware Middleware for Web Services Compo-
sition, IEEE Transaction of Software Engineering, Vol. 30, No. 5 (2004) 311-327

. Liu, Y., Ngu, A. H. H., Zeng, L.: QoS Computation and Policing in Dynamic

Web Service Selection, Proceedings of the 13th international World Wide Web
Conference (2004) 66-73

Yu, T., Lin, K. J.: Service Selection Algorithms for Web Services with End-to-
End QoS Constraints, Proceedings of the 2004 IEEE International Conference on
E-Commerce Technology (2004) 129-136

Maximilien, E. M., Singh, M. P.: Toward Autonomic Web Services Trust and Se-
lection, Proceedings of the 2nd International Conference on Service Oriented Com-
puting (2004) 212-221

Sharma, A., Adarkar, H., Sengupta, S.: Managing QoS through Prioritization in
Web Services, Proceedings of the 4th International conference on Web Information
Systems Engineering Workshops (2003) 140-148

Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A. , Youssef, A.:
Performance Management for Cluster Based Web Services, Proceedings of the 8th
International Symposium on Integrated Network Management (2003)

Tian, M., Gramm, A., Naumowicz, T., Ritter, H., Schiller, J.: A Concept for QoS
Integration in Web Services, Proceedings of the Fourth International Conference
on Web Information Systems Engineering Workshops (2003) 149-155

Yu, T., Lin, K. J.: The Design of QoS Broker Algorithms for QoS-Capable Web
Services, Proceedings of the 2004 IEEE International Conference on e-Technology,
e-Commerce and e-Service (2004) 17-24

Shreedhar, M., Varghese, G.: Efficient Fair Queuing Using Deficit Round-Robin,
IEEE/ACM Transaction on Networking, Vol. 4, Issue 3 (1996) 375-385

Apache XML Project, http://xml.apache.org/

	Introduction
	Related Work of Web Services Differentiation
	QoS Security Server and Request Scheduling Algorithm
	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

