
2	 IEEE Software | published by the IEEE computer society � 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

Improving
Accuracy of
Automated
GUI Testing
for Embedded
Systems
Ying-Dar Lin, National Chiao Tung University

Edward T.-H. Chu, National Yunlin University of Science
and Technology

Shang-Che Yu, National Chiao Tung University

Yuan-Cheng Lai, National Taiwan University of Science
and Technology

// The Smart Phone Automated GUI (SPAG) batches

and reproduces event sequences on the device under

test to ensure that they are performed on time. //

Automated GUI testing for
smart phones faces two major chal-
lenges: nondeterministic events and
execution interference. Owing to

uncertainty in the runtime execu-
tion environment, such as timing
delay variations in communication,
the device under test (DUT) might

not reproduce interpreted events on
time. As a result, actual intervals
between events can differ from the
predefined intervals given in the test
script. Nondeterministic event se-
quences can easily lead to incorrect
GUI operations. For example, the
Android fling action occurs when a
user scrolls a touch panel and then
quickly lifts his or her finger. The de-
vice uses a sequence of motion events
to represent the operation. When an
automated GUI tool replays these
event sequences, each motion event
should be triggered on time to repro-
duce the fling with the same scrolling
speed. If not, the scrolling speed of
the reproduced fling action will lead
to an incorrect result. To address the
issue of nondeterministic events, a
commonly used method is to use a
trackball instead of the fling action.
However, not all smart phones are
equipped with trackballs.

An uncertain runtime execution
environment can interfere with or
delay an application’s execution, es-
pecially when the DUT is under a
heavy load. A delayed application
can fail to process an event cor-
rectly if the response to the previous
event hasn’t been completed. For ex-
ample, an event might be dropped
if the application under test (AUT)
receives the event ahead of time and
isn’t ready to process it. To solve
this problem, an intuitive method is
to delay the execution of the opera-
tions. However, this requires experi-
enced engineers to set the delay for
each operation properly so that the
application can receive the repro-
duced events.

We aimed to design an automated
GUI testing system to maximize ac-
curacy within the uncertainty of
runtime execution environments.
The accuracy of an automated GUI

FOCUS: New Perspectives on Software Quality

	 January/February 2014 | IEEE Software � 3

testing tool is defined as the success
rate of examining a bug-free applica-
tion. The higher the success rate, the
higher the accuracy. Thus, we de-
signed the Smart Phone Automated
GUI (SPAG) testing tool, based on
Sikuli, a popular open source auto-
mated GUI tool.2,3 Using the Sikuli
integrated development environ-
ment, we can write GUI test cases,
execute the script, automate GUI
operations on a desktop, and ver-
ify GUI elements presented on a
screenshot. To avoid nondeterminis-
tic events, we batched the event se-
quence and reproduced the events on
the DUT.

In addition, SPAG can monitor
the target application’s CPU usage
during runtime and dynamically
change the timing of following op-
erations so that all event sequences
and verifications can be performed
on time, even when the DUT is heav-
ily loaded. We conducted several ex-
periments on an Acer Liquid smart
phone to investigate the applicability
and performance of SPAG and com-
pared our method with Monkey-
Runner (http://developer.android.
com /tools /help/monkeyrunner_
concepts.html). For related work on
GUI testing, please see the sidebar.

Overview
We adopted a commonly used soft-
ware testing technique called record/
replay for embedded systems. Figure
1a shows the recording stage, where
the screen of the DUT is first redi-
rected to the host PC, which runs the
test tool. An engineer interacts with
the DUT remotely: whenever the en-
gineer performs a GUI operation on
the host PC, such as a key press or
a finger touch, the test tool sends
events associated with the GUI op-
eration to the DUT and records them

Related Work
on GUI Testing

Researchers have dedicated much work to automated GUI testing. The most
common approach is model-based testing (MBT), which models target applica-
tions’ behaviors and uses the test cases the models generate to validate the
device under test. Tommi Takala and his colleagues adopted MonkeyRunner and
Window services to generate GUI events,1 and Zhifang Lin and his colleagues uti-
lized the concept of virtual devices to test applications.2 These methods rely on
image-based pattern matching, which is sensitive to images’ quality. The Smart
Phone Automated GUI (SPAG) testing tool uses GUI components for pattern
matching to improve the stability and the speed of validation.

Several techniques and architectures were developed to cope with complex
application tests. MoGuT, a variant of the finite-state machine (FSM) based test
framework, uses image flow to describe event changes and screen response.3
However, it lacks flexibility. Grey-box testing adopted APIs to construct calling
contexts and parameters from input files.4 Based on a logging mechanism, grey-
box testing verifies testing results. However, for complex software, it becomes
difficult to describe the testing logic and calling context. Recently, Cuixiong Hu
and his colleagues developed an approach to automate the testing process of
Android applications using JUnit and MonkeyRunner tool.5 Wei Yang and his
colleagues proposed a method to automatically extract a model of an applica-
tion.6 However, both of the methods used a fixed delay between consecutive GUI
operations, whereas SPAG determines the delay dynamically by using the Smart
Wait function. Domenico Amalfitano and his colleagues designed a method
to automatically generate a model of application by using dynamic crawling.7
However, their method required the source codes of the applications under test.
SPAG doesn’t require the source code.

References
	 1.	 T. Takala, M. Katara, and J. Harty, “Experiences of System-Level Model-Based GUI Testing of

an Android Application,” Proc. Int’l Conf. Software Testing, Verification and Verification (ICST
11), IEEE CS, 2011, pp. 377–386.

	 2.	 L. Zhifang, L. Bin, and G. Xiaopeng, “Test Automation on Mobile Device,” Proc. 5th Workshop
Automation of Software Test (AST 10), ACM, 2010, pp. 1–7.

	 3.	 O.-H. Kwon and S.-M. Hwang, “Mobile GUI Testing Tool Based on Image Flow,” Proc.
7th IEEE/ACIS Int’l Conf. Computer and Information Science (ICIS 08), IEEE CS, 2008, pp.
508–512.

	 4.	 V.R. Vemuri, “Testing Predictive Software in Mobile Devices,” Proc. Int’l Conf. Software Test-
ing, Verification, and Verification (ICST 08), IEEE CS, 2008, pp. 440–447.

	 5.	 C. Hu and I. Neamtiu, “Automating GUI Testing for Android Applications,” Proc. 6th Int’l
Workshop on Automation of Software Test (AST 11), ACM, 2011, pp. 77–83.

	 6.	 W. Yang, M.R. Prasad, and T. Xie, “A Grey-Box Approach for Automated GUI-Model Genera-
tion of Mobile Applications,” Proc. 16th Int’l Conf. Fundamental Approaches to Software
Engineering (FASE 13), Springer, 2013, pp. 250–265.

	 7.	 D. Amalfitano et. al., “Using GUI Ripping for Automated Testing of Android Applications,”
Proc. 27th IEEE/ACM Int’l Conf. Automated Software Engineering (ASE 12), ACM, 2012, pp.
77–83.

FOCUS: New Perspectives on Software quality

4	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

in a test case. The test case also in-
cludes verification operations, added
by the engineer, to verify the DUT’s
response. Figure 1b shows the replay
stage, where the test executer first
reads GUI operations from the test
case and replays them on the DUT.
Finally, the test executer verifies
the testing results according to the
DUT’s response.

C denotes a test case that in-
cludes n operations {O1, O2, …,
On}. An operation can be a GUI op-
eration or a verification operation: a
GUI operation can be a key press or
a finger touch, and a verification op-
eration is used to verify the test re-
sult. The interval between Oi – 1 and
Oi is given by Ti. A GUI operation
consists of a sequence of events {ei,1,
ei,2, …, ei,m}. For example, when a
user performs a fling operation, the
Android system generates the asso-
ciated move events.

Owing to the uncertainty of run-
time execution environments and
variations in the communication
delay between the host PC and the
DUT, the DUT might not reproduce
each event ei,j on time. Such nondeter-
ministic event sequences can lead to
an incorrect GUI operation and inval-
idate verification operations. Further-
more, the runtime execution environ-
ment of the DUT might also affect
the interval Ti between Oi – 1 and Oi.
The GUI application might drop the
new arrival events of Oi because the
previous events of Oi – 1 haven’t been
processed yet. Such dropped events
will also lead to test failures.

SPAG Design
We designed SPAG to accurately re-
produce GUI operations and verify
test results. In the record stage, SPAG
monitors GUI operations and stores
these GUI operations and associated

CPU times of the DUT in a test
script. An engineer also adds verifi-
cation operations to the test script to
verify the results. In the replay stage,
GUI and verification operations are
batched and sent to the DUT so that
the events can be triggered on time.
Based on the CPU utilization of the
DUT, SPAG dynamically modifies
the duration of two operations. The
testing results are sent back to the
host PC for verification.

Event Batch
In the replay stage, the application
running on DUT continues moni-
toring the GUI events and takes
corresponding operations. For ex-
ample, a gesture, such as a swipe op-
eration, includes several multitouch
events. After receiving the multi-
touch events, the application scrolls
the screen up. However, some GUI
operations are sensitive to the timing
of associated events. For example,
the onFling GUI operation consists
of many move events. The speed of
onFling is sensitive to both displace-
ment and time difference between
two continuous move events. If the
actual interval between two move
events is longer than the interval de-
scribed in the test script, the speed
of the reproduced onFling GUI will
be slower than expected, and the
incorrect GUI operation could lead
to test failure. Therefore, in the re-
play stage, it’s crucial to trigger each
event at the DUT on time to avoid
possible test failures.

In our implementation, SPAG
stored the associated events of each
GUI operation and event intervals
in the test script. In addition, a tag,
such as ACTION_DOWN, ACTION_MOVE, or
ACTION_UP, was attached at the end
of each GUI operation to differenti-
ate continuous GUI operations. In
the replay stage, SPAG first batched

(a)

Host PC

Test tool

Remote GUI of SUT

Test case
Veri	cations

Script IDE

Demonstrate GUI testing

Add veri	cation

Engineer

Screenshot

GUI actions
GUI

actions

Engineer

(b)

Host PC

Test tool

Test executer

Test case

Component Control

DataDocument

Substance

Start testing

Test result

Screenshot

GUI actions
Operations

GUI actions and
veri	cations

Device
under
test

Device
under
test

Figure 1. The system architecture of the record/replay method and the device under

test: (a) the recording stage and (b) the replay stage.

	 January/February 2014 | IEEE Software � 5

all events and sent them to the DUT.
Next, a module at the DUT rather
than a module at the host PC trig-
gered the events to remove the ef-
fect of commutation uncertainty be-
tween the DUT and host PC.

Smart Wait
In the replay stage, the recorded GUI
operations are sent to the associated
application accordingly. However,
the execution time of the applica-
tion can be longer than expected if
the execution environment is heavily
loaded, and the prolonged applica-
tion might have failed to process a
GUI operation correctly if the op-
eration came earlier than expected.
For example, if the DUT received
the push-bottom operation ahead of
time and the AUT wasn’t ready to
process the GUI operation, it would
be dropped and lead to test failure.
A practical method to avoid execu-
tion interference was to ask experi-
enced engineers to set the duration
of each pair of GUI operations so
that the application could process
GUI operations on time while main-
taining a reasonable testing time.
But, the cost of manually adjusting
durations is high.

To improve the efficiency of the
test process, SPAG automatically ad-
justed delay time between two GUI
operations based on CPU time used
to perform GUI operations. The
function is called Smart Wait. In
this function, p denotes the process
that performs the GUI operations.
In the record stage, when operation
O

i – 1 took place, SPAG monitored the
CPU time cpui of process p at dura-
tion Ti between Oi – 1 and Oi. This
was achieved by parsing data from
the Linux OS virtual directory /proc.
From /proc/<PID>/stat, we obtained the
time the process had spent in both
the user space and kernel space. In

addition, we obtained from /proc/stat
the time the CPU had spent in both
the user and kernel space. Based on
this information, SPAG calculated
the CPU usage cpui of the process p
at duration Ti. Both cpui and Ti were
stored in the test script as CMD(Ti,
cpui). Note that p' denotes the pro-
cess that performed the GUI opera-
tions in the replay stage. When Oi – 1
was executed, SPAG monitored the
CPU time cpui' of p'. If cpui' was
smaller than cpui, SPAG assumed
that Oi – 1 was incomplete and cal-
culated a proportional delay time
for remaining GUI operations. For
example, in the recording stage,
if Oi – 1 used 5 milliseconds of CPU
time out of 4 seconds for execution,
then cpui was 5 milliseconds and
Ti was 4 seconds. SPAG inserted a
command CMD(4000 ms, 5 ms) in
the test script right after Oi – 1. In
the replay stage, when Oi – 1 was re-
played, SPAG first waited 4 seconds
and read the associated cpui' from
the DUT. If cpui' was 2 ms, SPAG as-

sumed that Oi – 1 was unfinished and
estimated its completion time as 4 s
× 5 ms/2 ms = 10 s. In this case, the
next operation Oi was postponed by
6 seconds.

Implementation
SPAG integrated two popular open
source tools: Android screencast and
Sikuli. Android screencast is a desk-
top application that redirects the
screen of the DUT to the host PC
and allows an engineer to interact

remotely with the DUT by using a
mouse or keyboard. Sikuli is a desk-
top application that automatically
tests GUIs via screenshot images. In
the recording stage on the host PC,
SPAG records all GUI operations per-
formed inside the redirected screen
of the DUT. An engineer uses Sikuli’s
IDE to insert a verification operation
at the end of one or several contin-
ued GUI operations by selecting a
region of the redirected screen. The
class name and activity name of the
redirected screen are also logged at
that time. In the replay stage, SPAG
reproduces GUI operations by send-
ing associated events to the DUT.

We adopted both Smart Wait
and Event Batch to reduce the un-
certainty of the runtime execution
environment. Event Batch aims to
remove the communication uncer-
tainty between the DUT and PC,
whereas Smart Wait aims to remove
the uncertainty of the DUT runtime
execution environment. They can
be applied together or separately

depending on the communication
uncertainty and runtime execution
environment. When performing a
verification operation, SPAG first
checks the class name and activity
name of the redirected screen. If the
check fails, SPAG instantly makes an
image comparison between the re-
directed screen and the predefined
image. Note that the methodolo-
gies of Event Batch and Smart Wait
are portable. To take advantage of
these two techniques to perform

Pull Quote

FOCUS: New Perspectives on Software quality

6	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

GUI testing on other platforms, you
would need to use an equivalent of
Android screencast to remotely con-
trol the DUT and integrate that tool
with Sikuli or an equivalent tool to
record user interaction.

Experimental Results
In this section, we first explain the
experiment setup. Then, we evaluate
the accuracy of SPAG and Monkey-
Runner. Finally, we investigate the
effects of smart wait and event batch
on accuracy.

Experiment Setup
To investigate the accuracy of SPAG,
we adopted the Acer Liquid smart
phone for evaluation. We compared
SPAG with MonkeyRunner, an au-
tomated testing tool included in the
Android software developer’s kit.
MonkeyRunner reproduces pre-
defined operations, such as key
presses, by generating associated
events and sending the events from
the host PC to the DUT.1 Our test
script included five commonly used
scenarios: browsing a contact entry,
installing an application over Wi-
Fi, taking a picture, making a video,
and browsing Google maps over Wi-
Fi. Figures 2 and 3 show how we
used a busy-loop program to adjust
the CPU utilization from 25 to 100
percent and adopted an intensive
flash read/write program to simulate
input/output burst condition. For
each configuration, CPU utilization
is 25 , 50, 75, or 100 percent. We re-
peated the same experiment 40 times
and took the average value of accu-
racy for comparison.

Test Accuracy
The experiment evaluated the ac-
curacy of SPAG and MonkeyRun-
ner. We checked the accuracy of
MonkeyRunner manually because

Normal 25% CPU 50% CPU 75% CPU 100% CPU IO busy

100

90

80

70

60

50

40

30

20

10

0

Additional workload

Ac
cu

ra
cy

99.5 97.5 98.5 96.5 96.5 90.088.0 85.5
77.5

65.5 64.5

26.5

Monkeyrunner

SPAG

Figure 2. Testing with the Smart Phone Automated GUI (SPAG) and MonkeyRunner.

The accuracy of MonkeyRunner dropped significantly when the CPU utilization

increased or the I/O subsystem was busy. The accuracy of SPAG was over 90 percent in

all configurations we tested.

Normal 25% CPU 50% CPU 75% CPU 100% CPU IO busy

100

90

80

70

60

50

40

30

20

10

0

Additional workload

Ac
cu

ra
cy

 (%
)

SPAG (Smart Wait)

SPAG (Batch Event)

Monkeyrunner

SPAG

Figure 3. Testing with Event Batch and Smart Wait. Event Batch and Smart Wait

can be applied together or separately depending on the communication uncertainty

and runtime execution environment. The Smart Wait function contributed more than the

Event Batch function in improving accuracy if the system is busy.

	 January/February 2014 | IEEE Software � 7

it didn’t support a sufficient image
comparison function to verify test-
ing results. MonkeyRunner’s accu-
racy dropped significantly when the
CPU utilization increased or the I/O
subsystem was busy. For example,
MonkeyRunner’s accuracy dropped
to 64.5 percent when CPU utiliza-
tion was 100 percent and to 26.5
percent when an I/O burst occurred.
This was because the tested appli-
cation was deferred for execution
when the system was heavily loaded.
MonkeyRunner doesn’t dynamically
modify the duration of two continu-
ous operations. As a result, the new
communing events were dropped or
ignored, which made MonkeyRun-
ner tests fail. On the contrary, with
the Smart Wait function, the accu-
racy of SPAG decreased only slightly
when CPU utilization increased or
I/O bursts occurred; its accuracy
was over 90 percent in all the con-
figurations we tested. Under normal
conditions in which CPU utilization
was less than 25 percent, the accu-
racy stayed at 99.5 percent.

With the same experimental
setup, we also adopted three popu-
lar mobile apps, Skype, Twitter, and
Facebook, to evaluate the accuracy
of SPAG and MonkeyRunner. The

Ta
b

l
e

 1 Accuracy of SPAG and MonkeyRunner by percentage.

Workload

Skype Twitter Facebook

SPAG MonkeyRunner SPAG MonkeyRunner SPAG MonkeyRunner

Normal 97.5 92.5 99.5 92.5 97.5 72.5

25% CPU 97.5 99.5 99.5 92.5 97.5 65.0

50% CPU 99.5 99.5 99.5 72.5 97.5 60.0

75% CPU 99.5 99.5 99.5 40.0 92.5 60.0

100% CPU 99.5 99.5 99.5 37.5 92.5 40.0

I/O Busy 99.5 72.5 95.0 20.0 92.5 40.0

Ying-Dar Lin is a professor in the Department of Computer
Science at National Chiao Tung University. His research interests
include embedded systems, network protocols, and algorithms.
He received a PhD in computer science from UCLA. He is an
IEEE Fellow. Contact him at ydlin@cs.nctu.edu.tw.

Edward T.-H. Chu is an assistant professor in the Depart-
ment of Computer Science and Information Engineering at Na-
tional Yunlin University of Science and Technology. His research
interests include embedded system software. He received a PhD
in computer science from National Tsing Hua University. Contact
him at edwardchu@yuntech.edu.tw.

Shang-Che Yu is a software engineer with Hope Bay
Technologies, Taiwan. He received an MS in computer science
from National Chiao Tung University. Contact him at comet.jc@
gmail.com.

Yuan-Cheng Lai is a professor in the Department of Infor-
mation Management at National Taiwan University of Science
and Technology. His research interests include performance
analysis and wireless networks. He received a PhD in computer
science from National Chiao Tung University. Contact him at
laiyc@cs.ntust.edu.tw.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

FOCUS: New Perspectives on Software quality

8	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

major gesture activity of Skype was
tapping, whereas that of Twitter
and Facebook was flinging. Table 1
shows that the SPAG maintained a
very high level of accuracy in all con-
figurations, whereas MonkeyRunner
performed poorly when the system
was busy, especially for Twitter and
Facebook. This is because Monkey-
Runner can’t trigger events on time
that are associated with flinging.

Effects of Smart Wait and
Event Batch on Accuracy
Figure 3 shows how in the case of a
100 percent CPU workload, the ac-
curacy of SPAG was 77.5 percent
with the Event Batch function and
92 percent with the Smart Wait func-
tion. Smart Wait contributed more
than Event Batch in improving accu-
racy when the system was busy. This
is because Smart Wait can be applied
to all GUI operations, whereas Event

Batch can only improve the accuracy
of moving GUI operations, such as
scrolling and flicking.

W e designed SPAG to
avoid nondeterminis-
tic events by batching

the event sequence and reproducing
them on the DUT directly. In addi-
tion, SPAG monitors target appli-
cations’ CPU usage at runtime and
dynamically change the timing of
the next operation so that all event
sequences and verifications can be
performed on time, even though the
DUT is heavily loaded. Our experi-
ments showed that SPAG can main-
tain a high accuracy of up to 99.5
percent. According to our current
design, as long as a smart phone is
supported by Android screencast,
we can test it with SPAG without
needing to modify anything. In the

future, we plan to design a fully plat-
form-independent automated GUI
testing system.

Acknowledgements
This work was supported in part by the
National Science Council and the Institute
for Information Industry in Taiwan.

References
	 1.	 T. Yeh, T.-H. Chang, and R.C. Miller,

“Sikuli: Using GUI Screenshots for Search
and Automation,” Proc. 22nd Ann.
ACM Symp. User Interface Software and
Technology (UIST 09), ACM, 2009, pp.
183–192.

	 2.	 T.-H. Chang, T. Yeh, and R.C. Miller,
“GUI Testing Using Computer Vision,”
Proc. 28th Int’l Conf. Human Factors
in Computing Systems (CHI 10), ACM,
2010, pp. 1535–1544.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

IEEE Computer Society’s Conference Publishing Services (CPS) is now offering
conference program mobile apps! Let your attendees have their conference
schedule, conference information, and paper listings in the palm of their hands.

The conference program mobile app
works for Android devices, iPhone,
iPad, and the Kindle Fire.

CONFERENCES
in the Palm of Your Hand

For more information please contact cps@computer.org

