

Abstract—String matching plays a central role in content

inspection applications such as intrusion detection, anti-virus,
anti-spam and Web filtering. Because they are computation and
memory intensive, software matching algorithms are insufficient in
meeting the high-speed performance. Thus, offloading packet
content inspection to dedicated hardware seems inevitable. This
paper presents a scalable automaton matching (SAM) design,
which uses Aho-Corasick (AC) algorithm with two parallel
acceleration techniques, root-indexing and pre-hashing. The
root-indexing can match multiple bytes in one single matching, and
the pre-hashing can be used to avoid bitmap AC matching, which is
a cycle-consuming operation. In the implementation of the Xilinx
Vertex4P FPGA platform, the proposed hardware architecture can
achieve almost 10.7 Gbps and support the largest pattern set,
which is 7.65 times faster than the original bitmap AC in the
average case. Further, SAM is feasible for either internal or
external memory architecture. The internal memory architecture
provides high performance, and the external memory architecture
provides high scalability of patterns.

Index Terms—Coprocessor, String matching, Hashing, Finite
automata, Content filtering.

I. INTRODUCTION
Because detecting malicious traffic on the Internet, such as

viruses and intrusions, relies on looking for signatures in the
packet payload, traditional firewalls that inspect only the packet
header are insufficient for the detection. Thus, deeper
packet-content inspection, such as intrusion detection, anti-virus,
anti-spam and Web filtering are required to detect such
application-level attacks that can be found in the field. The
essential part of these solutions is string matching, which has
been shown to be a time-consuming component that should be
accelerated [1].

For string matching, several algorithms and hardware
architectures have been proposed to improve performance.
Although the throughput of some approaches can achieve up to
10 Gbps, their common drawback is the poor scalability. Their
rules and pattern sets are hardwired into the FPGA, so the
scalability is limited by the number of logic cells and the size of
the embedded memory in the FPGA.

In this paper, we propose a scalable automaton matching
(SAM) which is based on the Aho-Corasick (AC) algorithm with
external memory architecture. AC is a common algorithm with
the following key features. First, it has a linear time performance
in the worst case. Second, it is robust for large and long patterns.
Third, it can perform multi-pattern matches. However, the most
critical defect of AC algorithm is its large memory usage.

Another AC-based algorithm, bitmap AC, improves memory
utilization by using a 256-bit bitmap to replace the 256 word-size
pointers of each state in AC. Therefore, bitmap AC is the
alternative which we adopted in this work. We also developed
two acceleration techniques to make our architecture have a
sub-linear matching time. The first technique is root-indexing,
which comes from the observation of AC’s high frequency
root-visiting behavior. The second technique is pre-hashing,
which comes from the observation of time-consuming operation
in bitmap AC, which also has a high cost on the x86-platform.
Thus, to reduce this kind of operation, pre-hashing can test
quickly to avoid bitmap AC matching. For scalability, our
architecture uses either internal or external memories to store the
whole pattern database of SNORT or even ClamAV.

The rest of this paper is organized as follows. In Section 2, we
first introduce the related algorithms and string matching
hardware. Then, the proposed architecture and acceleration
techniques are presented in Section 3. Section 4 describes the
software and hardware implementation of the SAM approach.
The performance analysis, evaluation, and comparison with
existing works are presented in Section 5. And finally, we draw
our conclusion in Section 6.

II. RELATED WORKS

A. Selecting Matching Algorithm for Content Filtering
To understand the appropriate requirements of string

matching algorithms, we surveyed the real patterns from open
source software including SNORT (http://www.snort.org) for
intrusion detection, ClamAV (http://www.clamav.net) for
anti-virus, SpamAssassin (http://spamassassin.apache.org) for
anti-spam, and SquidGuard (http://www.squidguard.org) and
DansGuardian (http://dansguardian.org) for Web blocking. The
necessary requirements can be concluded as the matching
variable-length, multiple patterns and on-line processing for all
content filtering systems.

Although the complex patterns, such as class, wildcard,
regular expression and case sensitive patterns might increase the
expression power of the patterns and has been used in some
applications, they can be converted to be composed of multiple
simple patterns [8], they are optional for matching algorithms.

Current existing on-line string matching algorithms for
content filtering can be classified into four categories, namely,
dynamic programming, bit parallel, filtering, and automaton
algorithms. In the summary, dynamic programming [3] and bit

Scalable Automaton Matching for High-speed
Deep Content Inspection

Ying-Dar Lin, Kuo-Kun Tseng and Chen-Chou Hung Yuan-Cheng Lai
National Chiao Tung University, Taiwan National Taiwan University

{ydlin@cis, kktseng@cis and bry@cis} of Science and Technology, Taiwan
 .nctu.edu.tw laiyc@cs.ntust.edu.tw

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

parallel [4] algorithms are inappropriate for variable-length and
multiple patterns, and the filtering algorithms [5] have poor
worst-case time complexity O(nm), where n and m are the
length of the text and patterns, respectively. Only the automaton
based algorithms such as Aho-Corasick (AC) [6] support
variable-length and multiple patterns, and also have the
deterministic worst-case time complexity O(n). Therefore, the
automaton based algorithm is a better choice for the content
filtering system, and is selected as a base to develop new
approaches.

B. AC Related Algorithms
AC works by constructing a state machine from the patterns to

be matched, and is composed of three component functions. The
first is the Goto function, which is used to traverse from one node
to the other node. The second is the Output function, which
outputs the match pattern for the current state. The third is the
Failure function, which is traversed when there is no next state.

AC is a typical deterministic finite automaton (DFA) based on
string matching. However, there are several variations of it.
Bitmap AC [7] uses bitmap compression to reduce the storage of
AC states. AC_BM [8] is a combination of the AC and Boyer
Moore (BM) algorithms, and aims to improve the conventional
AC from O(n) to the sub-linear time complexity. AC_BDM [9]
combines AC with backward DAWG matching (BDM), which
improves the average-case time complexity of the conventional
AC. Bit-split AC [10] splits the width of the input text into a
smaller bit width to reduce memory usage and the number of
comparisons when selecting next states. Since AC_BM has the
worst-case time complexity O(nm) and overhead for switching
between AC and BDM, and since bit-split AC requires large
match vector for each bit-split state, they are impractical for large
patterns. Thus, a scalable bitmap AC with space efficiency is
more preferable for our embodiment.

Bitmap AC, is a compromise between table and link list
approaches. It maintains a 256-bit bitmap for each state to
indicate whether a traverse with a given character is valid or
invalid, which requires traversing along the failure pointer path.

The critical defect of AC table implementation is the waste of
memory, which uses 256 next pointers for each state. Bitmap AC
solves this problem and still keeps the advantages of AC.
However, in order to locate the next state in bitmap AC, we must
to count all 1s before the valid bit in the 256-bit bitmap. This is
known as a time-consuming operation, which has a high cost on
x86 based systems.

C. Hardware-based String Matching
Since sting matching is a bottleneck for content filtering

systems [1], hardware solutions are required for high-speed
content processing. Among the existing string matching
hardware, the most prevalent hardware is finite automaton (FA)
based hardware, because it has support of deterministic matching
times and large patterns. FA based hardware can be divided into
deterministic FA (DFA) and non-deterministic FA (NFA) based
hardware. DFA based hardware has a unique transition, which
activates one state at one time and normally has a larger number
of states compared to NFA. NFA can handle multiple transitions

at one time, but it requires parallel circuits for comparing its
variable multiple next states. Therefore, majority of DFA based
hardware uses the table or link list to store their patterns, and
most NFA based hardware uses parallel reconfigurable circuits
to handle their patterns.

For DFA based hardware, there are three common designs in
recent string matching hardware: Aho-Corasick (AC) based
hardware [11, 12] Regular Expression (RE) based hardware [13,
14] and Knuth-Morris-Pratt (KMP) [15, 16, 17] based hardware.
To save more states, KMP and AC are simplified from RE DFA
by disabling their regular expression patterns. Each AC DFA
supports multiple simple patterns, and each KMP DFA only
support single simple patterns. Thus, many KMP DFAs use
duplicated hardware to support multiple patterns.

 As for NFA based hardware, there are two variations:
comparator NFA [18, 19], which uses the distributed
comparators, and decoder NFA [20], which the uses the
character decoder (shared decoder) to build their NFA circuits.
In our comparison, it seems that the comparator NFA is more
scalable and has a higher performance compared to the decoder
NFA.

Other existing non-DFA based hardware are the parallel
comparator [21, 22, 23], Bloom filter [24], systolic array [25]
and parallel-and-pipeline [26] hardware in our classification.
Parallel comparator based hardware improves the performance
of brute force algorithm by exploiting architecture parallelism
and pipelining. Bloom filter based hardware uses multiple
hashing keys for quick approximate matching. Using systolic
array implementing dynamic programming for string matching is
only proper for short patterns and text, since the circuit size is
proportional to the length of the patterns and text. Parallel and
pipeline hardware uses naïve string matching and only
accelerates processing time by increasing the hardware circuits.
Like the systolic array, this approach also has the drawback of
only being suited for short-length patterns.

III. ARCHITECTURE AND TECHNIQUES

A. Architecture

Next state
of AC

… …… …Text

…… ……

H1 H2

Bit
vectors

Possibly
Matched?

.

.

.

.

.

.

.

.

.

.

.

.

Load
bit

vector

.

.

.

.

.

..
.
.

.

.

. Root index tables

Root
next
table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Index

Next state of Root-
Indexing .

.

.

.

.

.

State table

Load
stateCompute

next state1 0

.

.

.

.

.

.

Next state
address

Next
state

Root-Indexing
matching

Pre-Hashing
matching

AC
matching

Root index
table

Root next
table

Bit vector
table

Next
state

address

State
table

String Matching
Coprocessor

Current
state

Fig. 1. Architecture of the string matching coprocessor

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

A preferable searching architecture is suggested in Fig. 1,
where a string matching coprocessor performs three independent
matching units in parallel. Therefore, the control logic
coordinates pre-hashing, root-indexing and bitmap AC matching
for parallel processing. Also each matching function has its
individual memory interface to access its pre-processing data.
Since the design methodologies of System On a Chip (SOC) are
popular and have matured in recent times, this specific
component is quite feasible for use in modern IC technology.

In the SAM coprocessor, the three units can read the text in
different lengths and perform their matching concurrently. This
example processes a one-byte substring for AC matching, a
two-byte substring for pre-hashing matching, and a four-byte
substring for root-indexing matching in a single matching
iteration. The root-indexing and bitmap AC are used to locate the
next states, and the pre-hashing matching is used to decide on
which next state is to be used in the next matching iteration.

B. Root-indexing Matching
In the AC tree, most of failure links point to the root state–that

is, it will always go back to the root state when there is no any
next state for a given character. Thus, it is efficient to apply
root-indexing in the root state, where it can match multiple
characters simultaneously. In Fig. 2, root-indexing comprises k
index tables IDX[1…k] and a root next table NEXT, where k
denotes the maximum length of root-indexing matching in the
same time. Each entry of IDX stores a partial address for locating
the next state in NEXT.

Input text

0-255

…
.

…
.

00

01

IDX1

10

 01

010

11

H

T

E

T 10_10_001_000

…
.

…

Next table

0
1
2
3

5
4

6
7
8

|z|= kroot

T H E

Next state

T E S T

10 01 011 100

…
.

…
.

H

T

10

001

100

…
.

…
.

011

E

S

010 H

T

 E

S

H
001

011
100 …

.

10_01_011_100

10_11_000_000
T T

10_01_001_000
T E E

T E S T

IDX2 IDX3 IDX4

Fig. 2. Root-indexing architecture and example for the input text “TEST” with
the patterns “TEST”, “THE” and “HE”.

For example, if patterns are “TEST”, “THE” and “HE”, IDX1
to IDX4 will at least contain the appearing characters in the
corresponding position as {“H”,”T”} for level one, {“E”,”H”}
for level 2, {“E”,”S”} for level 3, {“T”} for level 4, respectively.
However, because the latter tables are required to contain the
entries of former tables, IDX1 to IDX4 will actually contain
{“H”,”T”}, {“E”,”H”,”T”}, {“E”,”H”,”S”,”T”} and
{“E”,”H”,”S”,”T”}, respectively.

In numbering the entries of IDX tables, the first IDX have 2
appearing characters; thus, “H” and “T” are numbered “01” and
“10” in binary format, respectively. The second IDX table using
“01”, “10” and “11” stands for {“E”,”H”,”T”}, respectively. The
NEXT table, indexed by a concatenation address of lookup value

from the all IDX tables, is used to store all the next states within
length k. In the example of Fig. 2, 10_01_001_000,
10_01_011_100, 10_10_001_000 and 10_11_000_000 are
concatenation addresses to locate the next states for “TEE”,
“TEST”, “THE” and “TT”, respectively.

C. Pre-hashing Matching
The pre-hashing method can quickly examine the existence of

next states to further avoid slow AC matching. Before the
pre-hashing matching, it is necessary to build the pre-hashing bit
vector in the preprocessing phase. First, we input the AC tree,
which is built using conventional AC algorithm. For each state,
we extract suffixes within length 1.

1 2

5

E

H

 EASCII = 01000101 HASCII= 01001000

 decimal = 5 decimal = 8

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
15 0

(a) (b)

Fig. 3. (a) AC tree of state 1 for building the bit vector. (b) example of building
the bit vector for state 1 in the preprocessing phase.

When suffixes are obtained, the pre-hashing algorithm hashes
suffixes into bit vectors. This procedure of building the bit
vectors for state 1 is illustrated in Fig. 3 (a). In Fig. 3 (b), the
mask of the rightmost four bits of the characters and the
transformation from binary to one-hot representation are used as
the hash function in our design. However, better mask position is
adjustable for a lower false positive, according to the
characteristics of the patterns.

In pre-hashing matching, the pre-hashing unit reads a byte
substring and then hashes the substring. The hash result will be
indicated by the pre-hashing unit, and when the pre-hashing unit
indicates a non-hit, the next state will be obtained from the
root-indexing unit. However, if the hit condition is indicated by
the pre-hashing unit, a slow bitmap AC matching will be
performed.

IV. IMPLEMENTATION

c_state=rootc_state=root ?

Root_Index()

yes

no
Pre_Hash ()=1?

c_state =
next_p +

Bitmap_offset()

yes

no

Input data

ptr=ptr+1

ptr=ptr+2
Search_Bitmap()=1?

yes

c_state= failure
no

c_state=root?
no

yes

(b)

Make_Goto()

pattern

Make_Failure()

Make_Bitmap()

Build_Index()

Build_BitVector()

(a)

Fig. 4. (a) The pre-processing procedure. (b) The flow of C simulation model.

The pre-processing procedure generates essential data
structures for the proposed hardware, as shown in Fig. 4 (a). The

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Make_Goto() and Make_Failure() functions are original
functions defined by the AC algorithm, and our data structures
are further built according to the table constructed from these
two basic functions. For bitmap AC, the Make_Bitmap()
function builds a 256-bit bitmap for each state and sets 1 to the
corresponding bit position for each existing next state. It also
builds the next state table for each state. The next function is
Build_Index() which builds the IDX[1…k] tables and root next
table NEXT for root-indexing pre-processing. In the final stage,
Build_BitVector() sets 1 to the bit vector by hashing the function
according to all next states of both the current state and the
recursive failure node for pre-hashing preprocessing.

After the pre-processing procedure is finished, the simulation
of the proposed SAM can perform matching according to the
flow in Fig. 4 (b). For each matching iteration, the first current
state is checked. When the current state is in the root state, the
Root-Index() matching is performed, otherwise Pre-Hash() is
performed.

If Pre-Hash() reports a non-hit situation, the current state will
be set to the root state directly, and will do root-indexing
matching. If a hit situation is reported, Search_Bitmap() will
check the existence of the next state for a given byte. If
Search_Bitmap()=1, the next state will be obtained from the base
address pointer of the next state table plus the return value of
Bitmap_offset(). Note that if Search_Bitmap() reports zero, the
current state will be set to the failure state in the while loop until
the current state becomes the root state. This C model can be the
golden model for the proposed hardware design, and it also can
be used to gather statistics for performance analysis.

The proposed architecture is a highly parallel design where all
modules are working at the same time, and this architecture is
also flexible for either internal or external memory-based
platforms. We use the Xilinx Vertex4P FPGA as our
development system, with Xilinx EDK and Synplicity’s
SynplifyPro as the basic development tools. The EDK can
generate the software and the bit stream file for our system
design. The software includes the mapping address define files
and the drivers of all peripherals needed for building the
complete RTOS image. The RTL code design for string
matching hardware, ModelSim and Debussy, were the simulator
and debugger tools we used, respectively.

V. EVALUATION

A. Formal Analysis
If pre-hashing, root-indexing and bitmap AC are run as the

sequential algorithm, the average time is

)1()(
)1(

_
rootrootroot

ACrootrootroothash
timeavg PPk

TPTPT
T

−+×
×−+×+

= , (1)

where
timeavgT _

 is the average time to process a byte, hashT is the

pre-hashing matching time, rootP is the probability of using the
root-indexing matching, rootT is the root-indexing matching time,
and ACT is the AC matching time.

However, in the hardware, the pre-hashing, root-indexing and
AC can be performed in parallel, and the computation of the next

states in these three units are independent. Thus, the average time
can be reduced to

)1()(
)1(

_
rootrootroot

ACrootrootroot
timeavg PPk

TPTP
T

−+×
×−+×

= . (2)

Since AC matching is the critical path, the worst-case time of
SAM is equal to ACT as

ACtimeworst TT =_
. (3)

The probability rootP is calculated by

∑
−

=

=
hashprek

j
jtnroot PP

1
'_
, (4)

where rootP is computed by summing the dependent probabilities
of a true non-hit

'_ jtnP , which is the dependent probability of a

true non-hit for length j . Because if the (1−j)th pre-hashing is
not matched, then the j th pre-hashing function cannot be
matched either. Therefore,

'_ jtnP is determined from the

independent probability of a true non-hit
jtnP _
, which can be

obtained from (2). Therefore,
'1_tnP is the first pre-hashing

function, and can be obtained by

1_'1_ tntn PP = , (5)

where
1_tnP is the first independent probability of a true non-hit

and 1TH is 1Threshold rate for suffixes of length one. The
subsequent

'_ jtnP for length j can be computed by

jtn

j

y
ytnjtn PPP _

1

1
'_'_ 1 ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

−

=

. (6)

When the shorter suffix indicates a true non-hit, the longer
suffix definitely outputs a true non-hit too. Therefore,

'_ jtnP is

computed by subtracting previous summing probability ∑
−

=

1

1
'_

j

y
ytnP ,

and multiplying corresponding
jtnP _
.

Our approach intends to improve the probability of a true
non-hit by ascertaining the non-matching suffixes. Thus, using
one hashing function for each bit vector is sufficient and can
significantly reduce hardware cost and latency. The probability
of a true non-hit

tnP is referred from [13] as
β

⎟
⎠
⎞

⎜
⎝
⎛ −=

M
Ptn

11 , (7)

where β is the number of suffixes, and M is the size of the bit

vector. In our observation, a short length of suffixes can also
achieve acceptable

rootP whose value is larger than 0.4. Therefore,
setting the maximum suffix length

hashprek −
 to 2 is sufficient. For

example, when
tnP is set to 0.6 and

hashprek −
 is set to 2,

rootP is

equal to 0.84.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

For the space evaluation, we first of all need to determine the bit
vector size M . Because the probability of a true non-hit is
defined in equation (7), M can be determined by given number
of suffixes β and

tnP as

β
1

1

1

tnp
M

−
=

. (8)

The space requirement can be determined by summing the
bitmap AC space

ACSize , the pre-hashing bit vector space

hashpreSize −
, and the root-indexing space

rootSize , as

hashprerootACtotal SizeSizeSizeSize −++= . (9)

The original space requirement of bitmap AC,
ACSize , is mainly

dominated by the state table, which is equal to the number of
states S multiplied by the state size

stateSize ,

stateAC SizeSSize ×= . (10)

Each state size
stateSize includes one byte of state information, the

failure and next state address
addressstateSize _

, and the size of the

bitmap
bitmapSize for locating the next state. Hence,

stateSize can be

determined by

bitmapaddressstatestate SizeSizeSize +×+= 21 _
. (11)

The pre-hashing size
hashpreSize −

 is determined from ∑
−

=

hashprek

j
jM

1

,

which is the size of all bit vectors for one state, where
jM is a bit

vector size for length j , and
hashprek −

 is the maximum length of

the pre-hashing. S is the number of states. Thus,
hashpreSize −

 is

obtained from

SMSize
hashprek

j
jhashpre ×= ∑

−

=
−

1

. (12)

rootSize , which includes all root-indexing tables and the root next
table. The size of all root-indexing table is 256, multiplied by

rootk , and the root next table is the number of next state addresses,
multiplied by the state address size

addressstateSize _
. The number of

root next state addresses is the cross product of the numbers of
appearing alphabets in the index tables

jIDX and one zero entry.

rootSize is formulated as

addressstate

k

j
jrootroot SizeIDXkSize

root

_
1

)1(256 ×++×= ∏
=

. (13)

B. Simulation Analysis
This simulation analysis can determine the performance of

our simulation software. In our analysis, the test contents are
execution files in Linux and Windows, as well as normal text
files. The 32-bit bit vector and 1,000 virus patterns are used to
evaluate the proportion of root-indexing matching and bitmap
AC matching.

There are two important factors which can affect the rate of
the non-hit case. The first factor is the number of patterns. As the
number of patterns increases, the branches of a node also
increase. This means that the performance will be degraded by
raising the rate of the hit portion. The second factor is the size of
the bit vector for pre-hashing matching. The 8-bit bit vector is a
choice for the development environment when the memory
resource is limited, while the 32-bit bit vector has better
performance when enough memory is available.

After analyzing these two key factors, the non-hit rate for
different sizes of the bit vector and the number of patterns in the
three different data types are shown in Fig. 5. As the pattern set
increases, the 32-bit bit vector has better relative improvement
than 16-bit bit vector. In addition to the hit rate, the false positive
rate of pre-hashing matching is also affected by the size of the bit
vector. The false positive will lead to a little penalty in the clock
cycles in the internal SRAM architecture, as well as great penalty
in the bus contention in the external DRAM architecture.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

250 500 750 1000

number of patterns

8 bits

16 bits

32 bits

(a)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

250 500 750 1000

number of patterns

(b)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

250 500 750 1000

number of patterns

no
n-

hi
t

ra
te 8 bits

16 bits

32 bits

(c)

Text file Win exe file

Linux exe file

Fig. 5. The non-hit rate of 8-bit, 16-bit and 32-bit bit vectors for (a) text files, (b)
Windows execution files, (c) Linux execution files.

C. Hardware Implementation and Comparison
As previously mentioned, our approach is flexible for both

internal and external memory architecture. External memory
architecture is suitable for large-pattern applications with modest
throughput, such as the anti-virus and anti-spam applications. On
the other hand, internal memory architecture can be used for the
high performance with fewer patterns, such as IDS and firewall
applications.

The operating frequency of the synthesis result for our
internal SRAM architecture is 350 MHz which is reported by
SynpilifyPro. The root-indexing module takes 2 clock cycles to
index a mapping state. The throughput in the average case,
depending on the average proportion of the root-indexing
matching and the bitmap AC matching, can be estimated at 5.37
Gbps. For the worst case, all bytes are matched in the text buffer.
The throughput is 1.56 Gbps. It is obvious that the average case
has very high performance, which is very close to that in the best
case, and also has moderate performance in the worst case. This
result demonstrates that our pre-hashing and root-indexing
techniques are robust for high-performance content filtering
applications.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Since many previous matching hardware [11, 12, 14, 24, etc.,]
employed duplicated hardware for parallel processing, our two
engine architecture should be fair in this comparison. Our
optimally utilizing dual port block RAM of Xilinx FPGA not
only doubles the performance, it also increases no extra block
RAM. The results demonstrate that our design has throughput at
10.7 Gbps and a support pattern of 21,563 bytes.

We compare and analyze about 12 major hardware from
recent related works, as shown in Fig. 6. The common goals for
this kind of hardware are to pursue a higher throughput and a
larger pattern size, which are the major evaluated factors in this
comparison. Pattern sizes are used for measuring scalability with
unit in byte, and the throughput factor is used for measuring
performance with unit in giga bit per second (Gbps).

0 10000 20000 30000 40000 50000 60000 70000

SAM

Bit-split AC[11]

Reconfigurable Multi-AC[12]

DFA+counter[13]

KMP Comparators[14]

Comparator NFA[17]

Meta Comparator NFA[18]

Decoder NFA[19]

Approximate Decoder NFA[20]

Offset Index Comparators[21]

Pre-decoded CAM Comparators[22]

CAM Comparators[23]

Pattern Size (Byte)Throughput (Gbps)

0 5 10 15

1

2

3

4

5

6

7

8

9

10

11

12

0 5,000 10,000 15,000 20,000 25,000

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 6. SAM comparison with the other string matching hardware.

Nevertheless, 21,563 bytes is not the largest amount for the
external memory version. The proposed SAM architecture is
scalable to support more patterns with high performance, and
SAM can be implemented with external multiple memory banks.
Although external memory produces overhead for memory
access, ASIC hardware can often run at a much higher speed
than FPGA devices. For instance, the previous example with
21,302 patterns only ran a clock rate of 800MHz to maintain
about 10 Gpbs throughput with 35 MB memory requirement,
which is quite feasible in today’s technology.

VI. CONCLUSION
In this paper, we proposed an architecture which takes

scalability, flexibility and performance into consideration.
Root-indexing and pre-hashing are the acceleration techniques
used to dramatically improve the performance of our design.
Also, our data structures are compressed and stored in either the
internal SRAM or the external DRAM. The internal SRAM
architecture provides an average 10.7 Gbps throughput with the
size limitation of patterns. The external DRAM architecture
provides high scalability for the integration of multiple
applications with acceptable throughput.

The proposed internal SRAM architecture is implemented on
the Xilinx Virtex4P FPGA-based platform. The string matching
function of the target application ClamAV is also modified to set

up the string matching engine. We tuned the hardware design
according to the analysis results of our software simulation, and
also built a complete system solution for content filtering
applications such as IDS, URL blocking and ClamAV.

REFERENCES
[1] S. Antonatos, K. Anagnostakis, and E. Markatos. Generating realistic

workloads for network intrusion detection systems. In ACM Workshop on
Software and Performance, Redwood Shores, CA, Jan. 2004.

[2] G. Navarro and M. Ranot, “Flexible Pattern Matching in Strings,”
Cambridge University Press, 2002.

[3] G. Navarro, “A Guided Tour to Approximate String Matching,” ACM
Computing Surveys, 33(1):31-88. 2001.

[4] S. Wu and U. Manber, “Fast Text Searching Allowing Errors,”
Communication of the ACM, 35:83-91.

[5] R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm,”
Communications of the ACM, 20, 10, 762–772.

[6] A. V. Aho and M. J. Corasick, “Efficient String Matching: An Aid to
Bibliographic Search,” Communications of the ACM, pp.333–340.

[7] N. Tuck, T. Sherwood, B. Calder and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,” IEEE
Infocom, Hong Kong, China, 2004.

[8] C. Coit, S. Staniford and J. Mcalerney, “Towards Faster String Matching
for Intrusion Detection,” DARPA Information Survivability Conference and
Exhibition, pp. 367-373, 2002.

[9] N. Desai, “Increasing performance in high speed NIDS,”
http://www.snort.org/.

[10] M. Raffinot, “On the Multi Backward Dawg Matching Algorithm
(MultiBDM),” Workshop on String Processing, Carleton U. Press, 1997.

[11] L. Tan and T. Sherwood, “A High Throughput String Matching
Architecture for Intrusion Detection And Prevention,” ISCA, 2005.

[12] M. Aldwairi, T. Conte and P. Franzon, “Configurable String Matching
Hardware for Speeding up Intrusion Detection,” ACM CAN, 2005.

[13] J. Lockwood, “An Open Platform for Development of Network Processing
Modules in Reconfigurable Hardware,” IEC DesignCon, Santa Clara, CA,
Jan. 2001.

[14] J. Moscola, J. Lockwood, R. P. Loui and M. Pachos, “Implementation of a
Content-Scanning Module for an Internet Firewall,” IEEE FCCM, 2003.

[15] Z. K. Baker and V. K. Prasanna, “Time And Area Efficient Pattern
Matching on FPGAs,” ACM/SIGDA FPGA, California, USA, Feb. 2004.

[16] G. Tripp, “A Finite-State-Machine Based String Matching System for
Intrusion Detection on High-Speed Network,” EICAR, May 2005.

[17] L. Bu and J. A. Chandy, “A Keyword Match Processor Architecture Using
Content Addressable Memory,” ACM VLSI, April 26-28, 2004.

[18] R. Sidhu and V. Prasanna, “Fast Regular Expression Matching using
FPGAs,” IEEE FCCM, April 2001.

[19] R. Franklin, D. Carver and B. L. Hutchings, “Assisting Network Intrusion
Detection with Reconfigurable Hardware,” IEEE FCCM, Napa, CA, Apr.
2002.

[20] C. R. Clark and D. E. Schimmel, “Scalable Pattern Matching for High
Speed Networks,” IEEE FCCM, 2004.

[21] Y. H. Cho and W. H. Mangione, “A Pattern Matching Coprocessor for
Network Security,” ACM/IEEE DAC, California, USA, Jun. 2005.

[22] I. Sourdis and D. Pnevmatikatos, “Pre-Decoded CAMs for Efficient and
High-Speed NIDS Pattern Matching,” IEEE FCCM, 2004.

[23] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole and V. Hogsett,
“Granidt: Towards Gigabit Rate Network Intrusion Detection Technology,”
LNCS, Volume 2438, Jan. 2002.

[24] S. Dharmapurikar and P. Krishnamurthy, T. S. Sproull and J. W. Lockwood,
“Deep Packet Inspection Using Parallel Bloom Filters,” IEEE Micro, Vol.
24, No. 1, Jan. 2004.

[25] H. M. Blüthgen, T. Noll and R. Aachen, “A Programmable Processor For
Approximate String Matching With High Throughput Rate,” IEEE ASAP,
2000.

[26] J. H. Park and K. M. George, “Parallel String Matching Algorithms based
on Dataflow,” HICSS, Hawaii, 1999.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

