
 

 

 
Abstract—String matching plays a central role in content 

inspection applications such as intrusion detection, anti-virus, 
anti-spam and Web filtering. Because they are computation and 
memory intensive, software matching algorithms are insufficient in 
meeting the high-speed performance. Thus, offloading packet 
content inspection to dedicated hardware seems inevitable. This 
paper presents a scalable automaton matching (SAM) design, 
which uses Aho-Corasick (AC) algorithm with two parallel 
acceleration techniques, root-indexing and pre-hashing. The 
root-indexing can match multiple bytes in one single matching, and 
the pre-hashing can be used to avoid bitmap AC matching, which is 
a cycle-consuming operation. In the implementation of the Xilinx 
Vertex4P FPGA platform, the proposed hardware architecture can 
achieve almost 10.7 Gbps and  support the largest pattern set, 
which is 7.65 times faster than the original bitmap AC in the 
average case. Further, SAM is feasible for either internal or 
external memory architecture. The internal memory architecture 
provides high performance, and the external memory architecture 
provides high scalability of patterns. 

Index Terms—Coprocessor, String matching, Hashing, Finite 
automata, Content filtering. 

I. INTRODUCTION 
Because detecting malicious traffic on the Internet, such as 

viruses and intrusions, relies on looking for signatures in the 
packet payload, traditional firewalls that inspect only the packet 
header are insufficient for the detection. Thus, deeper 
packet-content inspection, such as intrusion detection, anti-virus, 
anti-spam and Web filtering are required to detect such 
application-level attacks that can be found in the field. The 
essential part of these solutions is string matching, which has 
been shown to be a time-consuming component that should be 
accelerated [1]. 

For string matching, several algorithms and hardware 
architectures have been proposed to improve performance. 
Although the throughput of some approaches can achieve up to 
10 Gbps, their common drawback is the poor scalability. Their 
rules and pattern sets are hardwired into the FPGA, so the 
scalability is limited by the number of logic cells and the size of 
the embedded memory in the FPGA. 

In this paper, we propose a scalable automaton matching 
(SAM) which is based on the Aho-Corasick (AC) algorithm with 
external memory architecture. AC is a common algorithm with 
the following key features. First, it has a linear time performance 
in the worst case. Second, it is robust for large and long patterns. 
Third, it can perform multi-pattern matches. However, the most 
critical defect of AC algorithm is its large memory usage. 

Another AC-based algorithm, bitmap AC, improves memory 
utilization by using a 256-bit bitmap to replace the 256 word-size 
pointers of each state in AC. Therefore, bitmap AC is the 
alternative which we adopted in this work. We also developed 
two acceleration techniques to make our architecture have a 
sub-linear matching time. The first technique is root-indexing, 
which comes from the observation of AC’s high frequency 
root-visiting behavior. The second technique is pre-hashing, 
which comes from the observation of time-consuming operation 
in bitmap AC, which also has a high cost on the x86-platform. 
Thus, to reduce this kind of operation, pre-hashing can test 
quickly to avoid bitmap AC matching. For scalability, our 
architecture uses either internal or external memories to store the 
whole pattern database of SNORT or even ClamAV. 

The rest of this paper is organized as follows. In Section 2, we 
first introduce the related algorithms and string matching 
hardware. Then, the proposed architecture and acceleration 
techniques are presented in Section 3. Section 4 describes the 
software and hardware implementation of the SAM approach. 
The performance analysis, evaluation, and comparison with 
existing works are presented in Section 5. And finally, we draw 
our conclusion in Section 6. 

II. RELATED WORKS 

A. Selecting Matching Algorithm for Content Filtering 
To understand the appropriate requirements of string 

matching algorithms, we surveyed the real patterns from open 
source software including SNORT (http://www.snort.org) for 
intrusion detection, ClamAV (http://www.clamav.net) for 
anti-virus, SpamAssassin (http://spamassassin.apache.org) for 
anti-spam, and SquidGuard (http://www.squidguard.org) and 
DansGuardian (http://dansguardian.org) for Web blocking. The 
necessary requirements can be concluded as the matching 
variable-length, multiple patterns and on-line processing for all 
content filtering systems.  

Although the complex patterns, such as class, wildcard, 
regular expression and case sensitive patterns might increase the 
expression power of the patterns and has been used in some 
applications, they can be converted to be composed of multiple 
simple patterns [8], they are optional for matching algorithms. 

Current existing on-line string matching algorithms for 
content filtering can be classified into four categories, namely, 
dynamic programming, bit parallel, filtering, and automaton 
algorithms. In the summary, dynamic programming [3] and bit 
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parallel [4] algorithms are inappropriate for variable-length and 
multiple patterns, and the filtering algorithms [5] have poor 
worst-case time complexity O( nm ), where n  and m  are the 
length of the text and patterns, respectively. Only the automaton 
based algorithms such as Aho-Corasick (AC) [6] support 
variable-length and multiple patterns, and also have the 
deterministic worst-case time complexity O( n ). Therefore, the 
automaton based algorithm is a better choice for the content 
filtering system, and is selected as a base to develop new 
approaches. 

B. AC Related Algorithms 
AC works by constructing a state machine from the patterns to 

be matched, and is composed of three component functions. The 
first is the Goto function, which is used to traverse from one node 
to the other node. The second is the Output function, which 
outputs the match pattern for the current state. The third is the 
Failure function, which is traversed when there is no next state. 

AC is a typical deterministic finite automaton (DFA) based on 
string matching. However, there are several variations of it. 
Bitmap AC [7] uses bitmap compression to reduce the storage of 
AC states. AC_BM [8] is a combination of the AC and Boyer 
Moore (BM) algorithms, and aims to improve the conventional 
AC from O( n ) to the sub-linear time complexity. AC_BDM [9] 
combines AC with backward DAWG matching (BDM), which 
improves the average-case time complexity of the conventional 
AC. Bit-split AC [10] splits the width of the input text into a 
smaller bit width to reduce memory usage and the number of 
comparisons when selecting next states. Since AC_BM has the 
worst-case time complexity O( nm ) and overhead for switching 
between AC and BDM, and since bit-split AC requires large 
match vector for each bit-split state, they are impractical for large 
patterns. Thus, a scalable bitmap AC with space efficiency is 
more preferable for our embodiment. 

Bitmap AC, is a compromise between table and link list 
approaches. It maintains a 256-bit bitmap for each state to 
indicate whether a traverse with a given character is valid or 
invalid, which requires traversing along the failure pointer path. 

The critical defect of AC table implementation is the waste of 
memory, which uses 256 next pointers for each state. Bitmap AC 
solves this problem and still keeps the advantages of AC. 
However, in order to locate the next state in bitmap AC, we must 
to count all 1s before the valid bit in the 256-bit bitmap. This is 
known as a time-consuming operation, which has a high cost on 
x86 based systems. 

C. Hardware-based String Matching 
Since sting matching is a bottleneck for content filtering 

systems [1], hardware solutions are required for high-speed 
content processing. Among the existing string matching 
hardware, the most prevalent hardware is finite automaton (FA) 
based hardware, because it has support of deterministic matching 
times and large patterns. FA based hardware can be divided into 
deterministic FA (DFA) and non-deterministic FA (NFA) based 
hardware. DFA based hardware has a unique transition, which 
activates one state at one time and normally has a larger number 
of states compared to NFA. NFA can handle multiple transitions 

at one time, but it requires parallel circuits for comparing its 
variable multiple next states. Therefore, majority of DFA based 
hardware uses the table or link list to store their patterns, and 
most NFA based hardware uses parallel reconfigurable circuits 
to handle their patterns. 

For DFA based hardware, there are three common designs in 
recent string matching hardware: Aho-Corasick (AC) based 
hardware [11, 12] Regular Expression (RE) based hardware [13, 
14] and Knuth-Morris-Pratt (KMP) [15, 16, 17] based hardware. 
To save more states, KMP and AC are simplified from RE DFA 
by disabling their regular expression patterns. Each AC DFA 
supports multiple simple patterns, and each KMP DFA only 
support single simple patterns. Thus, many KMP DFAs use 
duplicated hardware to support multiple patterns. 

 As for NFA based hardware, there are two variations: 
comparator NFA [18, 19], which uses the distributed 
comparators, and decoder NFA [20], which the uses the 
character decoder (shared decoder) to build their NFA circuits. 
In our comparison, it seems that the comparator NFA is more 
scalable and has a higher performance compared to the decoder 
NFA. 

Other existing non-DFA based hardware are the parallel 
comparator [21, 22, 23], Bloom filter [24], systolic array [25] 
and parallel-and-pipeline [26] hardware in our classification. 
Parallel comparator based hardware improves the performance 
of brute force algorithm by exploiting architecture parallelism 
and pipelining. Bloom filter based hardware uses multiple 
hashing keys for quick approximate matching. Using systolic 
array implementing dynamic programming for string matching is 
only proper for short patterns and text, since the circuit size is 
proportional to the length of the patterns and text. Parallel and 
pipeline hardware uses naïve string matching and only 
accelerates processing time by increasing the hardware circuits. 
Like the systolic array, this approach also has the drawback of 
only being suited for short-length patterns. 

III. ARCHITECTURE AND TECHNIQUES 

A. Architecture 
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Fig. 1. Architecture of the string matching coprocessor 
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A preferable searching architecture is suggested in Fig. 1, 
where a string matching coprocessor performs three independent 
matching units in parallel. Therefore, the control logic 
coordinates pre-hashing, root-indexing and bitmap AC matching 
for parallel processing. Also each matching function has its 
individual memory interface to access its pre-processing data. 
Since the design methodologies of System On a Chip (SOC) are 
popular and have matured in recent times, this specific 
component is quite feasible for use in modern IC technology. 

In the SAM coprocessor, the three units can read the text in 
different lengths and perform their matching concurrently. This 
example processes a one-byte substring for AC matching, a 
two-byte substring for pre-hashing matching, and a four-byte 
substring for root-indexing matching in a single matching 
iteration. The root-indexing and bitmap AC are used to locate the 
next states, and the pre-hashing matching is used to decide on 
which next state is to be used in the next matching iteration. 

B. Root-indexing Matching 
In the AC tree, most of failure links point to the root state–that 

is, it will always go back to the root state when there is no any 
next state for a given character. Thus, it is efficient to apply 
root-indexing in the root state, where it can match multiple 
characters simultaneously. In Fig. 2, root-indexing comprises k 
index tables IDX[1…k] and a root next table NEXT, where k 
denotes the maximum length of root-indexing matching in the 
same time. Each entry of IDX stores a partial address for locating 
the next state in NEXT. 
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Fig. 2. Root-indexing architecture and example for the input text “TEST” with 
the patterns “TEST”, “THE” and “HE”. 

For example, if patterns are “TEST”, “THE” and “HE”, IDX1 
to IDX4 will at least contain the appearing characters in the 
corresponding position as {“H”,”T”} for level one, {“E”,”H”} 
for level 2, {“E”,”S”} for level 3, {“T”} for level 4, respectively. 
However, because the latter tables are required to contain the 
entries of former tables, IDX1 to IDX4 will actually contain 
{“H”,”T”}, {“E”,”H”,”T”}, {“E”,”H”,”S”,”T”} and 
{“E”,”H”,”S”,”T”}, respectively. 

In numbering the entries of IDX tables, the first IDX have 2 
appearing characters; thus, “H” and “T” are numbered “01” and 
“10” in binary format, respectively. The second IDX table using 
“01”, “10” and “11” stands for {“E”,”H”,”T”}, respectively. The 
NEXT table, indexed by a concatenation address of lookup value 

from the all IDX tables, is used to store all the next states within 
length k. In the example of Fig. 2, 10_01_001_000, 
10_01_011_100, 10_10_001_000 and 10_11_000_000 are 
concatenation addresses to locate the next states for “TEE”, 
“TEST”, “THE” and “TT”, respectively. 

C. Pre-hashing Matching 
The pre-hashing method can quickly examine the existence of 

next states to further avoid slow AC matching. Before the 
pre-hashing matching, it is necessary to build the pre-hashing bit 
vector in the preprocessing phase. First, we input the AC tree, 
which is built using conventional AC algorithm. For each state, 
we extract suffixes within length 1.  

 
1 2
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        decimal = 5      decimal = 8 

0  0  0  0  0  0  0  1  0  0  1  0  0  0  0  0 
15                                            0 

(a) (b)  

Fig. 3. (a) AC tree of state 1 for building the bit vector. (b) example of building 
the bit vector for state 1 in the preprocessing phase. 

When suffixes are obtained, the pre-hashing algorithm hashes 
suffixes into bit vectors. This procedure of building the bit 
vectors for state 1 is illustrated in Fig. 3 (a). In Fig. 3 (b), the 
mask of the rightmost four bits of the characters and the 
transformation from binary to one-hot representation are used as 
the hash function in our design. However, better mask position is 
adjustable for a lower false positive, according to the 
characteristics of the patterns. 

In pre-hashing matching, the pre-hashing unit reads a byte 
substring and then hashes the substring. The hash result will be 
indicated by the pre-hashing unit, and when the pre-hashing unit 
indicates a non-hit, the next state will be obtained from the 
root-indexing unit. However, if the hit condition is indicated by 
the pre-hashing unit, a slow bitmap AC matching will be 
performed. 

IV. IMPLEMENTATION 
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Fig. 4. (a) The pre-processing procedure. (b) The flow of C simulation model. 

The pre-processing procedure generates essential data 
structures for the proposed hardware, as shown in Fig. 4 (a). The 
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Make_Goto() and Make_Failure() functions are original 
functions defined by the AC algorithm, and our data structures 
are further built according to the table constructed from these 
two basic functions. For bitmap AC, the Make_Bitmap() 
function builds a 256-bit bitmap for each state and sets 1 to the 
corresponding bit position for each existing next state. It also 
builds the next state table for each state. The next function is 
Build_Index() which builds the IDX[1…k] tables and root next 
table NEXT for root-indexing pre-processing. In the final stage, 
Build_BitVector() sets 1 to the bit vector by hashing the function 
according to all next states of both the current state and the 
recursive failure node for pre-hashing preprocessing.  

After the pre-processing procedure is finished, the simulation 
of the proposed SAM can perform matching according to the 
flow in Fig. 4 (b). For each matching iteration, the first current 
state is checked. When the current state is in the root state, the 
Root-Index() matching is performed, otherwise Pre-Hash() is 
performed. 

If Pre-Hash() reports a non-hit situation, the current state will 
be set to the root state directly, and will do root-indexing 
matching. If a hit situation is reported, Search_Bitmap() will 
check the existence of the next state for a given byte. If 
Search_Bitmap()=1, the next state will be obtained from the base 
address pointer of the next state table plus the return value of 
Bitmap_offset(). Note that if Search_Bitmap() reports zero, the 
current state will be set to the failure state in the while loop until 
the current state becomes the root state. This C model can be the 
golden model for the proposed hardware design, and it also can 
be used to gather statistics for performance analysis. 

The proposed architecture is a highly parallel design where all 
modules are working at the same time, and this architecture is 
also flexible for either internal or external memory-based 
platforms. We use the Xilinx Vertex4P FPGA as our 
development system, with Xilinx EDK and Synplicity’s 
SynplifyPro as the basic development tools. The EDK can 
generate the software and the bit stream file for our system 
design. The software includes the mapping address define files 
and the drivers of all peripherals needed for building the 
complete RTOS image. The RTL code design for string 
matching hardware, ModelSim and Debussy, were the simulator 
and debugger tools we used, respectively. 

V. EVALUATION 

A. Formal Analysis 
If pre-hashing, root-indexing and bitmap AC are run as the 

sequential algorithm, the average time is 

)1()(
)1(

_
rootrootroot

ACrootrootroothash
timeavg PPk

TPTPT
T

−+×
×−+×+

= ,                  (1) 

where 
timeavgT _

 is the average time to process a byte, hashT  is the 

pre-hashing matching time, rootP  is the probability of using the 
root-indexing matching, rootT  is the root-indexing matching time, 
and ACT  is the AC matching time. 

However, in the hardware, the pre-hashing, root-indexing and 
AC can be performed in parallel, and the computation of the next 

states in these three units are independent. Thus, the average time 
can be reduced to 

)1()(
)1(

_
rootrootroot

ACrootrootroot
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T

−+×
×−+×

= .                (2) 

Since AC matching is the critical path, the worst-case time of 
SAM is equal to ACT  as 

ACtimeworst TT =_
.                               (3) 

The probability rootP  is calculated by 

∑
−

=

=
hashprek

j
jtnroot PP

1
'_
,                                      (4) 

where rootP  is computed by summing the dependent probabilities 
of a true non-hit 

'_ jtnP , which is the dependent probability of a 

true non-hit for length j . Because if the ( 1−j )th pre-hashing is 
not matched, then the j th pre-hashing function cannot be 
matched either. Therefore, 

'_ jtnP  is determined from the 

independent probability of a true non-hit 
jtnP _
, which can be 

obtained from (2). Therefore, 
'1_tnP  is the first pre-hashing 

function, and can be obtained by 

1_'1_ tntn PP = ,                                          (5) 

where 
1_tnP  is the first independent probability of a true non-hit 

and 1TH  is 1Threshold  rate for suffixes of length one. The 
subsequent 

'_ jtnP  for length j  can be computed by 

jtn

j

y
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1

1
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When the shorter suffix indicates a true non-hit, the longer 
suffix definitely outputs a true non-hit too. Therefore, 

'_ jtnP  is 

computed by subtracting previous summing probability ∑
−

=

1

1
'_

j

y
ytnP , 

and multiplying corresponding 
jtnP _
.  

Our approach intends to improve the probability of a true 
non-hit by ascertaining the non-matching suffixes. Thus, using 
one hashing function for each bit vector is sufficient and can 
significantly reduce hardware cost and latency. The probability 
of a true non-hit 

tnP  is referred from [13] as 
β

⎟
⎠
⎞

⎜
⎝
⎛ −=

M
Ptn

11 ,                                (7) 

where β  is the number of suffixes, and M  is the size of the bit 

vector. In our observation, a short length of suffixes can also 
achieve acceptable 

rootP  whose value is larger than 0.4. Therefore, 
setting the maximum suffix length 

hashprek −
 to 2 is sufficient. For 

example, when 
tnP  is set to 0.6 and 

hashprek −
 is set to 2, 

rootP  is 

equal to 0.84. 
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For the space evaluation, we first of all need to determine the bit 
vector size M . Because the probability of a true non-hit is 
defined in equation (7), M  can be determined by given number 
of suffixes β  and 

tnP  as 

β
1

1

1

tnp
M

−
=

.                                      (8) 

The space requirement can be determined by summing the 
bitmap AC space 

ACSize , the pre-hashing bit vector space 

hashpreSize −
, and the root-indexing space 

rootSize , as 

hashprerootACtotal SizeSizeSizeSize −++= .                  (9) 

The original space requirement of bitmap AC, 
ACSize , is mainly 

dominated by the state table, which is equal to the number of 
states S  multiplied by the state size 

stateSize , 

stateAC SizeSSize ×= .                            (10) 

Each state size 
stateSize  includes one byte of state information, the 

failure and next state address 
addressstateSize _

, and the size of the 

bitmap 
bitmapSize  for locating the next state. Hence, 

stateSize  can be 

determined by 

bitmapaddressstatestate SizeSizeSize +×+= 21 _
.             (11) 

The pre-hashing size 
hashpreSize −

 is determined from ∑
−

=
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, 

which is the size of all bit vectors for one state, where 
jM  is a bit 

vector size for length j , and 
hashprek −

 is the maximum length of 

the pre-hashing. S  is the number of states. Thus, 
hashpreSize −

 is 

obtained from 

SMSize
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j
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rootSize , which includes all root-indexing tables and the root next 
table. The size of all root-indexing table is 256, multiplied by 

rootk , and the root next table is the number of next state addresses, 
multiplied by the state address size 

addressstateSize _
. The number of 

root next state addresses is the cross product of the numbers of 
appearing alphabets in the index tables 

jIDX  and one zero entry. 

rootSize  is formulated as 

addressstate

k

j
jrootroot SizeIDXkSize

root

_
1

)1(256 ×++×= ∏
=

.     (13) 

B. Simulation Analysis 
This simulation analysis can determine the performance of 

our simulation software. In our analysis, the test contents are 
execution files in Linux and Windows, as well as normal text 
files. The 32-bit bit vector and 1,000 virus patterns are used to 
evaluate the proportion of root-indexing matching and bitmap 
AC matching. 

There are two important factors which can affect the rate of 
the non-hit case. The first factor is the number of patterns. As the 
number of patterns increases, the branches of a node also 
increase. This means that the performance will be degraded by 
raising the rate of the hit portion. The second factor is the size of 
the bit vector for pre-hashing matching. The 8-bit bit vector is a 
choice for the development environment when the memory 
resource is limited, while the 32-bit bit vector has better 
performance when enough memory is available.  

After analyzing these two key factors, the non-hit rate for 
different sizes of the bit vector and the number of patterns in the 
three different data types are shown in Fig. 5. As the pattern set 
increases, the 32-bit bit vector has better relative improvement 
than 16-bit bit vector. In addition to the hit rate, the false positive 
rate of pre-hashing matching is also affected by the size of the bit 
vector. The false positive will lead to a little penalty in the clock 
cycles in the internal SRAM architecture, as well as great penalty 
in the bus contention in the external DRAM architecture. 
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Fig. 5. The non-hit rate of 8-bit, 16-bit and 32-bit bit vectors for (a) text files, (b) 
Windows execution files, (c) Linux execution files. 

C. Hardware Implementation and Comparison 
As previously mentioned, our approach is flexible for both 

internal and external memory architecture. External memory 
architecture is suitable for large-pattern applications with modest 
throughput, such as the anti-virus and anti-spam applications. On 
the other hand, internal memory architecture can be used for the 
high performance with fewer patterns, such as IDS and firewall 
applications.  

The operating frequency of the synthesis result for our 
internal SRAM architecture is 350 MHz which is reported by 
SynpilifyPro. The root-indexing module takes 2 clock cycles to 
index a mapping state. The throughput in the average case, 
depending on the average proportion of the root-indexing 
matching and the bitmap AC matching, can be estimated at 5.37 
Gbps. For the worst case, all bytes are matched in the text buffer. 
The throughput is 1.56 Gbps. It is obvious that the average case 
has very high performance, which is very close to that in the best 
case, and also has moderate performance in the worst case. This 
result demonstrates that our pre-hashing and root-indexing 
techniques are robust for high-performance content filtering 
applications. 
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Since many previous matching hardware [11, 12, 14, 24, etc.,] 
employed duplicated hardware for parallel processing, our two 
engine architecture should be fair in this comparison. Our 
optimally utilizing dual port block RAM of Xilinx FPGA not 
only doubles the performance, it also increases no extra block 
RAM. The results demonstrate that our design has throughput at 
10.7 Gbps and a support pattern of 21,563 bytes. 

We compare and analyze about 12 major hardware from 
recent related works, as shown in Fig. 6. The common goals for 
this kind of hardware are to pursue a higher throughput and a 
larger pattern size, which are the major evaluated factors in this 
comparison. Pattern sizes are used for measuring scalability with 
unit in byte, and the throughput factor is used for measuring 
performance with unit in giga bit per second (Gbps).  
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Fig. 6. SAM comparison with the other string matching hardware. 

Nevertheless, 21,563 bytes is not the largest amount for the 
external memory version. The proposed SAM architecture is 
scalable to support more patterns with high performance, and 
SAM can be implemented with external multiple memory banks. 
Although external memory produces overhead for memory 
access, ASIC hardware can often run at a much higher speed 
than FPGA devices. For instance, the previous example with 
21,302 patterns only ran a clock rate of 800MHz to maintain 
about 10 Gpbs throughput with 35 MB memory requirement, 
which is quite feasible in today’s technology. 

VI. CONCLUSION 
In this paper, we proposed an architecture which takes 

scalability, flexibility and performance into consideration. 
Root-indexing and pre-hashing are the acceleration techniques 
used to dramatically improve the performance of our design. 
Also, our data structures are compressed and stored in either the 
internal SRAM or the external DRAM. The internal SRAM 
architecture provides an average 10.7 Gbps throughput with the 
size limitation of patterns. The external DRAM architecture 
provides high scalability for the integration of multiple 
applications with acceptable throughput. 

The proposed internal SRAM architecture is implemented on 
the Xilinx Virtex4P FPGA-based platform. The string matching 
function of the target application ClamAV is also modified to set 

up the string matching engine. We tuned the hardware design 
according to the analysis results of our software simulation, and 
also built a complete system solution for content filtering 
applications such as IDS, URL blocking and ClamAV. 
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