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Abstract—Classifying traffic into specific network applications 
is essential for application-aware network management and it 
becomes more challenging because modern applications obscure 
their network behaviors. While port number-based classifiers 
work only for some well-known applications and signature-based 
classifiers are not applicable to encrypted packet payloads, 
researchers tend to classify network traffic based on behaviors 
observed in network applications. In this paper, a session level 
flow classification (SLFC) approach is proposed to classify 
network flows as a session, which comprises of flows in the same 
conversation. SLFC first classifies flows into the corresponding 
applications by packet size distribution (PSD) and then group 
flows as sessions by port locality. With PSD, each flow is 
transformed into a set of points in a two-dimension space and the 
distances between each flow and the representatives of pre-
selected applications are computed. The flow is recognized as the 
application having a minimum distance. Meanwhile, port locality 
is used to group flows as sessions because an application often 
uses consecutive port numbers within a session. If flows of a 
session are classified into different applications, an arbitration 
algorithm is invoked to make the correction. The evaluation 
shows that SLFC achieves high accuracy rates on flow session 
classifications, say 99.9%. When SLFC is applied to online 
classification, an average of 72% of packets in long-lasting flows 
can be skipped without reducing the classification accuracy rates.  

Keywords-flow classification; session grouping; session 
classification; packet size distribution 

I.  INTRODUCTION  
Classifying traffic into specific network applications is 

essential for application-aware network management. 
According to the classification results, an enterprise or a 
service provider can apply various rules to protect network 
resources or enforce organization policies. Accurate traffic 
classification is therefore the keystone in application-aware 
network management. However, it is not trivial to correctly 
classify the traffic into the applications according to their 
diverse characteristics and behaviors because traffic can be 
encrypted, relayed by other protocols, or disassembled.  

A number of approaches have been proposed to identify 
and to classify the traffic into applications. However, 
traditional classification methods may not work well for 
emerging applications because they usually rely on either port 
number [1, 2] or payload signatures [3-5]. To bypass policies 
enforced by network monitors, modern applications use several 
different techniques to cloak their network traffic. Common 
communication protocols, like HTTP, are often used as covert 
channels to relay other types of traffic. Both payload 
encryption and port randomization techniques are also adopted 
to increase difficulties for traffic classification. As a result, 
researchers now tend to classify traffic based on application 
behaviors. They monitor and model application behaviors, and 
then use the resultant application profiles to classify traffic.  

Classifying traffic into applications becomes more 
challenging because of more sophisticated application 
behaviors. The connection behavior of one application may be 
similar to that of another application. For example, the 
behavior of an HTTP file transfer may look similar to that of an 
FTP one. In addition, not all flows generated in one session do 
the same thing. For example, a BitTorrent client may 
simultaneously establish several flows to retrieve the list of 
servers, look up resources, check peer status, and transfer files. 
Thus, to have a better classification result, we propose an 
approach, namely session level flow classification (SLFC), to 
classify network flows as sessions and hence obtain a complete 
picture of application behaviors. 

SLFC contains two parts, i.e., flow classification and flow 
grouping.  The former classifies flows into applications by 
packet size distribution (PSD) and the latter groups related 
flows as sessions by port locality. When the PSD of one flow is 
determined, it is compared to each representative of all pre-
selected applications to decide which application it should be. 
Meanwhile, if the source and destination IP addresses of two 
flows are the same and their port numbers are adjacent, the two 
flows may belong to the same session of an application. If 
flows of a session are classified as different applications, an 
arbitration mechanism based on majority votes is invoked to 
make the correction. Evaluations and online benchmarks show 
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that SLFC is able to obtain accurate results and to make 
decisions by checking at most 300 packets within a flow and 
the overall throughput exceeds 400 Mbps in a mainstream 
computer.  

This paper is a shortened version of the article [6] that 
provided more detailed discussion about false-positive and 
false-negative analysis and comparisons with other related 
works. In the next section, some important related literatures 
are surveyed. Section III describes two basic observations, 
which are the base of designing our classification algorithm. 
Our SLFC algorithm is formally presented in Section IV and its 
performance is evaluated in Section V. Finally, conclusions are 
given in Section VI. 

II. RELATED WORK 
Classifying network flows by using statistical properties of 

network traffic is not new. Such methods assume that the 
statistical properties of traffic are unique for different 
applications and can be used to distinguish applications from 
each other. The statistical features commonly used, for 
example, contain flow duration, packet inter-arrival time, 
separate packet size, bytes transferred, number of packets, and 
etc. However, earlier work only focused on the peculiarities of 
network traffic classes or applications [7, 8]. Hereafter, more 
works [9-13] endeavored to classify exclusively network traffic 
based on statistical features. They generally consist of two 
parts: model building and classification. A model is first built 
using statistical attributes of flows by learning the inherent 
structural patterns of datasets and the model is then used to 
classify other new unseen network traffic.  

BLINC, proposed by Karagiannis et al. [14], introduces 
another type of classification approach based on the analysis of 
host behavior. It associates Internet host behavior patterns with 
one or more applications, and refines the association by 
heuristics and behavior stratification.  

Some alternative proposals [15] utilize machine learning 
(ML) techniques to network traffic, which are known as a 
collection of powerful techniques for knowledge discovery and 
data mining domains. They first use similar statistical features, 
like aforementioned works, to build models but then apply 
particular ML techniques, dissimilar with aforementioned 
works, to classify network traffic. The idea of applying ML 
techniques for traffic classification was introduced in [16]. 

III. FEATURES UTILIZED BY SLFC 
In this section, the two major features utilized by SLFC, i.e., 

packet size distribution (PSD) and port locality are introduced. 
Our observations show that application behaviors can be 
differentiated with their PSDs, meaning that flows of the same 
application have similar PSDs, but flows of different 
applications have diverse PSDs. Our observations also show 
that the port numbers used by flows belonging to the same 
application session are often adjacent. In this paper, a session is 
defined as a set of flows that are generated in the same 
conversation. For client-server applications, a session is 
defined as a single flow established between a client and a 
server. For peer-to-peer applications, a session is defined as 

several flows generated consciously in a peer-to-peer 
transaction.  

A. Packet size distribution (PSD) 
The PSD of a network application can be obtained from all 

its flows. The traces of individual application activities are 
captured in a controlled environment. The major advantage of 
this method is that all collected traffic can be clearly marked to 
belong to its parent application. Each pre-selected application 
is executed in turn, and the traffic generated is recorded when it 
passes through the network interface. The names of the pre-
selected applications and related application/protocol category 
used in this work are BitTorrent (P2P), eMule (P2P), Skype 
(P2P), HTTP (HTTP), POP3 (POP3), SMTP (SMTP), FTP 
(FTP), Shoutcast (Streaming) and PPLive (P2P streaming). 

Different applications produce unequal frequent packet 
sizes due to different operational requirements. Fig. 1(a) and 
1(b) show the use of packet sizes of two different applications, 
Shoutcast and FTP, respectively. The horizontal axis is the 
packet sequence number and the vertical one is the 
corresponding packet size. In addition, the packets of the same 
application have similar size distributions, as shown in Fig. 2(a) 
and 2(b), which present the packet size distributions of two 
BitTorrent instances. These observations demonstrate that PSD 
is a good feature to classify network traffic. 

In the execution period of an application instance, packets 
generated can be roughly divided into two types, one of which 
is control packet and the other is data packet. Control packets 
are indispensable and mostly used for account authentication, 
information exchange initialization and status checking while 
data packets are used for true data transfer. Even if packet sizes 
are variant and diverse for different applications, there must be 
some invariant or limited-variance control packets generated in 
the execution period, which are our primary targets.  

              
(a) PSD of one Shoutcast instance              (b) PSD of one FTP instance 

Figure 1: Different types of applications have distinct PSD 

      
     (a) BitTorrent instance 1                 (b) BitTorrent instance 2 

Figure 2: Two instances of BitTorrent having similar PSD   

B. Port locality 
We observed that port numbers used by network flows of 

the same session often have the property of spatial locality, i.e., 
the port numbers are consecutive or very close to each other. 
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Although port numbers may be randomly chosen, underlying 
operating systems often allocate consecutive port numbers 
when an application has to setup multiple connections with 
remote hosts. This phenomenon is useful because when a flow 
is classified as one specific session, the port numbers can be 
used to associate related flows into the same session. However, 
not all operating systems follow the common rule and hence it 
is not always able to associate flows as a session. In this case, a 
single flow is treated as a session.  

IV. THE SLFC ALGORITHM 
SLFC runs in two phases: an offline application 

representatives training phase and an online session 
classification phase. Fig. 3 shows the overview of the proposed 
approach. The left side block represents the steps of the 
training phase and the right side block shows the online 
classifier, which includes three modules, flow classification, 
session grouping, and application arbitration.     

The goal of the offline training phase is to find out 
application representatives, which should be unique to or 
different from other applications, to be the basis of comparison. 
This training phase first collects a set of traffic traces and tries 
to extract the representatives from the traces. There are two 
ways that can be used to collect application traffic: (1) capture 
all traffic generated while some application is executing and 
manually filter out the part of traffic unrelated to the 
application; (2) only capture the part of traffic related to the 
application. The more pure application traffic is collected, the 
more accurate the classification results can be expected to 
obtain because more elaborate application profiles can be 
reserved. For the second method, a traffic filter can be used to 
assist this traffic collection process, which can automatically 
prohibit or filter out irrelevant application traffic. In terms of 
new applications, the configurations of the first occurrence can 
be saved and a traffic filter can use them to extract and refine 
the application traffic after filtering out traffic patterns of other 
known applications. The goals of these two methods are both 
to clearly mark the related traffic. 

In order to remain excellent classification, the application 
representatives should be also kept precise and up-to-date. The 
cost of representative upgrade process is acceptable because an 
automatic approach like the second method as mentioned 
above can be invoked to compute other new representatives of 
unknown applications or applications that are revised 
frequently. 

The online session classification phase first extracts the 
five-tuple header information (source IP, source port, 
destination IP, destination port, protocol) and the packet size 
distribution from all incoming flows. The packet size 
distribution of a flow is transformed to a two-dimension space 
point. Afterward, the flow classification module compares the 
flows with application representatives and classifies it into the 
application having a minimum distance. Meanwhile, the 
session grouping module tries to group flows as a session 
based on port locality. Until now, each flow is classified as a 
certain application and port-adjacent flows are grouped into the 
same session. If two or more flows of a session are classified as 

different applications, the application arbitration module is 
invoked to solve the conflict and make the correction. 

 
Figure 3: Overview of SLFC   

Each module of SLFC as mentioned above is elaborated in 
subsequent subsections. Subsection A and B explain the details 
of the offline training phase and the online session 
classification phase is interpreted through subsection C to E.  

A. Flow representation – dominating sizes (DS) and 
dominating sizes’ proportion (DSP) 
When input into SLFC, successive IP packets having the 

same five-tuple are collected as a flow. However, exhaustively 
remembering all packets’ sizes of a flow not only consumes a 
lot of memory spaces but also is impracticable. To overcome 
this difficulty, only the dominating packets’ sizes of a flow are 
kept as the feature of a flow. Identifying dominating packets’ 
sizes is done as follows.  

Assume a number of packets are collected for a flow f. First, 
packets with payload sizes equal to zero or MTU are treated as 
invalid packets and hence omitted. Next, the number of valid 
packets for each distinct packet size is counted and stored as a 
pair of (psf(i), pro(psf(i))), where psf(i) is the ith distinct packet 
size used and pro(psf(i)) is the ratio of psf(i) over the total 
number of valid packets. Then, all pairs (psf(i), pro(psf(i))) are 
sorted in a decreasing order sorting by pro(psf(i)) and split into 
two vectors, namely DSf and DSPf, which represent the 
dominating size (DS) vector and the dominating size proportion 
(DSP) vector for flow f, respectively. For example, if a flow f 
contains packets of h distinct packet sizes, after the sort 
operation, we have a set of h pairs {(psf(1), pro(psf(1))), (psf(2), 
pro(psf(2))), …, (psf(h), pro(psf(h)))}, and the DS and the DSP 
for the flow f is denoted as vectors, where DSf =< psf(1), 
psf(2), …, psf(h)> and DSPf =< pro(psf(1)), pro(psf(2)), …, 
pro(psf(h))>. For the ease of discussion, we use DSf(g) and 
DSPf(g) to indicate the gth entries in the DSf and DSPf vector, 
respectively. The obtained DS and DSP vectors are also called 
the PSD feature of a flow. 

B. Application representatives 
In order to measure the degree of similarity for two 

different flows, a distance metric is defined. However, careful 
handling must be taken when the lengths of DS vectors are not 
the same. Suppose that there are two distinct flows f1, f2, and 
the numbers of entries in DS vectors of f1 and f2 are n and m 
respectively (n�m).  The similarity distance (SD) metric is 
defined as 
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Here the values of the entries in DS vectors are not further 
normalized because each entry in DSP vector is paired with the 
corresponding one entry in DS vector. 

The application representatives training phase aims to find 
out the representatives of pre-selected applications. For this 
purpose, lots of traces for a specific application are collected 
and the PSD features of flows of an application are then 
extracted. Below there are four different methods to compute 
the representatives for an application. One common routine 
used by the four methods are introduced first. The routine, 
named representative averaging (RA), is used to derive the 
representative feature from a group of flows. Once flows are 
correctly grouped, the RA algorithm averages all PSD features 
of flows which contribute to the corresponding feature values 
within the group G, i.e. })/(),/({Rep � �= KDSPKDS

ii ffG
 for 

1 i K, where 
if

DS  and 
ifDSP  are the DS vector and DSP 

vector of flow fi which contributes to the corresponding feature 
values within the group G, and K is the total number of flows fi 
in group G. 

1) Method1 (M1) – Direct Average Processing: All flows 
belong to one application are used to compute the 
representative by using the RA algorithm. The result of this 
method is a single representative for the application.  

2) Method2 (M2) – Manual Traffic Correction: an 
application may have multiple different kinds of behaviors. To 
precisely catch the behavior profiles of an application, this 
method employs a manual pre-processing stage to classify 
flows by behaviors. For example, all eMule flows can be 
calssified manually into three behaviors, i.e., connecting to 
pre-configured servers to fetch server and file lists, 
communicating with peers, and exchanging files. In this case, 
the representative of the eMule application is composed of 
three representatives; each is obtained by applying RA 
algorithms for flows belong to an individual group. Therefore, 
with M2, an application representative may be composed of 
multiple group-representatives depending on the number of 
the application behaviors. 

3) Method3 (M3) – Ignoring Common Packets: The 
method is basically the same as M1. However, to prevent the 
ambiguity brought by packet size similarities, a preprocessing 
step is done to filter out common packet sizes of different 
network applications. There exists a tradeoff between the 
numbers of common packet sizes needed to filter out and the 
final classification accuracy rates. The more common packet 
sizes are removed, the higher the separate classification 
accuracy rate for each application may be achieved. However, 
the common packet sizes filtered out ultimately can not be 
recognized. For example, eMule and Skype both use some 
common size of packets, such as 46 bytes UDP packets, to 
communicate with peers. The representative finally generated 
by M3 is also a single one for each application. 

4) Method4 (M4) – Automatic Clustering: This method is 
similar to M2, i.e., generate behavior-based application 
representatives. Instead of grouping flows of similar behaviors 
manually, it tries to group flows automatically. We observed 
that flows of the same behavior should have similar  PSD 
features. Hence, a tolerant threshold (TT) is defined to tell 
whether or not two flows should be grouped together. If the 

PSD distance between two flows is less than TT, they are 
grouped together. Otherwise, they are classified into two 
different groups. Afterward, the RA algorithm is applied to 
each group and obtains the corresponding group-
representatives. The final representative for the application is 
composed of all group-representatives.  

Using different application representatives may cause 
totally different application results. Readers should also note 
that the proposed method may generate many representatives 
for an application because an application can have various 
implementations and run on different platforms, and they can 
choose the most suitable representatives against those results. 

C. Flow classification 
Each incoming flow computes the individual similarity 

distance between it and all sets of the application 
representatives found by the offline training phase according to 
the metric Equation (1). If an application has more than one 
representative, the final distance between the flow and the 
application is the sum of all similarity distances between the 
flow and each representative. After all similarity distances are 
obtained, the incoming flow decides the application having the 
minimum similarity distance to be the one it should belong to.  

D. Session grouping 
To assist and speed up session identification, a data 

structure, namely port association table (PAT), is used to store 
the port locality information. Once a flow is recognized as a 
session of a specific application, its five-tuple header 
information is extracted and separately recorded in the PAT as 
(source IP, source port, session ID) and (destination IP, 
destination port, session ID), where session ID is a counter 
starting from zero. For a given flow, if its source IP address 
srcIP is already stored in the PAT and the source port number 
Q is adjacent to the port number P of an existing entry (srcIP, 
P, SID) in the PAT, the flow is also treated as a flow of session 
SID and added into the PAT as (srcIP, Q, SID). The same rule 
can be applied to destination IP addresses. 

However, not all flows with adjacent port numbers actually 
belong to the same session. For example, two instances of a 
P2P file-sharing application run at different time, e.g., 3AM 
and 7PM and some involved flows belonging to different 
instances use adjacent port numbers. In this case, all involved 
flows and hosts should be classified into two sessions. 
Therefore, two parameters, port locality range and flow inter-
arrival time, are also defined. Port locality range is used to 
express numerically the meaning of port locality and indicates 
if the difference of two port numbers used by two flows is 
within a pre-defined range, these two flows are classified as the 
same session; flow inter-arrival time means the difference of 
separate arrival time of any two flows. 

Although port locality is considered, it is not primarily used 
for application classification; it should be regarded as finding 
partnership among tremendous flows. The leading part used to 
classify applications is to compare the traffic characteristics of 
unknown flows with those of application representatives flow 
by flow. The port association is to provide the chance to verify 
the classification results by taking a peek at partners’ results. 
Applications without port locality can be still classified against 
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application representatives, although our approach is unable to 
find brother flows by five-tuple flow information in this case. 

E. Application arbitration 
When multiple flows are grouped as a session, it is possible 

that flows within a session may be classified as different 
applications. This is because flow classification module and 
session grouping module do their tasks independently. A 
classification conflict happens if a grouped session contains 
flows of two or more different applications. Although an 
application may use several communication protocols in a 
session, flows with different protocols should be classified as 
the same application. SLFC uses a simple solution to resolve 
these classification conflicts. If flows of two or more different 
applications are grouped together, all flows of the session will 
be treated as the application having the largest amount of 
flows in this session.  

V. EVALUATIONS 
In this evaluation, two different data sets are used, both of 

which are captured and collected from the operational instances 
of all pre-selected applications running in NCTU campus, not 
from a traffic generator or artificial design in a lab. For one 
data set used for training, it contains all pre-selected 
application traffic and it is only used to compute application 
representatives. For the other data set, it is only used for the 
purpose of application identification and classification and is 
independently captured from the first data set. 

(Four methods)(%)

ac
cu

ra
cy
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e

 
Figure 4: Four representatives training methods based on UDP flows 
For each application, a number of traces are collected and 

each trace has one or more TCP and UDP flows. Then the real-
world traces recorded from NCTU campus networks are 
classified to evaluate SLFC. The following subsection A 
assesses important parameters of SLFC; one is the final 
representative training method used, another is the tolerant 
threshold needed for M4, and the other two used to delimit a 
session. Subsection B represents the flow-level and session-
level classification accuracy rates, and subsection C evaluates 
the effects of online classification speedup.  

A. Parameters 
In the offline training phase, four distinct methods are 

designed to extract application representatives. Fig. 4 shows 
the accuracy rates of four applications based on UDP flow 
classifications. In M1, the accuracy rate of BT and Skype is 
0.03% and 0%, respectively, so they are both invisible in this 
figure. The accuracy rate of M1 is not good because M1 may 
put two flows into a group even if they are far from each other. 
Averaging different flows that are far from each other may 
derive a representative which is also far from all flows. M2 has 
better accuracy rates than M1. Although M2 has similar results 

to M4, M2 requires a manual traffic pre-processing to obtain a 
priori knowledge about the target application, which can be 
done automatically in M4. M3 has better accuracy than M1, but 
M3 also requires a pre-processing operation to find out 
common packet sizes. M4 has the best accuracy rates among 
the four methods, so it is chosen as our default method of 
application representatives. Besides, the two parameters, port 
locality range and flow inter-arrival time, used to define a 
session are set to 4 and 500 seconds according to our 
observations and the work [15].  

 
Figure 5: Tolerant Threshold (TT) based on UDP flows 

The parameter tolerant threshold (TT) required by M4 
affects the number of flow groups and the accuracy rates of 
application classifications. Fig. 5 shows the accuracy rates of 
different values of TT. The horizontal axis is the TT value to be 
evaluated and the vertical one is the accuracy rates of different 
values of TT. The accuracy rates of TT=2 are similar to that of 
TT=1 but better than TT=5 and TT=10. Although the results of 
TT=2 and TT=1 are similar, the numbers of groups are different. 
Taking PPLive as an example, the number of groups for TT=2 
are only two-third times of that for TT=1. Therefore, the value 
of TT is set to two throughout this work.  

 
Figure 6: Accuracy Rate of Flow Classifications    

B. Accuracy rates of classifications 
The accuracy rate of flow classification indicates the 

percentage of correctly recognized application flows. Two 
strategies are compared in this evaluation. One is flow-level 
flow classification that online classifies flows using only PSD 
features (flow-level) and the other is session-level flow 
classification that online classifies flows using whole online 
classification phase of SLFC (session-level). Fig. 6 shows the 
flow classification accuracy rates of the two strategies. 

For TCP applications, BitTorrent and eMule have lower 
accuracy rates than others because the two applications have 
similar PSDs, especially when transferring files. For UDP 
applications, the accuracy rate of Skype is low because Skype 
has similar packet sizes to eMule and BitTorrent. Compared 
with P2P protocols, traditional protocols like FTP, POP3, and 
SMTP have better accuracy rates because they have 
distinguishable PSDs. Some applications have similar accuracy 
rates regardless of the use of session grouping and application 
arbitration. There are two major reasons for the phenomenon. 
First, those applications usually use only a single flow to 
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communicate. Second, the port numbers assigned to flows of 
those applications are not continuous or dynamically assigned. 
From this evaluation, the session-level flow classification has a 
high classification accuracy rate, says 99.9% on average and 
outperforms flow-level flow classification. 

C. Classification speedup assessment 
In this section, the accuracy rates of online application 

classifications and the overall classification throughput are 
evaluated. Table 1(a) shows the intermediate classification 
results, which are made before a complete flow is seen. The 
traffic of eMule, PPLive, and Skype may be incorrectly 
classified because flows of the three applications have some 
common packet sizes. 

From table 1(a), a decision for a TCP application can be 
made by checking at most 300 packets and a high accuracy rate 
can be achieved. In addition, the online throughput of the 
proposed solution is able to run at a throughput exceeding 400 
Mbps on a mainstream computer (Intel Core 2 Duo processor 
3.0 GHz, 2 GB RAM, and Windows XP). If we checks at most 
300 packets for each flow, the number of inspected packets can 
be greatly reduced, as shown in table 1(b). An average 
reduction of 72% can be observed in the table. 

                 Table 1(a): TCP progress results of classification  

For TCP and UDP applications, 41.99% and 74.46% 
packets can be omitted respectively. In particular, for streaming 
applications such as PPLive (UDP) and Shoutcast (TCP), a 
surprisingly huge reduction of 79.99% and 86.05% are 
observed respectively. 

Table 1(b): Classification Cost Reduction 

Application  Total TCP 

packets 

TCP packets 

inspected 

Total UDP 

packets  

UDP packet 

inspected 

Total 

Reduction (%) 

BT 148644 108327 811609 771028 8.42 

eMule 692642 486256 207195 196835 24.09 

PPLive 9432 8478 12978649 2589240 79.99 

Skype 12054 10836 49763 30258 33.52 

Shoutcast 93607 13059 0 0 86.04 

HTTP 10759 8798 0 0 18.23 

POP3 13215 10812 0 0 18.18 

SMTP 13021 11328 0 0 13 

FTP 25468 10184 0 0 60.01 

Total (counts) 1018842 601258 14047216 3587361 — 

Percentage 100 % 59.01 % 100 % 25.54 % 72.19 

VI. CONCLUSIONS 
This paper proposes SLFC, which runs in two phases: an 

offline application representatives training phase and an online 
session classification phase. The offline training phase uses a 

set of traffic traces to find application representatives, which 
are built from PSDs of pre-selected applications. The online 
session classification phase is done in three steps: (1) extract 
the PSD feature of a give flow and compare it with those PSD 
features of application representatives to make the 
classification; (2) run the session grouping algorithm to group 
port-adjacent network flows into the same session; and (3) use 
the application arbitration algorithm to correct flow 
classifications if two or more flows of a session are classified 
as different applications. SLFC are able to make traffic 
classifications without examining packet payloads. With a 
well-trained application representatives’ database, the 
classifier can effectively identify the application that a flow 
belongs to. The proposed solution achieves high accuracy 
rates and low error rates. When the proposed solution is used 
as an online classifier, decisions can be made by checking at 
most 300 packets for long-lasting flows and running at a 
throughput exceeding 400 Mbps on commodity hardware. 
Based on our test data, an average of 72% of packets can be 
omitted without reducing the classification accuracy rates. 
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Packet 

counts 

BT 

(%) 

eMule 

(%) 

PPLive 

(%) 

Skype 

(%) 
Shoutcast 

(%) 
FTP 
(%) 

POP3 
(%) 

SMTP 
(%) 

< 10 21.69 25.8 84.5 68.18 85.71 0 0 0 
< 50 38.55 34.35 84.5 68.18 85.71 0 0 0 

< 100 60.24 51.37 84.5 72.73 85.71 18.75 6.25 11.25 
< 150 72.29 68.39 85.92 72.73 85.71 27.5 6.25 11.25 
< 200 77.1 85.72 86.38 77.27 92.86 43.75 52.5 57.5 
< 250 77.1 85.72 88.26 81.82 92.86 72.5 62.5 77.5 
< 300 79.5 85.72 97.65 81.82 92.86 83.75 81.25 88.75 
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