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a b s t r a c t

Classifying traffic into specific network applications is essential for application-aware net-
work management and it becomes more challenging because modern applications compli-
cate their network behaviors. While port number-based classifiers work only for some
well-known applications and signature-based classifiers are not applicable to encrypted
packet payloads, researchers tend to classify network traffic based on behaviors observed
in network applications. In this paper, a session level flow classification (SLFC) approach is
proposed to classify network flows as a session, which comprises of flows in the same con-
versation. SLFC first classifies flows into the corresponding applications by packet size dis-
tribution (PSD) and then groups flows as sessions by port locality. With PSD, each flow is
transformed into a set of points in a two-dimension space and the distances between each
flow and the representatives of pre-selected applications are computed. The flow is recog-
nized as the application having a minimum distance. Meanwhile, port locality is used to
group flows as sessions because an application often uses consecutive port numbers within
a session. If flows of a session are classified into different applications, an arbitration algo-
rithm is invoked to make the correction. The evaluation shows that SLFC achieves high
accuracy rates on both flow and session classifications, say 99.9% and 99.98%, respectively.
When SLFC is applied to online classification, it is able to make decisions quickly by check-
ing at most 300 packets for long-lasting flows. Based on our test data, an average of 72% of
packets in long-lasting flows can be skipped without reducing the classification accuracy
rates.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Classifying traffic into specific network applications is
essential for application-aware network management.
According to the classification results, an enterprise or a
service provider can apply various rules to protect network
resources or enforce organization policies. Accurate traffic
classification is therefore the keystone in application-
aware network management. However, it is not trivial to
correctly classify the traffic into the applications according
. All rights reserved.
to their diverse characteristics and behaviors because
traffic can be encrypted, relayed by other protocols, or
disassembled.

A number of approaches have been proposed to identify
and to classify the traffic into the applications. However,
traditional classification methods may not work well for
emerging application because they usually rely on either
port numbers [1,2] or payload signatures [3–6]. To bypass
policies enforced by network administrators, modern
applications use several different techniques to make their
network traffic invisible to network monitors. Common
communication protocols, like HTTP, are often used as cov-
ert channels to relay other types of traffic. Both payload
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encryption and port randomization techniques are also
adopted to increase difficulties for traffic classification. As
a result, researchers now tend to classify traffic based on
application behaviors. They monitor and model application
behaviors, and then use the resultant application profiles
to classify traffic.

Classifying traffic into applications becomes more chal-
lenging because of more sophisticated application behav-
iors. The connection behavior of one application may be
similar to that of another application. For example, the
behavior of an HTTP file transfer may look similar to that
of an FTP one. In addition, not all flows generated in one
session do the same thing. For example, a BitTorrent client
may simultaneously establish several flows to retrieve the
list of servers, look up resources, check peer status, and
transfer files. Thus, to have a better classification result,
we propose an approach, namely session level flow classifi-
cation (SLFC), to classify network flows as sessions and
hence obtain a complete picture of application behaviors.

SLFC contains two parts, i.e., flow classification and
flow grouping. The former classifies flows into applica-
tions by packet size distribution (PSD) and the latter
groups related flows as sessions by port locality. A flow
is identified by the five-tuple information, which includes
source IP, destination IP, source port, destination port, and
protocol. When the PSD of one flow is determined, it is
compared with each representative of all pre-selected
applications to decide which application it should be.
Since the information of packet payloads is not required,
this method works even if the packet payloads are en-
crypted. In addition, flows will be grouped as sessions
by checking port locality because operating systems often
allocate consecutive port numbers for an application to
setup connections with remote hosts. If the source and
destination IP addresses of two flows are the same and
their port numbers are consecutive, the two flows may
belong to the same session of an application. If flows of
a session are classified as different applications, an arbi-
tration algorithm based on majority votes is invoked to
make the correction. Evaluations and online benchmarks
show that SLFC is able to obtain accurate results and
make decision by checking at most 300 packets and the
overall throughput exceeds 400 Mbps in a mainstream
computer.

This rest of this paper is organized as follows. In the
next section, some important related literatures are sur-
veyed. Section 3 describes two basic observations, which
are the base of designing our classification algorithm. The
SLFC algorithm is formally presented in Section 4 and its
performance is evaluated in Section 5. Finally, conclusions
are given in Section 6.
2. Related work

Classifying network flows by using statistical properties
of network traffic is not new. Such methods assume that
the statistical properties of traffic are unique for different
applications and can be used to distinguish applications
from each other. The commonly used statistical features,
for example, contain flow duration, packet inter-arrival
time, packet size, bytes transferred, number of packets,
and etc. Earlier work just focused on the characteristics
of network traffic classes or applications. Paxson studied
the relationship between statistical properties of flows
and applications that generate them based on Internet traf-
fic characterization [7] and Paxson and Folyd [8]. Paxson
[7] modeled and analyzed the individual connection char-
acteristics, such as bytes transferred, duration, arrival peri-
odicity for different TCP applications. In [8], they found
that user-initiated events, such as TELNET connections or
FTP control connections arrivals, can be described by a
Poisson process, whereas other connection arrivals deviate
considerably from Poisson. They did not further attempt to
classify network traffic according to different application
layer protocols. These work, however, showed that it is
possible to identify network traffic based on statistical
features.

Hereafter, more work endeavored to classify exclusively
network traffic based on statistical features. They generally
consist of two parts: model building and classification. A
model is first built using statistical attributes of flows by
learning the inherent structural patterns of datasets and
the model is then used to classify other new unseen net-
work traffic. Dewes et al. [9] analyzed and classified differ-
ent Internet chat traffic using multiple flow characteristics
such as flow duration, packet inter-arrival time, packet
size, and bytes transferred. Roughan et al. [10] used near-
est neighbor (NN) and linear discriminant analysis (LDA)
to map applications to different quality of service classes
using features such as average packet size, flow duration,
bytes per flow, packet per flow, and root mean square
(RMS) packet size. Divakaran et al. [11] identified different
classes of applications by observing packet train length and
packet train size. A packet train is the flow of packets be-
tween two hosts in a network, where each packet forms
the car of the train. Their approach is effective to classify
short UDP flows, e.g., DNS traffic. However, when it is ap-
plied to long-lasting flows or TCP flows, this approach of-
ten makes incorrect decisions. Bernaille et al. [12]
identified applications based on packet sizes and directions
of packets. Application behavior is clustered by character-
istics observed in the very first five packets of TCP connec-
tions. Then, a flow is classified into an application by
measuring the minimum similarity distance. However,
the solution can not handle either packet losses or packet
reordering. Ying-Dar et al. [13] used packet size distribu-
tion (PSD) and packet size change cycle of a flow to model
and classify application flows. Without the auxiliary mech-
anism, port association, the average accuracy rate is not
good enough for online classification. Although our SLFC
uses similar statistical features, say packet size distribu-
tion, SLFC is simpler and can achieve higher accuracy rates
and better online speedup effect without human
intervention.

A few works analyze traffic at a level other than flow le-
vel. Kannan et al. [14] used a connection-level trace to de-
rive abstract descriptions of the session-structure for
different applications present in the trace. Based on flows’
statistical information, the Kannan’s approach discovers
and characterizes flow/session causality relationship. It
can further infer applications’ internal session structures.



Table 1
Pre-selected applications.

Application
name

Application-level
protocol

Transport layer
protocol

BitTorrent P2P TCP/UDP
eMule P2P TCP/UDP
Skype P2P TCP/UDP
HTTP HTTP TCP
POP3/SMTP POP3/SMTP TCP
FTP FTP TCP
ShoutCast Streaming TCP/UDP
PPLive P2P Streaming TCP/UDP
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However, it may be not able to handle modern sophisti-
cated applications since it identifies applications by using
only port numbers.

BLINC, proposed by Karagiannis et al. [15], introduces
another type of approach for traffic classification based
on the analysis of host behavior. It associates Internet host
behavior patterns with one or more applications, and re-
fines the association by heuristics and behavior stratifica-
tion. It is able to accurately associate hosts with the
service they provide or use by inspecting all the flows gen-
erated by specific hosts. However, it can not classify a sin-
gle TCP connection because it has to gather information
from multiple flows for each individual host before it can
decide on the role of the host.

Some alternative proposals [17–20] utilize machine
learning (ML) techniques to network traffic, which are dif-
ferent from mathematical frameworks. ML is known as a
collection of powerful techniques for knowledge discovery
and data mining domains. The idea of applying ML tech-
niques for traffic classification was introduced in [16]. ML
techniques are divided into two phases as well. They first
use similar statistical features, like aforementioned work,
to build models but then apply particular ML techniques,
dissimilar with aforementioned work, to classify network
traffic. Different ML techniques may perform differently
toward distinct network applications, and may require dis-
tinct parameter configurations. Therefore, McGregor et al.
[17] used expectation maximization technique, Zander
et al. [18] used AutoClass technique, and Moore [20] used
Naı̈ve Bayes technique, to group flows based on a set of
flow statistics to classify traffic under different metrics
and criteria.
3. Features utilized By SLFC

In this section, the two major features utilized by SLFC,
i.e., the packet size distribution (PSD) and the port locality
are introduced. Our observations show that application
behaviors can be differentiated with their PSDs, meaning
that flows of the same application have similar PSDs, but
flows of different applications have diverse PSDs. Our
observations also show that the port numbers used by
flows belonging to the same application session are often
adjacent. In this paper, a session is defined as a set of flows
that are generated in the same conversation. For client–
server applications, a session is defined as a single flow
established between a client and a server. For peer-to-peer
applications, a session is defined as several flows generated
consciously in a peer-to-peer transaction.
3.1. Packet size distribution (PSD)

The PSD of a network application can be obtained from
all its flows. We manually capture traces of a single appli-
cation in a crafted environment to collect the traffic of a
specific application. The major advantage of manual collec-
tion is that all collected traffic belongs to the same applica-
tion. Each pre-selected application is executed in turn, and
the traffic generated is recorded when it passes through
the network interface. Table 1 lists the corresponding
application names, application-level protocols, and trans-
port layer protocols used of all pre-selected applications.

Different applications produce unequal packet sizes due
to different operational requirements. Fig. 1 shows the
most frequently used packet size of each pre-selected
application except packets without payloads and packets
with size of maximum transmission unit (MTU) in a nor-
mal transaction. Zeroes in the entries means that the appli-
cations have no traffic belonging to that protocol. Fig. 2(a),
(b), and (c) show the use of packet sizes of three different
applications, Shoutcast, FTP, eMule, respectively. The hori-
zontal axis is the packet sequence number and the vertical
one is the corresponding packet size. Fig. 2 presents that
different applications have different PSDs. In addition, the
packets of the same application have similar size distribu-
tions, as shown in Fig. 3(a) and (b), which present the pack-
et size distributions of two BitTorrent instances. These
observations demonstrate that PSD is a good feature to
classify network traffic.

In the execution period of an application instance, pack-
ets generated can be roughly divided into two types, one of
which is control packet and the other is data packet. Con-
trol packets are indispensable and mostly used for account
authentication, information exchange initialization and
status checking; while data packets are used for true data
transfer. Even if packet sizes are variant and diverse for dif-
ferent applications, there must be some invariant or lim-
ited-variance control packets generated in the execution
period, which are our primary targets.
3.2. Port locality

We observed that port numbers used by network flows
of the same session often have the property of spatial local-
ity, i.e., the port numbers are consecutive or very close to
each other. Although port numbers may be randomly cho-
sen, operating systems often allocate consecutive port
numbers when an application has to setup several connec-
tions with remote hosts. This phenomenon is useful be-
cause when a flow is classified as one specific session,
the port numbers can be used to associate flows the same
session. Although port locality is useful, some operating
systems do not follow the common rule and hence it is
not always able to associate flows as a session by using
port locality. In this case, a single flow is treated as a ses-
sion. Fig. 4 shows the port numbers used by flows of multi-
ple HTTP sessions. Port numbers the servers used are not



Fig. 1. Different applications have different most frequent packet size.

Fig. 2. Different types of applications have distinct PSD.

Fig. 3. Two instances of BitTorrent have similar PSD.

Fig. 4. The port numbers used along with packets during HTTP sessions.
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presented because they are all the well-known port, port
80. During each session, the client initiated several flows
to communication with the server and the adjacent port
numbers used was in an increasing order.



Fig. 5. Components of SLFC.
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4. The SLFC algorithm

SLFC runs in two phases: an offline application represen-
tatives training phase and an online session classification
phase. Fig. 5 shows the overview of the proposed approach.
The left side block represents the steps of the training
phase and the right side block shows the online classifier,
which includes three modules, flow classification, session
grouping, and application arbitration.

The goal of the offline training phase is to find out appli-
cation representatives, which should be unique to or dif-
ferent from other applications, to be the basis of
comparison. Hence, this training phase first collects a set
of traffic traces and tries to extract the representatives
from the traces. There are two ways that can be used to
collect application traffic: (1) capture all traffic generated
while some application is executing, and manually filter
out the part of traffic unrelated to the application; (2) only
capture the part of traffic related to the application. The
more pure application traffic is collected, the more accu-
rate the classification results can be expected to obtain be-
cause more elaborate application profiles can be reserved.
For the second method, a traffic filter can be used to assist
this traffic collection process, which can automatically pro-
hibit or filter out irrelevant traffic based on default or com-
mon configurations of concerned applications. In terms of
concerned applications, the application traffic can be cap-
tured with the help of a traffic filter. A traffic filter, like fire-
wall, can be set up to only allow the traffic to pass through
some pre-defined ports according to the default or com-
mon configurations; in terms of new applications, the con-
figurations of the first occurrence can be saved and a traffic
filter can use them to extract and refine the application
traffic after filtering out traffic patterns of other known
applications.

In order to remain excellent classification, the applica-
tion representatives should be also kept precise and
up-to-date. The cost of representative inspection/upgrade
process is acceptable because an automatic approach like
the second method as mentioned above can be invoked
to compute other new representatives of unknown appli-
cations or applications that are revised frequently.

The online session classification phase first extracts the
five-tuple information (source IP, source port, destination
IP, destination port, protocol) and the packet size distribu-
tion from all real-world flows. The packet size distribution
of a flow is transformed to a two-dimension space point.
Next, the flow classification module compares the flows
with application representatives and classifies it into the
application having a minimum distance. Afterward, the
session grouping module tries to group flows as a session
based on port locality. After the above online phases, each
flow is classified as an application and port-adjacent flows
are grouped into the same session. If two or more flows of a
session are classified as different applications, the applica-
tion arbitration module is invoked to solve the conflict and
make the correction.

Each module of SLFC as mentioned above is elaborated
in subsequent subsections. Sections 4.1 and 4.2 explain the
details of offline training phase and the online session clas-
sification phase is interpreted through sections 4.3,4.4,4.5.
Section 4.1 describes how a series of packet sizes of flows
are converted into representations. A similarity distance
metric and four methods that are used to develop the
application representatives are described in section 4.2.
Along with the application representatives, sections 4.3
and 4.4 introduce the module of flow classification and ses-
sion grouping respectively. Application arbitration module,
described in section 4.5, is used to handle that case if flows
within a session are classified as different applications.

4.1. Flow representation – dominating sizes (DS) and
dominating sizes’ proportion (DSP)

When input into SLFC, successive IP packets having the
same 5-tuple are collected as a flow. In order to determine
whether any two flows are similar or not, SLFC counts the
packets’ sizes of each flow. If two flows are similar, the
packets’ sizes of the two compared flows should be similar.
However, exhaustively remembering all packets’ sizes of a
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flow not only consumes a lot of memory spaces but also is
impracticable. To overcome this difficulty, only the domi-
nating packets’ sizes of a flow are kept as the feature of
the flow. Identifying dominating packets’ sizes is done as
follows. Assume a number of packets are collected for a
flow f. First, packets with payload sizes equal to zero or
MTU are treated as invalid packets and hence omitted. Sec-
ond, the number of valid packets for each distinct packet
size is counted and stored as a pair of (psf(i),pro(psf(i))),
where psf(i) is the ith distinct packet size used by flow f
and pro(psf(i)) is the ratio of psf(i) over the total number of
valid packets of flow f. Then, all pairs (psf(i),pro(psf(i))) are
sorted in a decreasing order sorting by pro(psf(i)) and split
into two vectors, namely DSf and DSPf, which represent
the dominating size (DS) vector and the dominating size
proportion (DSP) vector for flow f, respectively. For example,
if a flow f contains packets of h distinct packet sizes, after
the sort operation, we have a set of h pairs {(psf(1),
pro(psf(1))), (psf(2),pro(psf(2))), . . . , (psf(h),pro(psf(h)))}, and
the DS and the DSP for the flow f is denoted as vectors,
where DSf = hpsf(1),psf(2),psf(3), . . . ,psf(h)i and DSPf = hpro
(psf(1)),pro(psf(2)),pro(psf(3)), . . . ,pro(psf(h))i. For the ease
of discussion, we use DSf(g) and DSPf(g) to indicate the gth
entries in the DSf and DSPf vector, respectively. The
obtained DS and DSP vectors are also called the PSD feature
of a flow.

4.2. Application representatives

In order to measure the degree of similarity for two dif-
ferent flows, a distance metric is defined. However, special
handling must be taken when the lengths of DS vectors are
not the same. Suppose that there are two distinct flows f1,
f2, and the numbers of entries in DS vectors of f1 and f2 are n
and m respectively (n P m). The similarity distance metric
is defined as

Similarity distance

¼
Xm

g¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDSf1ðgÞ � DSf2ðgÞÞ

2 þ ðDSPf1ðgÞ � DSPf2ðgÞÞ
2

q

þ
Xn

g¼mþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDSf1ðgÞÞ

2 þ ðDSPf1ðgÞÞ
2

q
: ð1Þ

Here the values of the entries in DS vectors are not further
normalized because each entry in DSP vector is paired with
the corresponding one entry in DS vector.

The application representatives training phase aims to
find out the representatives of pre-selected applications.
For this purpose, lots of traces for a specific application
are collected and the PSD features of flows of an applica-
tion are extracted. Below there are four different methods
to compute the representatives for an application. One
common routine used by the four methods are introduced
first. The routine, named representative averaging (RA)
algorithm, is used to derive the representative feature from
a group of flows. Once flows are correctly grouped, the RA
algorithm averages all PSD features of flows which contrib-
ute to the corresponding feature values within the group G,
i.e. RepG ¼ f

P
ðDSfi

=KÞ;
P
ðDSPfi=KÞg for 1 6 i 6 K, where

DSfi and DSPfi
are the DS vector and DSP vector of flow fi
which contributes to the corresponding feature values
within the group G, and K is the total number of flows fi.

in group G.

(1) Method 1 (M1) – direct average processing: All flows
belong to one application contribute to the final
representatives of the application. Therefore, all
involved flows are used to compute the representa-
tive by using the RA algorithm. The result of this
method is a single representative for the
application.

(2) Method 2 (M2) – manual traffic correlation: An appli-
cation may have multiple different kinds of behav-
iors. To precisely catch the behavior profiles of an
application, this method employs a manual pre-pro-
cessing stage to classify flows by behaviors. For
example, all eMule flows can be classified manually
into three behaviors, i.e., connecting to pre-config-
ured servers to fetch server and file lists, communi-
cating with peers, and downloading files. In this
case, the representative of the eMule application is
composed of three representatives; each is obtained
by applying RA algorithms for flows belong to an
individual group. Therefore, with M2, an application
representative may be composed of multiple group-
representatives depending on the number of the
application behaviors.

(3) Method 3 (M3) – ignoring common packets: The
method is basically the same as M1. However, to
prevent the ambiguity brought by packet size simi-
larities, a preprocessing step is done to filter out
common packet sizes of different network applica-
tions. There exists a tradeoff between the numbers
of common packet sizes needed to filter out and
the final classification accuracy rates. The more com-
mon packet sizes are removed, the higher the sepa-
rate classification accuracy rate for each application
may be achieved. However, the common packet
sizes filtered out ultimately can not be recognized.
For example, eMule and Skype both use some com-
mon size of packets, such as 46 bytes UDP packets,
to communicate with peers. The representative
finally generated by M3 is also a single one for each
application.

(4) Method 4 (M4) – automatic clustering: This method is
similar to M2, i.e., generate behavior based applica-
tion representatives. Instead of grouping flows of
similar behaviors, it tries to group flows automati-
cally. The basic idea of automatic behavior
classification is simple. We assume that flows of
the same behavior should have similar PSD features.
Hence, a tolerant threshold (TT) is defined to tell
whether two flows should be grouped together or
not. If the PSD distance between two flows is less
than TT, they are grouped together. Otherwise, they
are classified into two different groups. After
classifying all flows into behavior groups, the RA
algorithm is applied to each group and obtains
the corresponding group-representatives. The final
representative for the application is composed of
all group-representatives.
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Using different application representatives may cause
totally different classification results. Readers should also
note that the proposed method may generate many repre-
sentatives for an application because an application can
have various implementations and run on different
platforms.
4.3. Flow classification

Each incoming flow computes the individual similarity
distance between it and all sets of the application repre-
sentatives found by offline training phase according to
the metric Eq. (1). If one certain application has more than
one representative, the final distance between the flow and
the application is the sum of all similarity distances be-
tween the flow and each representative. After all similarity
distances are obtained, the incoming flow decides the
application having the minimum similarity distance to be
the one it should belong to.
4.4. Session grouping

To assist and speed up session identification, a data
structure, namely port association table (PAT), is used to
store the port locality information. Once a flow is recog-
nized as a session of a specific application, its four-tuple
information (source IP, source port, destination IP, destina-
tion port) is extracted and recorded in the PAT as (source
IP, source port, session ID) and (destination IP, destination
port, session ID), where session ID is a counter starting
from zero. For a given flow, if its source IP address SrcIP
is already stored in the PAT and the source port number
Q is adjacent to the port number P of an existing (SrcIP, P,
SID) entry in the PAT, the flow is also treated as a flow of
session SID and added into the PAT as (srcIP, Q, SID). The
same rule can be applied to destination IP addresses.

However, not all flows with adjacent port numbers
actually belong to the same session. For example, two in-
stances of a P2P file-sharing application run at different
time, e.g., 3AM and 7PM and some involved flows belong-
ing to different instances use adjacent port numbers. In
this case, all involved flows and hosts should be classified
into two sessions. Therefore, two parameters, port locality
range and flow inter-arrival time, are defined. Port locality
range is used to express numerically the meaning of port
locality and indicates if the difference of two port numbers
used by two flows is within a specific range, these two
flows are classified as the same session; flow inter-arrival
time means the difference of separate arrival time of any
two flows.

Although port locality is considered, it is not primarily
used for application classification; it should be regarded as
finding partnership among tremendous flows. The leading
part used to classify applications is to compare the traffic
characteristics of unknown flows with those of application
representatives flow by flow. The port association is to pro-
vide the chance to verify the classification results by taking a
peek at partners’ results. Applications without port locality
can be still classified against application representatives,
although our approach is unable to find brother flows by
5-tuple flow information in this case.

4.5. Application arbitration

When multiple flows are grouped as a session, it is pos-
sible that flows within a session may be classified as
different applications. This is because the application
classification and flow grouping is done independently. A
classification conflict happens if a grouped session contains
flows of two or more different applications. Although an
application may use several communication protocols in
a session, flows with different protocols should be classi-
fied as the same application. SLFC uses a simple solution
to resolve these classification conflicts. If flows of two or
more different applications are grouped together, all flows
of the session will be treated as the application having the
largest amount of flows in this session.
5. Evaluations

In this evaluation, two different data sets are used, both
of which are captured and collected from the operational
instances of all pre-selected applications running in NCTU
campus, not from a traffic generator or artificial design in a
lab. For one data set used for training, it contains all pre-se-
lected application traffic and it is only used to compute
application representatives. For the other data set, it is only
used for the purpose of application identification and clas-
sification and is independently captured from the first data
set.

For each application, a number of traces are collected
and each trace has one or more TCP and UDP flows. Table
2 shows the profile of each pre-selected application. Then
the real-world traces recorded from NCTU campus net-
works are classified to evaluate the proposed solution. Sec-
tion 5.1 assesses important parameters of SLFC; one is the
final representative training method used, one is the toler-
ant threshold needed for M4, and the other two used to de-
limit a session. The following subsection represents the
flow-level and session-level classification accuracy rates.
Apart from accuracy rates, section 5.3 shows the critical
false positive ratio and false negative ratio. The compari-
sons with other related proposals are given in sections
5.4 and 5.5. Finally, section 5.6 evaluates the effects of on-
line classification speedup.

5.1. Parameters

In the offline training phase, as described in Section 4.2,
we use four distinct methods to extract application repre-
sentatives. Fig. 6 shows the accuracy rates of four applica-
tions based on UDP flow classifications. In M1, the accuracy
rate of BT and Skype is 0.03% and 0%, respectively, so they
are both invisible in the figure. The accuracy rate of M1 is
not good because M1 may put two flows into a group even
if they are far from each other. Averaging different flows
that are far from each other may derive a representative
which is also far from all flows. M2 has better accuracy
rates than M1. Although M2 has similar results to M4, M2



Table 2
Summarized information of collected application traces.

Application TCP flows UDP flows TCP packets UDP packets Total sessions

BT 3365 737820 146844 811609 55
eMule 15255 205545 692642 207195 55
PPLive 8567 12974 9432 12978649 55
Skype 894 6692 12054 40793 55
Shoutcast 40 0 93607 0 55
HTTP 452 0 10759 0 55
POP3 80 0 13215 0 45
SMTP 80 0 10321 0 45
FTP 120 0 25468 0 45
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requires a manual traffic pre-processing to obtain a priori
knowledge about the target application, which can be done
automatically in M4. M3 has better accuracy rates than M1,
but M3 also requires a pre-processing operation to find out
common packet sizes. M4 has the best accuracy rates
among the four methods, so it is chosen as our default
method of application representatives. Besides, the two
parameters, port locality range and flow inter-arrival time,
used to define a session are set to 4 and 500 seconds
according to our observations and the work [14].

The parameter tolerant threshold (TT) required by M4 af-
fects the number of flow groups and the accuracy rates of
application classifications. Fig. 7 shows the accuracy rates
of different values of TT. The horizontal axis is the TT value
to be evaluated and the vertical one is the accuracy rates of
traffic classification. The accuracy rates of TT = 2 are similar
to that of TT = 1 but better than TT = 5 and TT = 10.
Although the results of TT = 2 and TT = 1 are similar, the
numbers of groups are different. Taking PPLive as an exam-
ple, the number of groups for TT = 2 are only two-third
times of that for TT = 1. Therefore, the value of TT is set to
two throughout this work.

5.2. Accuracy rate of classifications

In this subsection, two kinds of classification results are
shown; one is flow classification accuracy rate and the other
is session classification accuracy rate. The accuracy rate of
flow classification indicates the percentage of correctly
recognized application flows. Two strategies are compared
in this evaluation. One is flow-level flow classification that
online classifies flows using only PSD features (Flow-level)
and the other is session-level flow classification that online
Fig. 6. Four representatives training
classifies flows using whole online classification phase of
SLFC (Session-level). Fig. 8 shows the flow classification
accuracy rates of the two strategies.

For TCP applications, BitTorrent and eMule have lower
accuracy rates than others, because the two applications
have similar PSDs, especially when transferring files. For
UDP applications, the accuracy rate of Skype is low because
Skype has similar packet sizes to eMule and BitTorrent.
Compared with P2P protocols, traditional protocols like
FTP, POP3, and SMTP have better accuracy rates because
they have distinguishable PSDs. Some applications have
similar accuracy rates regardless of the use of flow group-
ing and application arbitration. There are two major rea-
sons for the phenomenon. First, those applications
usually use only a single flow to communicate. Second,
the port numbers assigned to flows of those applications
are not continuous or dynamically assigned. From this
evaluation, the session-level flow classification has a high
classification accuracy rate, says 99.9% on average and out-
performs flow-level flow classification.

In order to find out how many commodity operating
systems support to assign port number linearly, we evalu-
ated and found that most current familiar operating sys-
tems support this feature if the applications tend to
request multiple flows in a short time in an application
session. The operating systems, including MS windows
XP, windows Vista, windows 7, Ubuntu 8.04, Ubuntu
10.04, Ubuntu 10.10, FreeBSD 8.1, CentOS 5.5 and Fedora
14, all support this feature. The reason is perhaps for quick
responses to the requests for resource allocation carried
out by operating systems.

Accuracy rates of session recognition represent the per-
centage of sessions that are correctly classified. It measures
methods based on UDP flows.



Fig. 7. Tolerant threshold (TT) based on UDP flows.

Fig. 8. Accuracy rate of flow classifications.
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the accuracy rates of session recognitions by dividing the
number of correctly identified sessions by the total num-
ber of sessions. Fig. 9 shows the recognition accuracy rate
for each TCP application. The horizontal axis lists the appli-
cations to be evaluated and the vertical one is the accuracy
rates of traffic classification. In most cases, the accuracy
rates can reach 100% except the HTTP protocol. This is be-
cause connections of an HTTP session can have scattered
source port numbers due to redirect requests. If the port
numbers are not adjacent and exceed the port locality
range, these connections will be treated as different ses-
sions, which is an incorrect classification. From this evalu-
ation, a high session classification accuracy rate, says
99.98%, can be obtained.
5.3. False-positive ratio and false-negative ratio

A false positive means that a flow is classified into an
incorrect application, while a false negative means a
known application cannot be identified. Incorrect classifi-
cations are caused by two main reasons. First, if the repre-
sentatives of two different applications are very similar, an
incorrect decision can be made. Second, if the packets col-
lected in one flow are not enough, an erroneous decision
can be made as well. For the former one, appropriate rep-
resentatives that are not similar should be picked up to in-
crease the performance of traffic classification. For the
latter one, the classifier is able to collect more packets for
a flow to obtain more (DS,DSP) pairs and hence improve
the classification accuracy. False negative may happen be-
cause some applications have very diverse behaviors,
which are far from those used to training the application
representatives.

Table 3 presents false-positive and false-negative rates
of each application. False-positive rates are further divided
into two cases, i.e., the false-positive rates of using only
PSD-based flow classification and the rates of using flow
grouping and application arbitration algorithms. Taking
BT (TCP) and eMule (TCP) as examples, our method can
correctly classify most flows having short-term file trans-
ferring, but for long-lasting file transferring, our method
may make incorrect decisions because of similar PSDs. In
addition, the result of false-positive rates of Skype (UDP)
is significant because Skype (UDP) uses similar or same
packet size as eMule (UDP). When flows are grouped as
sessions, the false-positive rates can be reduced to zero be-
cause incorrect classifications can be fixed by application
arbitration.
5.4. Compared with K-means

K-means clustering is a method of cluster analysis
which aims to partition n objects into k clusters in which
each observation belongs to the cluster with the nearest



Fig. 9. Accuracy rate of session recognition.

Table 3
False positive and false negative rates of each application.

Application FP(Flow-
level)
(%)

FP(Session-
level)
(%)

FN(Flow-
level)
(%)

BT (UDP) 0.03 0 0
BT (TCP) 20 0 0
eMule (UDP) 3.57 0 0
eMule (TCP) 13.64 0 0
PPLive (UDP) 2.48 0 0
PPLive (TCP) 2.35 0 0
HTTP 1.67 0 0
Skype (UDP) 26.35 0 0
Skype (TCP) 9.09 0 0
Shoutcast 7.14 0 0
FTP 5 0 0
POP3 0 0 0
SMTP 0 0 0
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mean. We compare M4, our best application representative
training method, with K-means and show the flow-level
classification accuracy rates of these two methods in
Fig. 10. In the figure, the number of groups generated by
M4 for BT, eMule, Skype, and PPLive are 9, 12, 11, and 21,
respectively. Compare with the cases of K = 9, 12, 11, and
21, SLFC has a much better classification rates than K-
means. The results of adopting K-means are not as good
as M4 because of two impacts; one is that some flows in
one group are far from others and thus derive a represen-
tative that is not similar to those flows, and the other is due
to our flow representation expressed in the form of DS and
Fig. 10. Compared with K-mea
DSP vectors. Besides, the accuracy rate of Skype is lower
than others because it has common packet size with eMule
and the classification result only benefits either side be-
tween eMule and Skype.
5.5. Compared with other related proposals

In this subsection, our method is compared with an-
other two similar researches [11,12], which also classify
network flows based on statistical characteristics. The
comparison focuses only on five different application pro-
tocols, which were evaluated in the two researches. The re-
sults are shown in Fig. 11. In [11], the authors adopted two
clustering techniques based on vector quantization (VQ)
and gaussian mixture models (GMM). The two techniques
are labeled as VQ and GMM respectively in the figure.

After analyzing the traffic and classification results, we
found that 5-packets approach tried to capture the first five
packets shown up in the flow, but did not take the relation-
ship among these packets into consideration. Packets may
arrive or be dropped randomly in a congested network. If
the number of capturing the original five packets is not en-
ough (less than five) or these packets are out of sequence,
5-packets approach is easily confused and hence usually
makes wrong decisions.

Our method has a better accuracy rate because our
method can retain all different behaviors of an application
by multiple distinct representatives while most other solu-
tions only catch one or parts of behaviors of an application.
ns based on UDP flows.



Fig. 11. Compared the proposed solution with 5-packets, VQ, and GMM.

Table 4
Online classification results.

Packet counts BT (%) eMule (%) PPLive (%) Skype (%)

(a) UDP online classification results
<10 99.86 94.04 51.7 63.47
<20 99.97 96.43 51.7 63.47
<30 99.97 96.43 72.6 69.46
<40 99.97 96.43 86.3 69.46
Final 99.97 96.43 97.52 72.45

Packet counts BT (%) eMule (%) PPLive (%) Skype (%) Shoutcast (%) FTP (%) POP3(%) SMTP (%)

(b) TCP progress results of classification
<10 21.69 25.8 84.5 68.18 85.71 0 0 0
<50 38.55 34.35 84.5 68.18 85.71 0 0 0
<100 60.24 51.37 84.5 72.73 85.71 18.75 6.25 11.25
<150 72.29 68.39 85.92 72.73 85.71 27.5 6.25 11.25
<200 77.1 85.72 86.38 77.27 92.86 43.75 52.5 57.5
<250 77.1 85.72 88.26 81.82 92.86 72.5 62.5 77.5
<300 79.5 85.72 97.65 81.82 92.86 83.75 81.25 88.75
Final 80 85.72 97.65 90.91 92.86 95 100 100

Application Total TCP packets TCP packets inspected Total UDP packets UDP packet inspected Total reduction (%)

(c) Classification cost reduction
BT 148644 108327 811609 771028 8.42
eMule 692642 486256 207195 196835 24.09
PPLive 9432 8478 12978649 2589240 79.99
Skype 12054 10836 49763 30258 33.52
Shoutcast 93607 13059 0 0 86.04
HTTP 10759 8798 0 0 18.23
POP3 13215 10812 0 0 18.18
SMTP 13021 11328 0 0 13
FTP 25468 10184 0 0 60.01
Total (counts) 1018842 601258 14047216 3587361 –
Total (percentage) 100 % 59.01 % 100 % 25.54 % 72.19
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5.6. Classification speedup assessment

In this section, the accuracy rates of online application
classifications and the overall classification throughput
are evaluated. Table 4(a) and (b) show the intermediate
classification results, which are made before a complete
flow is seen. The traffic of eMule, PPLive, and Skype may
be incorrectly classified because flows of the three applica-
tions have some common packet sizes.

From Table 4(b), a decision for a TCP application can
be made by checking at most 300 packets and a high
accuracy rate can be achieved. In addition, the online
throughput of the proposed solution is able to run at a
throughput exceeding 400Mbps on a mainstream com-
puter (Intel Core 2 Duo processor 3.0 GHz, 2 GB RAM,
and Windows XP operating system). If we checks at most
300 packets for each flow, the number of inspected pack-
ets can be greatly reduced, as shown in Table 4(c). An
average reduction of 72% can be observed in the table.
For TCP and UDP applications, 41.99% and 74.46% packets
can be omitted respectively, In particular, for streaming
applications such as PPLive (UDP) and shoutcast (TCP), a
surprisingly huge reduction of 79.99% and 86.05% are ob-
served respectively.
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6. Conclusions

This paper proposes SLFC, which runs in two phases: an
offline application representatives training phase and an
online session classification phase. The offline training
phase uses a set of traffic traces to find two-dimensional
representatives, which are built from PSDs of pre-selected
applications. The online session classification is done in
three steps: (1) extract the PSD feature of a given flow
and compare it with those PSD features of application rep-
resentatives to make the classification; (2) run the flow
grouping algorithm to group port-adjacent network flows
into the same session; and (3) use the application arbitra-
tion algorithm to correct flow classifications if two or more
flows of a session are classified as different applications.
SLFC are able to make traffic classifications without exam-
ining packet payloads. With a well-trained application rep-
resentatives’ database, the classifier can effectively identify
the application that a flow belongs to. The proposed solu-
tion achieves high accuracy rates and low error rates.
When the proposed solution is used as an on-line classifier,
decisions can be made by checking at most 300 packets for
long-lasting flows and running at a throughput exceeding
400 Mbps on commodity hardware. Based on out test data,
an average of 72% of packets can be omitted without
reducing the classification accuracy rates.
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