
Test Coverage Optimization for Large Code
Problems

Ying-Dar Lin, Senior Member, IEEE, Chi-Heng Chou, Yuan-Cheng Lai, Tse-Yau Huang, Simon Chung, Jui-Tsun

Hung, and Frank C. Lin

Abstract—Because running all previous tests for the regression
testing of a system is time-consuming, the size of a test suite
of the system must be reduced intelligently with adequate test
coverage and without compromising its fault detection capability.
Five algorithms were designed for reducing the size of test suites
where two metrics, test’s function reachability and function’s
test intensity, were defined. Approaches to the algorithm CW-
NumMin, CW-CostMin, or CW-CostCov-B are the safe-mode of
test case selection with full-modified function coverage, while
the CW-CovMax algorithm is of non-safe mode, which was
performed under time restriction. In this study, the most efficient
algorithm could reduce the cost (time) of a test suite down to
1.10%, on the average, over the MPLS area of Cisco IOS.

Index Terms—test case selection, test coverage, regression
testing, test intensity, function reachability

I. INTRODUCTION

OVER the lifetime of a large software product, the size

of a test suite may drastically increase as new versions

are released, so software testers usually attempt to remove

redundant or trivial tests, and select tests by certain criteria

such as test coverage, resources constraints, or fault detection

probability. In literature researchers have developed an array

of test selection algorithms for regression testing by code

coverage or fault detection capability. However, many existing

algorithms still demand a long execution time or a number of

tests to test a system with large code. Bearing in mind the

factors of scalability and practicability, we analyzed code at

the granularity of function-level, not statement-level. Functions
and tests form an interlaced net, which can lead to metrics–

function’s test intensity and test’s function reachability. The

former indicates the percentage of tests that cover a function,

and the latter the percentage of functions a test can reach.

Leung and White [1] proposed two subproblems of the

reduction of a test suite, i.e. test case selection problem and

test plan update problem. Solutions to the former problem

emphasized on how to select test cases, and solutions to the

Ying-Dar Lin, Department of Computer Science, National Chiao Tung
University, Hsinchu, Taiwan, e-mail: ydlin@cs.nctu.edu.tw.

Chi-Heng Chou, Department of Computer Science, National Chiao Tung
University, Hsinchu, Taiwan, e-mail: payton.chou@gmail.com.

Yuan-Cheng Lai, Department of Information Management, National
Taiwan University of Science and Technology, Taipei, Taiwan, e-mail:
laiyc@cs.ntust.edu.tw.

Tse-Yau Huang, Department of Communications Engineering, National
Chiao Tung University, Hsinchu, Taiwan.

Simon Chung, Cisco Systems, Inc., USA.
Jui-Tsun Hung, Department of Computer Science, National Chiao

Tung University, Hsinchu, Taiwan, e-mail: jason.hung.sb@gmail.com,
jhung@cs.nctu.edu.tw.

Frank C. Lin, San Jose State University, USA.

latter on how to manage test plan update. In this work because

Cisco provided no information on any test plan update, only

the test selection problem could be dealt with. Yoo et al. [2]

indicated that there were three problems of regression testing,
that is, test suite minimization, regression test-case selection
(RTS), and test case prioritization. They all share a common

thread of optimization to reduce a test suite based on an

existing test pool.

The test suite minimization problem is a minimal hitting-

set problem, or a minimal set-cover problem [3]. This is an

NP-complete problem, thus, heuristics methods were encour-

aged. Both greedy [4] and genetic [5] methods were commonly

adopted. Other approaches, such as modeling cost-benefits [6],

measuring the impact of test case reduction on fault detection

capability [7], and analyzing fault detection capability, also

have applied.

The test case selection and the test suite minimization differ

only in how to deal with changes or modified code. The min-

imization problem applied to a single release of a system, but

the selection problem demanded the changes between previous

and the current version of the system. Hence approaches to the

selection problem should be modification-aware, emphasizing

the coverage of code changes. Rothermel and Harrold [8]

introduced the concept of modification-revealing test case.

They assumed that identifying fault-revealing test cases for a

new software release could be possible through modification-

revealing test cases. Rothermel also adopted a weaker criterion

to select all modification-traversing test cases. A test case

is modification-traversing if and only if it executes new or

modified code in the new release of a program, or executes

former code yet deleted in the new release.

The premise of selecting a subset of modification-traversing

test cases and removing test cases without revealing faults

in a new release was possible, and a solution [9] to safe
regression test selection problem was introduced. Though it

is not safe for this algorithm to detect all potential faults,

but this algorithm provided a safe sense–always selecting

a modification-traversing test case in a reduced test suite.

Algorithms in section III that selects tests for a test suite with

full-modified function coverage are of safe-mode, including

CW-NumMin, CW-CostMin, and CW-CostCov-B algorithm.

The approach to the prioritization problem was first pro-

posed by Wong et al. [7] and extended by Harrold [10]. The

CW-CovMax algorithm in section III was a variant solution

to the test case prioritization problem.

Regression testing run on the MPLS area of Cisco IOS

was conducted by an automated production system, providing

2012 26th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4652-0/12 $26.00 © 2012 IEEE

DOI 10.1109/WAINA.2012.137

215

Table I
LIST OF TEST SUITE REDUCTION PROBLEMS.

Name Problem Description

SA Selection Acceleration Problem Remove infrastructure functions to reduce the function space.

NumMin Number-Minimization Problem Given a set of modified functions, find a test suite with minimal number of test cases.

CostMin Cost-Minimization Problem Given a set of modified functions, find a test suite with minimal cost.

CostCov-B Cost-and-Coverage Balance Problem Given a set of modified functions, balance cost and non-modified function coverage.

CovMax Coverage-Maximization Problem Given a period of restricted time, find a test suite with maximal modified function’s coverage.

Table II
TEST COVERAGE OPTIMIZATION PROBLEMS AND STRATEGIES.

Algorithm Objective Constraint Strategy

PDF-SA Enhance CW-algorithms performance. Test intensity threshold Remove infrastructure functions.

CW-NumMin Minimize the number of test cases. A set of modified functions Decrease testing time.

CW-CostMin Minimize the cost of test cases. A set of modified functions Decrease testing time.

CW-CostCov-B Balance total cost of tests against

non-modified function coverage.

A set of modified functions, cost

factor, coverage factor

Applied to cost-driven and coverage-driven test cases.

CW-CovMax Maximize function coverage. Restriction time (min.) For cost-driven tests to increase function coverage.

information on both code coverage traces and execution time.

This paper is a shortened version of the article [11] that

investigated fault detection and fault prediction in more details

and provided the CW-CostMin-C algorithm to solve the cost-

minimization problem under an effective-confidence level. In

section II five problems were proposed. In section III five al-

gorithms for the above problems were designed. In section IV

the implementation of database-driven test selection services

was presented and the experimental results were addressed.

Conclusions and future work were shown in section V.

II. TEST SUITE REDUCTION PROBLEMS

An empirical analysis of the MPLS area of Cisco Internet-

work Operating System (IOS), containing 57,758 functions

and 2,320 test cases, was performed. In the MPLS area a

single test case may cost running time from10 minutes to 100

minutes with a sequence of configuration and testing steps.

If all 2,320 test cases were exercised, it would have taken

about five weeks, This was infeasible and a smaller test suite

was required. With the safe regression test selection problem,

we were interested in full-modified function coverage under

certain constraints. Note, only reachable functions were regis-

tered in the RFC database, the Regression Function Coverage

Architecture (RFCA), as shown in Figure 1 .

In this study we raised five problems, as shown in Table I.

The NumMin and CostMin problem were solved by finding

the minimal number of tests or the minimal cost for a reduced

test suite still holding full modified function coverage. The

CostCov-B problem was handled by balancing a cost-driven

Figure 1. Regression Function Coverage Architecture.

strategy against a coverage-driven strategy. A restriction time

was used for the CovMax problem to remove test cases

whose executing time was higher than restriction time. Then

a test case with a maximal function execution rate would

be selected into the reduced test suite. In SA problem the

infrastructure function is defined as a function fj whose test

intensity ηfj is greater than a threshold η. The solution was to

remove infrastructure functions before selecting test cases to

significantly reduce the cost (time) of test case selection and

execution.

III. FIVE CORRESPONDING ALGORITHMS

Table II indicates five algorithms related to five problems as

mentioned in Section II. Algorithms were classified into two

categories–PDF-SA (Probability Density Function–Selection

Acceleration) and CW (characteristics weight). Test case se-

lection has two phases. First, PDF-SA algorithm removes

infrastructure functions under a test intensity threshold. Sec-

ond, one CW-algorithm was performed to acquire a reduced

test suite. A greedy approach based on the updated function

coverage was used to select test cases to achieve a maximal

modified function coverage, or reachability. Variables and

function notations are respectively listed in Table III and Table

IV.

A. PDF-SA Algorithm
The PDF-SA algorithm (see Algorithm 1) employed thresh-

old η , from 0% to 100% (default 100%), as a minimum

boundary value for removing infrastructure functions. The

function’s test intensity ηfj represents the percentage of tests

that can touch function fj , or ηfj =
∣
∣Tfj

∣
∣ / |Tall|×100% ,

where
∣
∣Tfj

∣
∣, the number of tests touching fj . In this study we

assumed that infrastructure functions provide only a little or

no fault detection capability, but they can considerably degrade

the effectiveness of regression testing.

B. CW-NumMin, CW-CostMin, CW-CostCov-B Algorithm
We assumed that changes in the subsequent releases of a

system should all be re-tested; therefore, three algorithms (Al-

216

Table III
VARIABLES.

Variable Description

fj Function fj in RFC database, where j = 1, · · · ,m.

ti Test case ti in a test suite, where i = 1, · · · , n.

Tall Test suite including all test cases in RFC database.

Tsel A set of selected test cases, i.e. a subset of Tall.

Tfj
Test coverage of function fj .

Fall, FTall
Function coverage of all functions in RFC database.

Fsel, FTsel
Function coverage of Tsel.

Fti
Function coverage of test case ti.

Fmod Function coverage of all modified functions.

λcost Cost factor.

λcov Coverage factor.

τ Restriction time. (min.)

η Test intensity threshold.

γti
Function reachability of ti.

ηfj
Test intensity of fj .

Table IV
FUNCTIONS.

Function Description

C(ti) Cost, or running time, function of test ti .(min.)

Nmod(Fti
) Number of modified functions in test ti .

Nmod(Fti
) Number of non-modified functions in test ti .

Nmod(Fall) Number of modified functions in all test cases.

Nmod(Fsel) Number of modified functions in all selected test cases .

Wmod(Fti
) Modified function weight of test case ti .

wmod(Fti
) Normalized modified function weight of test ti .

nmod(Fti
) Normalized non-modified function coverage of test ti .

fcv(Fti
, Fmod,

λcost, λcov)

The comprehensive function of test ti .

gorithm 2, Algorithm 3, and Algorithm 4) were designed for a

test suites being able to cover all modified functions. Each has

a characteristic weight (CW)— CW-NumMin, CW-CostMin,

and CW-CostCov-B, and share the same pseudo code except

CW functions. In Algorithm 3 and 4, only different statements

from those in Algorithm 2 were shown.

1) CW-NumMin Algorithm: Function Nmod(Fti), a char-

acteristic weight function, was used to select tests having

maximal modified function coverage. Function Nmod(Fti)
is the cardinality of the intersection of Fmod and Fti , or

|(Fti ∩ Fmod)| . A modification-aware greedy approach ap-

plied here to acquire a minimal reduced test suite that covers

all modified functions.

2) CW-CostMin Algorithm: This algorithm is for building

a reduced test suite to retest all modified functions as soon

as possible. A heuristic greedy approach, modification-aware

and time-aware, was applied in test case selection. Test ti
applied the function Wmod(Fti) to calculate the average

modified function execution rate, or the number of modified

functions tested per minute by ti . Here Wmod(Fti) is defined

as Nmod(Fti)/C(ti) . Function C(ti) shows the execution

time of test case ti that includes modified and non-modified

functions. This would guarantee that all modified functions

were exercised at a minimum cost or a highest rate; however,

the cost or the size of the selected test suite may not be

minimal.

3) CW-CostCov-B Algorithm: Function fcv(Fti , Fmod,

λcost, λcov) is a linear combination of normalized mod-

Algorithm 1 PDF-SA algorithm.
1 Input η, Fall, Tall

2 Output Fsel

3 Begin
4 for ∀fj , 0 ≤ j ≤ |Fall|, where fj ∈ Fall

5 ηfj
=
∣
∣Tfj

∣
∣ / |Tall| × 100%;

6 if ηfj
≥ η then Fsel = Fsel + fj ;

7 end-for
8 return Fsel;

9 End

Algorithm 2 CW-NumMin algorithm.
1 Input Fmod, Fall, Tall

2 Output Tsel

3 Declare tsel: //the selected test case
4 UpdateT ():
5 for ∀ti, 0 ≤ i ≤| Tall |, where ti ∈ Tall

6 Fti
= Fti

− Ftsel
;

7 if Fti
= Ø then Tall = Tall − ti;

8 end-for
9 Begin
10 while (Tall �= φ ∧Nmod(Fti

) �= 0)
11 tsel = argmaxti∈Tall

Nmod(Fti
);

12 Tsel = Tsel + tsel;
13 Tall = Tall − tsel;
14 UpdateT ();
15 end-while
16 return Tsel;

17 End

ified function execution rate and normalized non-modified

function coverage, or wmod(Fti)×λcost + nmod(Fti)×λcov .

Function wmod(Fti) is a normalized weight function, or

Wmod(Fti)/
∑n

i=1 Wmod(Fti), and nmod(Fti) is a normal-
ized ti’s non-modified function coverage, or Nmod(Fti) /∑n

i=1 Nmod(Fti). Function Nmod(Fti) is the cardinality of

the relative complement of ti’s modified function coverage, or

|(Fti − Fmod)|. Cost factor λcost (default 0.5) and coverage
factor λcov , (λcov = 1−λcost), trade off the modified function

execution rate against the non-modified function coverage. If

λcost = 1, the reduced test suite is the same as that obtained

by Algorithm 3.

To enlarge the function coverage of a test suite, testers

should set λcov a larger value to cover more non-modified

functions. Function fcv(Fti , Fmod, λcost, λcov), defined as

wmod(Fti)×λcost + nmod(Fti)×λcov , can balance the modi-

fied function execution rate and the modified function cover-

age. The Algorithm CW-CostCov-B employs fcv(Fti , Fmod,

λcost, λcov) to deal with the modified function execution rate

and the non-modified function coverage. If the modified func-

tion space covered by a safe-mode algorithm is inadequate,

Algorithm 3 CW-CostMin algorithm. (only statements different from

those in Algorithm 2 are shown)

10 while (Tall �= φ ∧Wmod(Fti
) �= 0)

11 tsel = argmaxti∈Tall
Wmod(Fti

);

Algorithm 4 CW-CostCov-B algorithm. (only statements different from

those in Algorithm 2 are shown)

1 Input Fmod, ti, Tall, λcost, λcov

10 while (Tall �= φ ∧Wmod(Fti
) �= 0)

11 tsel = argmaxti∈Tall
fcv(Fti

, Fmod, λcost, λcov);

217

Algorithm 5 CW-CovMax algorithm.
1 Input τ, Fall, Tall

2 Output Tsel

3 Declare tsel: //the selected test case.
4 UpdateT (): //the same updateT() as in Algorithm 2.
5 InitT ():
6 for ∀ti, 0 ≤ i ≤ |Tall|, where ti ∈ Tall

7 if C(ti) > τ then Tall = Tall − ti;
8 end-for
9 Begin
10 InitT ();
11 if Tall = Ø then return;
12 while (Tall �= Ø)
13 tsel = argmaxti∈Tall

(∣∣Fti

∣
∣ /C(ti)

)
;

14 Tsel = Tsel + tsel;
15 Tall = Tall − tsel;
16 UpdateT ();
17 end-while
18 return Tsel;

19 End

this algorithm would offer a better way by covering a larger

unmodified function space.

C. CW-CovMax Algorithm

If a regression testing is under a tight schedule but expects

extensive function coverage, CW-CovMax algorithm would be

the one that helps. Here tests with execution time larger than

a specified cost are removed first. Each time a test case with a

maximal function execution rate will be selected into the test

suite.

Because this algorithm is not of a modification-aware ap-

proach, the reduced test suite obtained does not guarantee to

cover all modified functions in which faults are likely to occur.

This could compromise the fault detection capability.

IV. EXPERIMENTAL RESULTS

A. Characteristics of the test-function mappings

The experimental platform includes a personal computer of

AMD Athlon 64 3800+ 2.41GHz processor, 3GB RAM, and

Microsoft Windows XP Professional SP2. It is infeasible to

spend about 36 test-bed-days to thoroughly execute a test suite

with 2,320 tests. Therefore, the MPLS area in Cisco IOS is

selected as the target platform, because the area has more test

cases than others.

Table V shows 391 tests containing 23,308 functions. If all

tests were executed, it would take about 7,746 minutes. Five

releases were tested with 127 Distributed Defect Tracking

Systems (DDTS) reports based on 302 modified functions.

The reports addressed only 67 DDTS reports and 129 modified

functions were reachable.

Figure 2(a) depicts function reachability of the 391 test

cases. The function coverage of most test cases ranges from

about 40% to 60%. Figure 2(b) shows test intensity of 23,308

Table V
TEST INFORMATION.

tests functions run

time

(min.)

releases DDTS

reports

modified

func-

tions

reachable

DDTS

reports

reachable

modified

functions

391 23308 7746 5 127 302 67 129

(a) The percentage of tests vs. function reachability(%).

(b) The percentage of functions vs. test intensity(%).

Figure 2. The test’s function reachability and function’s test intensity.

Figure 3. Cost percent of the safe-mode selection.

functions. Over 25% of functions were covered by each test

case, and considered infrastructure functions.

The safe-mode approach calculates the cost of test case

selection by DDTS reports. The values of |Fsel| / |Fall| and

C(Tsel) / C(Tall) for each DDTS are sorted out by |Tsel| /

|Tall|. In Figure 3 , most cost percentages were higher than

30%. Only four of them were below. It showed that 94%

(63/67) of DDTS reports did not provide a substantial cost

reduction.

Now PDF-SA algorithm can examine the distribution of

infrastructure functions by test intensity thresholds. Table VI

shows different test intensity thresholds and parameters.

To realize how test intensity can affect the selection algo-

rithms, we examined four test intensity thresholds — NA%(no

threshold), 80%, 90%, and 100%. Speedup for the PDF-SA

Table VI
SUMMARY OF ALGORITHMS WITH THRESHOLDS AND PARAMETERS.

Algorithm Intensity Threshold Other Parameters

PDF-SA 0, 5, . . . , 100

CW-NumMin NA, 80, 90, 100

CW-CostMin NA, 80, 90, 100

CW-CostCov-B NA, 80, 90, 100 λcov = {0, 0.1,. . . , 1}

CW-CovMax NA, 80, 90, 100 τ = {500, 1000}

218

Table VII
CONVENTIONAL SELECTION VS. CW-NUMMIN AND CW-COSTMIN.

CWη80 (%) CWη90 (%) CWη100 (%) CW (%)

|Tsel| / |Tall| 2.56 2.56 2.56 2.56

|Fsel| / |Fall| 92.96 92.96 92.96 92.96

Nmod(Fsel)/ |Fall| 56.49 60.41 64.82 92.41

C(Tsel)/C(Tall) 2.32 2.32 2.32 2.32

(a) CW-NumMin.

CWη80 (%) CWη90 (%) CWη100 (%) CW (%)

|Tsel| / |Tall| 2.56 2.56 2.56 2.56

|Fsel| / |Fall| 90.44 90.44 90.44 90.44

Nmod(Fsel)/ |Fall| 53.98 57.89 62.30 89.89

C(Tsel)/C(Tall) 1.10 1.10 1.10 1.10

(b) CW-CostMin.

algorithm by various test intensity thresholds was also inves-

tigated. Run the CW-NumMin and CW-CostMin algorithm to

calculate the number of tests and the amount of cost being

reduced. The CW-CostCov-B algorithm verified the impact

of λcov and λcost. The CW-CovMax algorithm used 500 and

1,000 minutes as restriction time when each execution time of

tests ranges from 10 to 100 minutes.

B. Result Analysis

1) Test coverage of different test intensity thresholds: CWη

indicates a subset of registered functions with test intensities

less than η , or ηfj < η . Here η is a test intensity threshold.

The CW stands for an entire set of registered functions

without any threshold, or ηfj ≤ 100% . On the other hand,

CWη100 is a subset of functions with test intensities less

than 100%, or ηfj < 100% , where functions with 100%

test intensity were removed. Table VII(a) shows the results of

performing the CW-NumMin algorithm at thresholds, CWη80,

CWη90, CWη100, and CW .
2) CW-NumMin and CW-CostMin Algorithm—cost reduced

to 2.32% and 1.1%, respectively: The outcome of performing

the CW-NumMin algorithm were shown in Table VII(a). Under

CWη100, selected only 2.56% tests but reached 92.96% func-

tion coverage and 64.82% function coverage for non-modified

functions. The cost of the selected tests was significantly re-

duced to 2.3%. Similarly, Table VII(b) shows the results of ex-

ercising the CW-CostMin algorithm. Under CWη100 , selected

only 2.56% tests and reached 90.44% function coverage and

62.3% function coverage of non-modified function coverage.

The cost of selected tests was further reduced to 1.10% . It

showed that cost reduction by CW-CostMin algorithm is much

better than that by CW-NumMin algorithm.
3) CW-CostCov-B Algorithm—small cost but higher non-

modified function coverage: This algorithm employs both

cost- and coverage-driven strategies. Factor λcov is for non-

modified function coverage, and λcost for cost. If λcov is

larger than λcost, the non-modified function coverage would

take precedence. Performing this algorithm with λcov =
0.0, 0.1, . . . , 1.0 and λcost = 1.0, 0.9, . . . , 0.0. Figure 4 shows

the curve of Nmod(Fsel)/ |Fall| , λcov 0.0 to 1.0. Test cases

selected with λcov = 0.0, or λcost = 1.0, could reach 62.3%

function coverage of non-modified functions. If λcov varies

Figure 4. Cost and non-modified function coverage of CW-CostCov-B.

from 0.0 to 1.0, the function coverage of non-modified func-

tions would range from 62% to 69%. The function coverage

of non-modified functions was less than 69%, because the

infrastructure functions held 27% function coverage. The cost

of a selected test suite, however, has increased by 1% to 3%.

Though the increase is small, it is still a significant increase

for the non-modified function coverage.

Results in Table VIII emphasized on either the function cov-

erage of non-modified functions or the cost with λcov = 0.0
(λcost = 1.0) and λcov = 1.0 (λcost = 0.0). Figure 4 appears

that obtaining an extra 6% (68.5% - 62.5%) coverage for non-

modified functions at λcov = 1.0 would cause a cost 2.6 times

the cost at λcov = 0.0 (the increase in cost from 1.097% to

2.853%), and a total of tests 1.2 times the total at λcov = 0.0.

Thus, λcov = 0.0 is a better choice.

4) CW-CovMax Algorithm—at high cost but with more
coverage: The CW-CovMax algorithm employed both cost-

driven policy and restriction times (τ) such as 500 or 1000

minutes. In Table IX(a), the function coverage was of 99.63%

when τ = 500, and 100% when τ = 1, 000. In Table IX(b),

results was normalized at τ = 500. The increase of func-

tion coverage was by 0.37% (100.000% - 99.630%) when

τ = 1000, compared to that when τ = 500. The number

of tests at τ = 1000 increased to 1.442 times than that at

τ = 500, and the cost at τ = 1000 1.98 times than that at

τ = 500. The increase in the number of tests soon caused a

higher cost with little improvement on function coverage.

5) PDF-SA—selection time is reduced to 10%∼70%:
Figure 5 depicted curves of probability density function(pdf)

and cumulative density function(cdf). The intensity in Figure 5

represented an aggregation percent of functions for every

separate division. For example, the value at test intensity 20%

means an aggregation value for the intensity varies from 20%

to 25%, including 20%, but excluding 25%. Coverage at 100%

and 0% of test intensity are higher than others. This implied

a large portion of functions were covered by test cases with

Table VIII
CW-COSTCOV-B UNDER CWη100 .

λcov = 0.0 λcov = 1.0

|Tsel| / |Tall| 1 1.20

|Fsel| / |Fall| 1 1.06

Nmod(Fsel)/ |Fall| 1 1.09

C(Tsel)/C(Tall) 1 2.60

219

Table IX
CW-COVMAX UNDER CWη100 .

τ = 500 τ = 1000

|Tsel| / |Tall| 10.990% 15.850%
|Fsel| / |Fall| 99.630% 100.000%
C(Tsel)/C(Tall) 6.442% 12.740%

(a) Results.

τ = 500 τ = 1000

1.00 1.442

1.00 1.004

1.00 1.978

(b) Normalized values.

Table X
FUNCTION SPACE REDUCTIONS BY PDF-SA.

CWη80 CWη90 CWη100

Number of functions to be ignored 8427 7510 6463

Percent of function space reduced (%) 36.20 32.20 27.73

initial procedures and special features.

If η = 100 , functions with test intensity 100% were con-

sidered infrastructure functions. Thus, under CWη100 , 6,463

functions were infrastructure functions. If all infrastructure

functions were removed, the function space would have re-

duced by 27.73%. Two intensity thresholds, 80% and 90%,

were also shown in Table X. If under CWη80 , 8,427 infras-

tructure functions were identified, and under CWη90 7,510.

This led to a decrease 36.20% and 32.20% in the function

space.

In Table XI, the execution time of algorithms under

CWη100, CWη90, or CWη80 were reduced to 10%~70%.

Algorithms under CWη100 took times to perform various

operations, such as union, intersection, and minus of set.

Though removing infrastructure functions reduce the function

space by only 27.73%, the runtime of algorithms were reduced

to 48.46%, on the average. Choosing a smaller η allows a

further reduction in execution time, but it is impractical if too

many functions were considered infrastructure functions with

a low intensity threshold.

V. CONCLUSIONS

Most problems we attacked here are test case selection

problems. The modification-traversing approach, a substitute

for the fault-revealing approach, applied for selecting test

cases.

Figure 5. Test intensity of functions.

Table XI
SELECTION TIMES WITH AND WITHOUT PDF-SA.

CWη80 (%) CWη90 (%) CWη100 (%) CW (%)

CW-NumMin 37.61 54.70 62.39 100.00

CW-CostMin 34.19 48.72 52.99 100.00

CW-CostCov-B 48.76 52.96 69.09 100.00

CW-CostMax 35.42 35.76 35.15 100.00

Average 39.00 48.04 54.91 100.00

Algorithms proposed has reached the following achieve-

ments. First, the CW-NumMin algorithm could reduce the size

of the test suite to 2.56%, and the cost to 2.32%. The CW-

CostMin algorithm could decrease the size of test suite to

2.56%, and the cost to 1.10%. The CW-CostCov-B algorithm

led to a better trade-off between cost-driven and coverage-

driven strategies. Compared to the cost at λcov = 1.0 , the cost

at λcov = 0.0 has increased by 2.6 times (1.097% → 2.853%),

and the size of the test suite has expanded by 1.2 times.

However, the size of code at λcov = 0.0 increased only by 6%

(96.25% - 90.44%). When restriction time τ was relaxed from

500 to 1000, the function coverage of CW-CovMax algorithm

could increase by 0.37%, and the size of test suite by 1.44

times, the cost by 1.98 times.

Since precisely measuring the fault detection capability of a

test suite for applications with large code is still infeasible, in

future researchers could endeavor to “fault prediction” issues,

instead of “fault detection”, for the regression testing of large

software system.

REFERENCES

[1] H. Leung, L. White, Insights into regression testing, in: Proceedings
of the International Conference on Software Maintenance, Miami, FL,
USA, 1989, pp. 60–69.

[2] S. Yoo, M. Harman, Regression testing minimization, selection and
prioritization: a survey, Software Testing, Verification and Reliability-
Published online in Wiley InterScience. doi:10.1002/stvr.430.
URL www.interscience.wiley.com

[3] M. Garey, D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman, San Francisco, 1979.

[4] D. Jeffrey, N. Gupta, Improving fault detection capability by selectively
retaining test cases during test suite reduction, IEEE Transactions on
Software Engineering 33 (2) (2007) 108–123.

[5] X. Ma, Z. He, B. Sheng, C. Ye, A genetic algorithm for test-suite
reduction, in: 2005 IEEE International Conference on Systems, Man
and Cybernetics, Vol. 1, 2005, pp. 133–139.

[6] A. Malishevsky, G. Rothermel, S. Elbaum, Modeling the cost-benefits
tradeoffs for regression testing techniques, in: Proceedings of the Inter-
national Conference on Software Maintenance, 2002, pp. 204–213.

[7] W. Wong, J. Horgan, S. London, A. Mathur, Effect of test set minimiza-
tion on fault detection effectiveness, Software – Practice and Experience
28 (4) (1998) 347–369.

[8] G. Rothermel, M. Harrold, A framework for evaluating regression test
selection techniques, in: Proceedings of the 16th international conference
on Software engineering, IEEE Computer Society Press, 1994, pp. 201–
210.

[9] G. Rothermel, M. Harrold, A safe, efficient regression test selection
technique, ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 6 (2) (1997) 173–210.

[10] M. Harrold, Testing evolving software, Journal of Systems and Software
47 (2-3) (1999) 173–181.

[11] Y.-D. Lin, C.-H. Chou, Y.-C. Lai, T.-Y. Huang, S. Chung, J.-T. Hung,
F. C. Lin, Test coverage optimization for large code problems, Journal
of Systems and Software 85 (2012) 16–27.

220

