
J

T

Y
J
a

b

c

d

e

a

A
R
R
A
A

K
R
T
T
T
S

1

t
a
m
t
t
c
f
a
v

(
(

0
d

ARTICLE IN PRESSG Model
SS-8718; No. of Pages 12

The Journal of Systems and Software xxx (2011) xxx–xxx

Contents lists available at ScienceDirect

The  Journal  of  Systems  and  Software

j our na l ho mepage: www.elsev ier .com/ locate / j ss

est  coverage  optimization  for  large  code  problems

ing-Dar  Lina,∗,  Chi-Heng  Choua, Yuan-Cheng  Laib,  Tse-Yau  Huangc,  Simon  Chungd,
ui-Tsun  Hunga,  Frank  C.  Line

Department of Computer Science, National Chiao Tung University, Taiwan
Department of Information Management, National Taiwan University of Science and Technology, Taiwan
Department of Communications Engineering, National Chiao Tung University, Taiwan
Cisco Systems Inc., USA
San Jose State University, USA

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 1 May  2010
eceived in revised form 12 May  2011
ccepted 12 May  2011
vailable online xxx

eywords:
egression testing
est case selection
est coverage
est intensity
oftware maintenance

a  b  s  t  r  a  c  t

Software  developers  frequently  conduct  regression  testing  on  a  series  of major,  minor,  or  bug-fix  software
or firmware  releases.  However,  retesting  all test cases  for  each  release  is  time-consuming.  For  example,
it takes  about  36  test-bed-days  to  thoroughly  exercise  a test  suite  made  up  of  2320  test  cases  for  the
MPLS  testing  area  that contains  57,758  functions  in  Cisco  IOS.  The  cost  is infeasible  for  a series  of regres-
sion  testing  on the  MPLS  area.  Thus,  the  test  suite  needs  to be reduced  intelligently,  not  just  randomly,
and  its  fault  detection  capability  must  be  kept  as  much  as  possible.  The  mode  of  safe regression  test
selection  approach  is adopted  for seeking  a subset  of  modification-traversing  test  cases  to  substitute  for
fault-revealing  test  cases.  The  algorithms,  CW-NumMin,  CW-CostMin,  and  CW-CostCov-B,  apply  the  safe-
mode approach  in  selecting  test  cases  for achieving  full-modified  function  coverage.  It is assumed  that
modified  functions  are  fault-prone,  and  the fault  distribution  of the  testing  area  is Pareto-like.  Moreover,
we  also  assume  that  once  a subject  program  is  getting  more  mature,  its fault  concentration  will  become
stronger.  Only  function  coverage  criterion  is  adopted  because  of  the  scalability  of  a  software  system  with
large code.  The  metrics  of  test’s  function  reachability  and  function’s  test  intensity  are  defined  in this  study
for  algorithms.  Both  CW-CovMax  and  CW-CostMin  algorithms  are  not  safe-mode,  but  the  approaches

they  use  still  attempt  to obtain  a  test  suite with  a maximal  amount  of  function  coverage  under  certain
constraints,  i.e. the  effective-confidence  level  and  time  restriction.  We  conclude  that  the most  effective
algorithm  in  this  study  can significantly  reduce  the  cost  (time)  of  regression  testing  on  the  MPLS testing
area  to  1.10%,  on  the  average.  Approaches  proposed  here  can  be  effectively  and  efficiently  applied  to the
regression  testing  on  bug-fix  releases  of  a software  system  with  large  code,  especially  to  the  releases

 func
having  very  few  modified

. Introduction

Over the lifetime of a large software product, the number of
est cases could drastically increase as new versions of software
re released. Because the cost of repeatedly retesting all test cases
ay  be too high, software testers tend to remove redundant or

rivial test cases to construct a reduced test suite for regression
esting at a reasonable cost. Generally, test cases are selected under
ertain criteria such as coverage criteria, resources constraints, or
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

ault detection capability. In literature, researchers have developed
n array of selection algorithms for regression testing, based on a
ariety of models of code coverage or fault detection capability.

∗ Corresponding author.
E-mail addresses: ydlin@cs.nctu.edu.tw (Y.-D. Lin), payton.chou@gmail.com

C.-H. Chou), laiyc@cs.ntust.edu.tw (Y.-C. Lai), jason.hung.sb@gmail.com
J.-T. Hung).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.05.021
tions  with  low  test  intensities.
©  2011  Elsevier  Inc.  All  rights  reserved.

However, many algorithms demand a long execution time, and a
huge number of test cases exist for a large body of code.

Bearing in mind factors of scalability and practicability,
code coverage information in this study is investigated at the
function-level granularity, rather than the statement-level one, e.g.
condition/decision or branches. In particular, test cases and func-
tions form an interlaced net; therefore, test case selection can
depend on function’s attributes, and vice versa. The interlaced net
correlation leads to two  metrics – function’s test intensity and test’s
function reachability. The former indicates the percentage of test
cases covering a function, while the latter denotes the percentage
of functions reached by a test case.

Leung and White (1989) indicated that the test suite reduction
problem has two subproblems – test selection problem and test plan
ptimization for large code problems. J. Syst. Software (2011),

update problem. Solutions to the former problem focus on how to
select test cases to construct a reduced test suite, which can still
effectively reveal faults. Yet solutions to the latter problem must
cope with the management of test plans for a software system that

dx.doi.org/10.1016/j.jss.2011.05.021
dx.doi.org/10.1016/j.jss.2011.05.021
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:ydlin@cs.nctu.edu.tw
mailto:payton.chou@gmail.com
mailto:laiyc@cs.ntust.edu.tw
mailto:jason.hung.sb@gmail.com
dx.doi.org/10.1016/j.jss.2011.05.021


 ING Model
J

2 tems a

h
p
p
s

s
t
m
f
i
a
p
t
p

1

m
p
a
t

t

m
a
s
t
l
a
o
a
M
(
s
i
f
G
i
(
s

s
t
1
c
e
s
m
B
m
c

1

m

t

s
m
m
m
j

ARTICLESS-8718; No. of Pages 12

 Y.-D. Lin et al. / The Journal of Sys

ad experienced several releases of modifications. Cisco did not
rovide test plan updates information; hence, only test selection
roblems can be dealt with when the automated regression test
ystem is applied.

Recently Yoo and Harman (2010) showed a survey of regres-
ion testing on three problems – test suite minimization, regression
est-case selection (RTS), and test case prioritization. All share a com-

on thread of optimization when a test suite reduction is exercised
rom an existing pool of test cases. In this survey, regression test-
ng is described as “Regression testing is performed when changes
re made to existing software; the purpose of regression testing is to
rovide confidence that the newly introduced changes do not obstruct
he behaviors of the existing, unchanged part of the software.” These
roblems are restated as follows.

.1. Test suite minimization problem

Given: A test suite of test cases where a set of testing require-
ents must be satisfied to provide the desired test coverage of the

rogram, and subsets of the test suite where each subset is associ-
ted with one of the testing requirements such that any test case in
he subset satisfies the testing requirement.

Problem: Find a minimal representative subset of the test suite
hat satisfies all the testing requirements.

Test suite minimization problem is well known as the mini-
al  hitting-set problem, or the minimal set-cover problem (Garey

nd Johnson, 1979). Approaches to this problem typically empha-
ize on how to identify redundant test cases to be removed, so
hat a minimal test suite can be constructed. Because this prob-
em is NP-complete, heuristics methods (Wong et al., 1998; Leung
nd White, 1989) are encouraged. In literature, the greedy meth-
ds, (Harrold et al., 1993; Jeffrey and Gupta, 2005, 2007; Chen
nd Lau, 1998a), genetic methods (Whitten, 1998; Ma  et al., 2005;
ansour and El-Fakih, 1999), and linear programming methods

Black et al., 2004) are commonly applied. In addition, the hitting
et algorithm (Harrold et al., 1993) categorizes test cases accord-
ng to the degree of “essentialness,” and selects test cases in order
rom the most “essential” to the least “essential.” The heuristic
/GE/GRE algorithms (Chen and Lau, 1998a)  are developed depend-

ng on the essential, the 1-to-1 redundant, and the greedy strategies
G: greedy strategy, E: essential strategy, and R: 1-to-1 redundant
trategy).

Other approaches include modeling the cost-benefits for regres-
ion testing (Malishevsky et al., 2002), measuring the impact of
est case reduction on fault detection capability (Wong et al., 1998,
999; Rothermel et al., 1998, 2002), and analyzing fault detection
apability, especially with the branch coverage technique (Harrold
t al., 1993; Jeffrey and Gupta, 2005, 2007). The performance of
everal test suite reduction techniques are examined by experi-
ents or simulations (Zhong et al., 2006; Chen and Lau, 1998b).

ecause the algorithms in (Chen and Lau, 1998a,b) do not exactly
eet our requirements, G algorithms is revised and applied to test

ase selection, as shown in section 3.

.2. Test case selection problem

Given: A subject program with a corresponding test suite, and a
odified version of this subject program.
Problem: Find a reduced test suite for the modified version of

he subject program.
In literature (Yoo and Harman, 2010), approaches to test case

election problems (Rothermel and Harrold, 1996) and to test suite
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

inimization problems are different in how they use changes, or
odified code, while selecting test cases. Approaches to test suite
inimization problems are based on a single release of a sub-

ect program while those to regression test case selection problem
 PRESS
nd Software xxx (2011) xxx–xxx

are based on changes between a previous and the current version
of a subject program. Hence, the approaches to test case selec-
tion problems are modification-aware (Yoo and Harman, 2010) for
emphasizing the coverage of code changes. Moreover, Rothermel
and Harrold introduced the concept of modification-revealing test
case in (Rothermel and Harrold, 1994a)  and assumed that identi-
fying fault-revealing test cases for new release program is possible
through the modification-revealing test cases between the origi-
nal and new release of a subject program. Rothermel also adopted
a weaker criterion that selects all the modification-traversing test
cases. A test case is modification-traversing if and only if it executes
new or modified code in the new release of a program, or it executes
former code yet deleted in the new release. This led to a premise
that selecting a subset of modification-traversing test cases and
remove test cases that are guaranteed not to reveal faults in the new
release of a program is possible. Thus, an approach to safe regression
test selection problem was  introduced in Rothermel and Harrold
(1997), though it is still not safe for detecting all possible faults, but
providing a safe sense of always selecting modification-traversing
test cases into a reduced test suite. In Section 3, an algorithm that
selects test cases for a test suite with full-modified function cover-
age is of safe-mode and considered a safe regression test selection.
For instance, CW-NumMin, CW-CostMin, and CW-CostCov-B algo-
rithms are of safe mode while CW-CovMax and CW-CostMin-C
algorithms are not because these two  algorithms do not intend to
achieve full modified function coverage.

Other approaches to test case selection problems employ dis-
tinct techniques such as data flow analysis (Harrold and Soffa,
1989), the graph-walk approach (Rothermel and Harrold, 1993,
1997, 1994b), the modification-based technique (Chen et al., 1994),
the firewall approach (Leung and White, 1990; White and Leung,
1992; Zheng et al., 2007) and so on. Strengths and weaknesses of
these approaches can be found in (Yoo and Harman, 2010).

1.3. Test case prioritization problem

Given: A test suite and a set of permutations of the test suite.
Problem: Find a test suite where test cases are exercised in

order, and a specified maximal gain is achieved under certain con-
straints.

The approach to this problem was  first proposed by Wong et al.
(1998), and extended by Harrold (1999).  Empirical Studies can be
found in Rothermel et al. (1999, 2001).  The CW-CovMax and CW-
CostMin-C algorithms in Section 3 are the variants of approaches
to test case prioritization problems, except that these algorithms
merely emphasize on selecting test cases, instead of exercising test
cases in order.

In this work, six algorithms are implemented by a database-
driven method to reduce the size of test suites, and experiments
are conducted by an automated production system for regression
testing on the MPLS test area of Cisco IOS. The automated system
provides information on code coverage traces and execution time
for each test case, while a source control system imports a history
of code modification for analyzing faults detected from the newly
modified code.

Faults detected in regression testing are real, compared to the
faults that are hand-seeded in small subject programs when exam-
ining the test suite minimization problem. They are probably fixed
if detected in a series of releases of a subject program during regres-
sion testing. Thus, unless retesting all test cases, we cannot acquire
the total number of faults that can be detected. Even nobody can
know the total number of real faults that exist in a subject program.
ptimization for large code problems. J. Syst. Software (2011),

Therefore, it is infeasible to calculate the fault detection effective-
ness for regression testing on an industrial software system.

PDF-SA algorithm applies the function’s test intensity as a metric
in reducing the function space by removing infrastructure func-

dx.doi.org/10.1016/j.jss.2011.05.021


 IN PRESSG Model
J

tems and Software xxx (2011) xxx–xxx 3

t
t
C
a
o
s

l
p
4
s
C

2

M
T
a
f
a
i
s
t

a
w
f
r
a
w
t
r
l
i
w
n
c

a
w
w
d
f
t
r
l
f
O
b
F

i
t
f

T
A

ARTICLESS-8718; No. of Pages 12

Y.-D. Lin et al. / The Journal of Sys

ions from an original function pool. CW-NumMin algorithm selects
est cases referring to modified function information; by contrast,
W-CostMin and CW-CostCov-B algorithm refer to modification-
ware and cost-aware information. Either CW-CovMax algorithm
r CW-CostMin-C algorithm applies the cost-aware approach with
pecified constraints while selecting test cases.

This paper is organized as follows: Section 2 discusses the prob-
ems in how to select test cases. In Section 3, approaches to the
roblems are analyzed and implemented by six algorithms. Section

 briefly addresses the implementation of database-driven test case
election services, but abundantly reveals the experimental results.
onclusions and future work are learned in Section 5.

. Test suite reduction problems

We applied empirical analysis to the regression testing in the
PLS testing area of the Cisco Internetwork Operating System (IOS).

he area is composed of 57,758 functions and a test suite for this
rea contains 2320 test cases. A single test case takes a running time
rom about 10 min  to 100 min  when a sequence of configuration
nd testing steps is performed. If all 2320 test cases were exercised,
t would take about five weeks. Hence, a smaller subset of the test
uite is required and the fault detection capability of the reduced
est suite must still or almost be kept.

Referring to the problem of safe regression test selection, we
re more interested in full-modified function coverage. In addition,
e are also concerned with how to achieve a maximal amount of

unction coverage under certain constraints. Therefore, test suite
eduction problems have become to how to select test cases from

 test suite to construct a smaller one for regression testing. Can
e obtain the minimal number of test cases or minimal cost of

est cases by the information on modified functions since the last
egression round? Can we balance cost and test coverage? Given a
imited testing time, how can we obtain a maximal amount of mod-
fied function coverage? Given a required level of coverage, how can

e acquire minimal cost of a test suite? How can we  reduce the run-
ing time of the selection algorithms? In Table 1, six problems with
orresponding names and descriptions are posed.

To solve the NumMin or CostMin problem, we  need to find
 minimal number of test cases or minimal cost of a test suite
ith full-modified function coverage. In the CostCov-B problem,
e attempt to balance a cost-driven strategy against a coverage-
riven strategy. A restriction time is given in the CovMax problem
or removing test cases with higher executing time than the restric-
ion time, and then the test case with a maximal function execution
ate is selected into the reduced test suite. In the CostMin-C prob-
em, an effective-confidence level is used for determining whether
unction coverage is adequate under a coverage-driven strategy.
nly reachable functions are taken into account here, and they must
e registered in the RFC database, a database for the Regression
unction Coverage Architecture (RFCA), as shown in Fig. 1.
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

In the SA problem, various test intensity thresholds are used for
dentifying infrastructure functions. For example, if a test intensity
hreshold is 100% and a function has a test intensity of 100%, the
unction is touched or covered by every test case. It acts as an infras-

able 1
 list of six test suite reduction problems.

Problem Problem name Descri

1 The Number-Minimization problem NumMin Given
2  The Cost-Minimization problem CostMin Given
3 The  Cost-and-Coverage Balance problem CostCov-B Given

non-m
4  The Coverage-Maximization problem CovMax Given
5 The  Cost-Minimization with Confidence Level problem CostMin-C Given
6  The Selection Acceleration problem SA Find t
Fig. 1. Regression Function Coverage Architecture.

tructure function, that can be removed from the function space
of MPLS testing area. The removal of infrastructure functions can
significantly reduce the test case selection time and the test case
execution time.

3. Designing six corresponding algorithms

Six algorithms in Table 2 are designed for solving the problems
mentioned in Section 2. Most algorithms here are developed for
the test case selection problem, rather than the test suite min-
imization problem or the test case prioritization problem (Yoo
and Harman, 2010). Algorithms are classified into two categories
– PDF-SA (Probability Density Function - Selection Acceleration)
and CW (characteristics weight). Typically, the PDF-SA algorithm
is performed prior to CW algorithms. Therefore, the process of
regression testing is separated into two  phases. First, the PDF-SA
algorithm applies for removing infrastructure functions under a
specified test intensity threshold. Next, one of CW-algorithms per-
forms to acquire the reduced test suite for regression testing. For
instance, the CW-NumMin algorithm, a modification-aware algo-
rithm, can be used to select a minimum number of test cases with
full-modified function coverage. We  also use the greedy approach
while selecting test cases based on updated function coverage for
achieving a maximal amount of modified function coverage or
reachability.

The variable and function notation systems are summarized in
Tables 3 and 4.

3.1. PDF-SA algorithm

The PDF-SA algorithm employs a test intensity threshold �,
ranging from 0% to 100% (default value � = 100%), as a minimum
boundary value for removing infrastructure functions. Now a func-
tion fi having a test intensity �fj

, more than a preset threshold �,
is considered an infrastructure function. Function’s test intensity �fj
represents the percentage of test cases that touch function f , or
ptimization for large code problems. J. Syst. Software (2011),

j
�fj

= |Tfj
|/|Tall| × 100%. The value of |Tfj

| is the number of test cases
that touch fj, compared to the value of |Tall| whose test cases are in
the original test suite. If the threshold � is set with 100%, the same

ption

 a set of modified functions, obtain the minimal number of test cases
 a set of modified functions, obtain the minimal cost of test cases
 modified functions, obtain test cases that can balance cost and the coverage of
odified functions

 a restriction time, obtain the maximal coverage of modified functions
 an effective-confidence level, obtain the minimal cost of a set of test cases
he infrastructure functions to reduce the function space

dx.doi.org/10.1016/j.jss.2011.05.021


ARTICLE IN PRESSG Model
JSS-8718; No. of Pages 12

4  Y.-D. Lin et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Table 2
Test coverage optimization problems and strategies.

Algorithm Objective Constraint Strategy

1 PDF-SA Remove infrastructure functions A test intensity threshold Remove infrastructure functions to speed up
CW-algorithms

2  CW-NumMin Minimize the number of test cases A set of modified functions Decrease testing time
3 CW-CostMin Minimize the cost of test cases A set of modified functions Decrease testing time
4  CW-CostCov-B Balance the total cost of test cases against the

non-modified function coverage
A set of modified functions, cost factor,
coverage factor

Provide cost-driven and coverage-driven tests

5  CW-CovMax Maximize function coverage An amount of restriction time (min) Provide cost-driven tests and increase function coverage
6 CW-CostMin-C Minimize the cost of test cases until the

function execution rate is greater than a
specified effective-confidence level

An effective-confi

Table 3
Variables.

Variable Description

fj Function fj in RFC database, where j = 1, . . .,  m
ti Test case ti in a test suite, where i = 1, . . .,  n
Tall The test suite including all test cases in the RFC database
Tsel A set of selected test cases, i.e. a subset of Tall

Tfj
Test coverage of function fj

Fall, FTall
Universal function coverage of all functions in the RFC database

Fsel, FTsel
Function coverage of Tsel

Fti Function coverage of test case ti

Fmod Function coverage of all modified functions
�cost Cost factor
�cov Coverage factor
� Restriction time, in minutes
�  Test intensity threshold
� Effective-confidence level
�ti Function reachability of ti

�fj
Test intensity of fj

Table 4
Functions.

Function Description

C(ti) Function to calculate the cost, or running time, of
test  case ti in minutes

Nmod(Fti ) Function to calculate the number of modified
functions in test case ti

N̄mod(Fti ) Function to calculate the number of non-modified
functions in test case ti

Nmod(FTall
), or Nmod(Fall) Function to calculate the number of modified

functions in all test cases, i.e. |Fmod|
Nmod(FTsel

), or Nmod(Fsel) Function to calculate the number of modified
functions of all the selected test cases

Wmod(Fti ) The modified function weight of test case ti

wmod(Fti ) The normalized modified function weight of test
case ti

n̄mod(Ft ) The normalized non-modified function coverage of

a
r

A

1
c

all all sel
i

test case ti

fcv(Fti , Fmod, �cost , �cov) The comprehensive function for test case ti

s the default value, functions covered by every test case will be
emoved from the function space Fall.

lgorithm 1. PDF-SA algorithm.
1 Input �, Fall, Tall

2 Output Fsel

3 Begin
4 for ∀fi , 0 ≤ j ≤ |Fall |, where fi ∈ Fall

5 �fj
= |Tfi

|/|Tall | × 100%;
6 if �fj

≥ � then Fsel = Fsel + fi; // function whose test intensity is
greater than or equal to � is selected

7  end-for
8 return Fsel;
9 End
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

Steps of the PDF-SA algorithm are summarized as follows: Line
: Given a test intensity threshold �, a function space Fall, and a test
ase pool Tall. Line 4: Check each function whether the function is
dence level Provide coverage-driven tests and decrease testing time

an infrastructure function. Line 5: Calculate the test intensity �fj
for

function fj’s by |Tfi
|/|Tall|. Line 6: If fj’s test intensity is greater than or

equal to the threshold �, function fj is selected as an infrastructure
function into Fsel. Line 8: Return Fsel, a set of infrastructure functions.

We assume that infrastructure functions provide only a little
or no fault detection capability, and their existence may  consid-
erably impair the effectiveness of regression testing. Thus, it is
better to remove infrastructure functions before performing test
case selection algorithms. Once the size of function space Fall in
the database is reduced, the effectiveness of CW-algorithms can be
further improved.

3.2. CW-NumMin, CW-CostMin, and CW-CostCov-B algorithms

The goal of algorithms in this section is to construct test
suites covering all modified functions; in other words, all changes
in the subsequent releases of a software system must be re-
tested to ensure the quality and reliability of the new released
program. Three algorithms designed here by different test case
selection strategies are to achieve a full-modified function cover-
age. Each is implemented with one of the characteristics weight
(CW) – CW-NumMin (Algorithm 2), CW-CostMin (Algorithm 3),
and CW-CostCov-B (Algorithm 4). These algorithms share the same
structure except their own CW functions. Here, Algorithms 3 and
4 show only statements that are different from those in Algorithm
2.

3.2.1. Algorithm CW-NumMin: Nmod(Fti
)

Function Nmod(Fti
) is used as the characteristic weight func-

tion in the CW-NumMin algorithm for selecting the test case with
a maximal amount of modified function coverage. The value of
Nmod(Fti

) is obtained by the cardinality of the intersection Fmod and
Fti

, i.e., |(Fti
∩ Fmod)|. Fti

is ti’s function coverage, and Fmod is the set
of all modified functions.

Algorithm 2. CW-NumMin algorithm.
1 Input Fmod, Fall, Tall

2 Output Tsel

3 Declare tsel: //the selected test case
4 UpdateT():
5  for ∀ti , 0 ≤ i ≤ |Tall |, where ti ∈ Tall

6 Fti = Fti − Ftsel
;

7 if Fti = ∅ then Tall = Tall − ti;
8  end-for
9 Begin
10 while (Tall /= � ∧ Nmod(Fti ) /= 0)
11  tsel = argmaxti ∈ Tall

Nmod(Fti ); //select the test case having a
maximal amount of modified function coverage.

12  Tsel = Tsel + tsel;
13 T = T − t ;
ptimization for large code problems. J. Syst. Software (2011),

14 UpdateT();
15 end-while
16 return Tsel;
17 End

dx.doi.org/10.1016/j.jss.2011.05.021


 ING Model
J

tems a

l
F
a
i
t
t
u
u
f

h
t
p
a
i
(

3

c
t
a
i
a
fi
i
o
A
h
a
h
t

A
f

3

s
s
h
n
m
T
W

m
T
t
N
a
f
e
o
f
A
o
t
m
d
m
e
b

ARTICLESS-8718; No. of Pages 12

Y.-D. Lin et al. / The Journal of Sys

Steps of the CW-NumMin algorithm are briefly described as fol-
ows: Line 1: Given a modified function space Fmod, a function space
all, and an original test suite Tall. Lines 11 and 12: With a maximal
mount of modified function coverage, the test case ti is selected
nto Tsel. Line 13: Remove the selected test case tsel from the original
est suite Tall. Line 14: UpdateT() is exercised to remove every func-
ion that occurs in the test case tsel from every test case, ti, in the
pdated test suite Tall. Note empty test cases are removed from the
pdated Tall. Line 16: Return a test suite Tsel that covers all modified
unctions.

In the algorithm, the selection for each loop will select a test case
aving a maximal number of modified functions. In other words,
he modification-aware greedy approach to the test case selection
roblems applies to acquire a minimum size of test suite that covers
ll modified functions. Because this test suite covers all changes
n the subject program, this algorithm is a safe-mode algorithm
Rothermel and Harrold, 1993, 1997).

.2.2. Algorithm CW-CostMin: Wmod(Fti
)

This CW-CostMin algorithm is for constructing a test suite that
an retest all the modified functions as soon as possible. To achieve
his goal, we apply a heuristic greedy approach, modification-aware
nd time-aware, to the test case selection problem. The character-
stics weight function Wmod(Fti

) is for test case ti to calculate the
verage modified function execution rate, i.e. the number of modi-
ed functions tested per minute by ti. The weight function Wmod(Fti

)
s defined as Nmod(Fti

)/C(ti). The value ofC(ti) is the execution time
f test case ti containing modified and non-modified functions. In
lgorithm 3 , line 11 indicates that a test case is selected when it
as a maximal modified function execution rate. This guarantees
ll modified functions can be exercised at a minimum cost or at a
ighest rate, but it does not guarantee the cost or size of the selected
est suite is minimal.

lgorithm 3. CW-CostMin algorithm (only statements different
rom those in Algorithm 2 are shown).

10 while (Tall /= � ∧ Wmod(Fti ) /= 0)
11 tsel = argmaxti ∈ Tall

Wmod(Fti ); //select a test case having a maximal
modified function execution rate.

.2.3. Algorithm CW-CostCov-B: fcv(Fti
, Fmod, �cost, �cov)

Unlike algorithms in (Black et al., 2004) using bi-criteria in con-
tructing reduced test suites, this algorithm apply two criteria while
electing test cases. The criteria are implemented with a compre-
ensive function fcv(Fti

, Fmod, �cost, �cov), a linear combination of
ormalized modified function execution rate and normalized non-
odified function coverage, or wmod(Fti

) × �cost + n̄mod(Fti
) × �cov.

he function wmod(Fti
) is a normalized weight function, defined as

mod(Fti
)/

∑n
i=1Wmod(Fti

), while n̄mod(Fti
) is a normalized ti’s non-

odified function coverage, defined as N̄mod(Fti
) /

∑n
i=1N̄mod(Fti

).
he N̄mod(Fti

) is the cardinality of the relative complement of
i’s modified function coverage, defined as |(Fti

− Fmod)|, or |Fti
|-

mod(Fti
). The cost factor �cost (default value �cost = 0.5) and cover-

ge factor �cov(�cov = 1 − �cost) are used to trade off the modified
unction execution rate against the non-modified function cov-
rage. In this algorithm one factor can take precedence over the
ther by setting different values to the cost factor or coverage
actor. If �cost = 1, the test suite obtained is the same as that in
lgorithm 3 with full-modified function coverage, i.e. a test suite
f safe-mode. If testers want to expand function coverage of a
est suite, a larger value of �cov will be set to cover more non-

odified functions. Alternatively, function fcv(Fti
, Fmod, �cost, �cov),
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

efined as wmod(Fti
) × �cost + nmod(Fti

) × �cov, applies to balance the
odified function execution rate and the modified function cov-

rage. However, this alternative method cannot gain too much
enefit by increasing unmodified function coverage. Algorithm
 PRESS
nd Software xxx (2011) xxx–xxx 5

CW-CostCov-B in Algorithm 4 is not only concerned with the
modified function execution rate, but also provides testers a mech-
anism to enlarge their non-modified function coverage. In other
words, if the modified function space covered by a safe-mode
algorithm is inadequate, the CW-CostCov-B algorithm can offer
a better way by covering a larger unmodified function space for
a reduced test suite. An greedy heuristic approach is employed
here.

Algorithm 4. CW-CostCov-B algorithm (only statements different
from those in Algorithm 2 are shown).

1 Input Fmod, ti, Tall, �cost , �cov

10 while (Tall /= � ∧ Wmod(Fti ) /= 0)
11  tsel = argmaxti ∈ Tall

fcv(Fti , Fmod, �cost , �cov); //balance a modified
function execution rate and a non-modified function coverage.

3.2.4. An example for the CW-CostCov-B algorithm
We  here dissect the CW-CostCov-B algorithm because the

complexity of this algorithm is greater than two other algo-
rithms. In Table 5, only five test cases are selected arbitrarily
for demonstrating the steps of CW-CostCov-B algorithm. Test
cases with ID (identification) from 1 to 5 are executed in 2,
3, 4, 5, and 4 min. These test cases can cover 500, 300, 700,
1,000, and 500 modified functions, as well as 500, 700, 500,
2,000 and 1,000 non-modified functions. Factors of cost and
non-modified function coverage (or extra coverage) are assigned
with �cov = 0.4 and �cost = 0.6. Steps of two phases are shown in
Table 5.

Steps of Phase 1:

1. Calculate the values of Wmod(Fti
) and N̄mod(Fti

) for each test case.
For example, the value of Wmod(Fti

) in test case t1 is 500/2, or
250.

2. Add the value of Wmod(Fti
) and N̄mod(Fti

). In Table 5(a), the total of
Wmod(Fti

) is 850, and N̄mod(Fti
), 4700; then n̄mod(Fti

), andwmod(Fti
)

can be calculated. For instance, the value of n̄mod(Fti
) in test case

t1 is 500/4700, or 10.64% , and wmod(Fti
), 250/850, or 29.41%.

3. Calculate the value of fcv(Fti
, Fmod, �cost, �cov). For instance, the

comprehensive value of t1 is 10.64% × 0.4 + 29.41% × 0.6, or
21.90%, with the coverage factor �cov, 0.4, and the cost factor
�cost, 0.6.

4. Select the test case having a highest comprehensive value, and
remove it from this table. For example, in Table 5(a) test case t4
is selected into selected test suite, and it is also removed from
the original test suite.

Steps of Phase 2:

1. After test t4 is removed, if any function in the rest test cases is
the same as those in t4, the function must be removed from the
rest test cases.

2. Update the number of modified functions for function Nmod(Fti
),

and the number of non-modified functions for function N̄mod(Fti
),

as shown in Table 5(b).
3. Calculate the values of Wmod(Fti

),n̄mod(Fti
), wmod(Fti

), and
fcv(Fti

, Fmod, �cost, �cov) for each of the rest test cases one by one.
4. In Table 5(b) test case t3 is chosen into the selected test suite,

and then removed from the original test suite.

3.2.5. Steps of the rest
ptimization for large code problems. J. Syst. Software (2011),

Repeat the same steps as those in Phase 2 until the values of all
entries in the column of Nmod(Fti

) or Wmod(Fti
) become zeros. This

led to full-modified function coverage for a selected test suite, and
the execution of this algorithm terminated.

dx.doi.org/10.1016/j.jss.2011.05.021


ARTICLE IN PRESSG Model
JSS-8718; No. of Pages 12

6  Y.-D. Lin et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Table 5
An example for the CW-CostCov-B algorithm.

ti C(ti) Nmod(Fti ) N̄mod(Fti ) Wmod(Fti ) n̄mod(Fti ) (%) wmod(Fti ) (%) fcv(Fti , Fmod, �cost , �cov) (%)

(a) Phase 1: CW-CostCov-B algorithm (�cov = 0.4, �cost = 0.6)
1  2 500 500 250 10.64 29.41 21.90
2 3  300 700 100 14.89 11.76 13.02
3  4 700 500 175 10.64 20.59 16.61
4  (will be selected) 5 1000 2000 200 42.55 23.53 31.14
5 4 500 1000 125 21.28 14.71 17.33
Total  4700 850
(b)  Phase 2: CW-CostCov-B algorithm (�cov = 0.4, �cost = 0.6)
1  2 100 200 50 16.67 23.08 20.51
2  3 200 300 66.67 25.00 30.77 28.46
3  (will be selected) 4 300 400 75 33.33 34.62 34.10

–
25

216.6

3

s
i
a
r
s
e
c
a
a
p

a
c
c
s
t

A

G
T
p
l
w
t
i
r
c
T
o

4  (has been removed) – – –
5 4 100 300
Total  1200 

.3. CW-CovMax algorithm

If testers want to proceed a regression testing under a tight
chedule but also want to have an extensive function coverage, this
s where the CW-CovMax algorithm will play. Unlike the PDF-SA
lgorithm that aims to remove infrastructure functions, this algo-
ithm first removes test cases with execution time larger than a
pecified cost. Here test cases with large execution time are called
lephant test cases. A test suite with a maximal amount of function
overage is constructed by repeatedly selecting the test case having

 maximal function execution rate. However, this algorithm is for
ttacking the test case selection problem, rather than the test case
rioritization problem.

The weakness of this algorithm is that it is not a modification-
ware approach, so the reduced test suite does not guarantee to
over all modified functions where faults are likely to occur. This
ould compromise the fault detection capability of the reduced test
uite. However, this algorithm can benefit by removing elephant
est cases with time-aware approaches.

lgorithm 5. CW-CovMax algorithm.
1 Input �, Fall, Tall

2 Output Tsel

3 Declare tsel: //the selected test case.
4 UpdateT(): //the same as the updateT() in Algorithm 2.
5 InitT():
6 for ∀ti , 0 ≤ i ≤ |Tall |, where ti ∈ Tall

7 if C(ti) > � then Tall = Tall − ti;
8  end-for
9 Begin
10 InitT();
11 if Tall = ∅ then return;
12 while (Tall /= ∅)

13 tsel = argmaxti ∈ Tall

( |Fti
|

C(ti )

)
;

14  Tsel = Tsel + tsel;
15 Tall = Tall − tsel;
16 UpdateT();
17 end-while
18 return Tsel;
19 End

Steps of the CW-CovMax algorithm 5 are as follows: Line 1:
iven a restriction time �, a function space Fall, and a test suite
all. Line 4: Update the test suite Tall. Lines 5–8: An initialization
rocess removes the elephant test cases having an execution time

arger than the restriction time �. Line 12: When Tall is null, the
hile loop terminates. Line 13-15: a test case with a maximal func-

ion execution rate is selected into the selected test suite Tsel, and
t is also removed from Tall. Line 16: Update the test suite Tall, i.e.
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

emove every function appearing in test case tsel from the rest test
ases left in the test suite Tall. Empty test cases are removed from
all. Line 18: Return the test suite Tsel which has a maximal amount
f function coverage.
– – –
25.00 11.54 16.92

7

3.4. CW-CostMin-C algorithm

The CW-CostMin-C algorithm is an extension of the CW-
CostMin algorithm, but the CW function is defined as |Fti

|/C(ti),
rather than Nmod(Fti

)/C(ti), or Wmod(Fti
). The goal of this algorithm

is to construct a test suite that may  cover an effective-confidence
level � of function coverage, i.e. the percent of function coverage,
at a minimal cost. The effective-confidence level � ranges from 0%
to 100% (default value � = 100%), and is applied to notify the algo-
rithm to stop selecting test cases once the effective-confidence level
of function coverage is achieved. A test case with highest function
execution rate is keeping selected from the updated test suite.

The weakness of this algorithm is the same as that in the CW-
CovMax algorithm, which is not a modification-aware algorithm.
There is no guarantee that the reduced test suite would cover
all modified functions; this may  compromise the fault detection
capability of this test suite. However, this algorithm applies a
time-aware approach for selecting test cases of minimal cost for
a selected test suite, until the function coverage of the reduced test
suite is not less than a specified effective-confidence level.

Algorithm 6. CW-CostMin-C algorithm.
1 Input �, Fall, Tall

2 Output Tsel

3 Declare tsel: //the test case selected.
4  UpdateT(): //the same as the updateT() in Algorithm 2.
5 Begin

6 while
(

Tall /= � ∧ |Fsel |
|Fall | < �

)

7 tsel = argmaxti ∈ Tall

( |Fti
|

C(ti )

)
;

8  Tsel = Tsel + tsel;
9  Tall = Tall − tsel;
10 UpdateT();
11 end-while
12 return Tsel;
13 End

The following is a brief of steps of the CW-CostMin-C algorithm:
Line 1: Given an effective-confidence level �, a function space Fall,
and a test suite Tall. Line 6: The while loop will terminate when Tall
is null or the percent of function coverage is greater than or equal to
the effective-confidence level. Lines 7–9: A test case of a maximal
function execution rate is selected into Tsel, and removed from Tall.
Line 10: Update the test suite Tall as before. Line 12: Return the test
suite Tsel when the function coverage of the selected test suite is
ptimization for large code problems. J. Syst. Software (2011),

larger than or equal to the specified effective-confidence level �, in
percent.

Alternatively, we may  replace the effective-confidence level �
with a confident testing time to construct a reduced test suite.

dx.doi.org/10.1016/j.jss.2011.05.021


ARTICLE IN PRESSG Model
JSS-8718; No. of Pages 12

Y.-D. Lin et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 7

Table  6
Test information.

Number of test cases 391

Number of functions 23308
Total execution time (min) 7746
Number of releases 5
Number of DDTS reports 127
Number of modified functions 302

4

4

a
f
c
V
s
d
t
s
m
b
r

4

p
a
t
o
M
p
i
M
i
l
3
g
r
e
b

Number of reachable DDTS reports 67
Number of reachable modified functions 129

. Experimental results

.1. System design and implementation

The right side of Fig. 1 shows the Regression Function Cover-
ge Architecture (RFCA), a system used for regression testing on
unction coverage of the Cisco IOS program. The system has four
omponents – RFC Converter, RFC Importer, RFC Database, and RFC
iewer. First, testing tools perform a regression test in the testing
erver in Fig. 1, and generate test reports imported into the RFC
atabase. Next, the RFC Viewer is configured to run test case selec-
ion algorithms and send a list of selected test cases to the test
erver. Prior to performing the regression testing, we must imple-
ent code on a target platform, the MPLS test area of Cisco IOS,

y testing tools such as Testwell CTC++ (Testwell, 2011), so the
e-tested code can be properly located and measured.

.2. Characteristics of the test-function mappings

The entire experiment platform in this study is a personal com-
uter with an AMD Athlon 64 3800+ 2.41 GHz processor, 3GB RAM,
nd Microsoft Windows XP Professional SP2. It is impractical for
aking about 36 test-bed-days to thoroughly exercise a test suite
f 2320 test cases for Cisco IOS containing 57,758 functions. The
PLS test area, a subset of Cisco IOS, is thus selected as the target

latform because there are more test cases in the MPLS area than
n other areas. Table 6 shows that there are 391 test cases in the

PLS area that contain 23,308 functions. It takes about 7746 min
f all test cases are processed. Five releases are examined under-
ying 127 Distributed Defect Tracking Systems (DDTS) reports and
02 modified functions. All the five releases are grouped into a sin-
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

le set of modifications and each release may  contain several DDTS
eports including bug-tracking records. Now, distributed bug track-
rs require that adding or updating bug reports to the database
e convenient. According to the Cisco test reports, only 67 DDTS

Fig. 2. Test’s function reachability 
Fig. 3. Cost percent of the safe-mode selection.

reports and 129 modified functions are reachable in the MPLS test
area.

Fig. 2(a) depicts the function reachability of the 391 test cases.
Because of a series of testing procedures, the set of test cases now
has a very high value of function reachability. Most test cases can
cover about 40% up to 60% of the function coverage. Fig. 2(b) shows
the test intensity of 23,308 functions. Over 25% of functions are
covered by every test case, and they are considered infrastructure
functions. The distribution of the function test intensity is quite
non-uniform.

The safe-mode approach measures the cost of test case selec-
tion according to the DDTS reports. The values of |Fsel|/| Fall | and
C(Tsel)/C(Tall) for each DDTS are sorted out by |Tsel|/| Tall |. In Fig. 3,
most of the percentages of cost, C(Tsel)/C(Tall), in DDTSs reports are
still high, and higher than 30%. Only four of them are smaller. It
shows 94% (63/67) of DDTS reports do not provide a substantial
cost reduction even applying the safe-mode approach. Because the
approach to safe-mode test selection is not as good as expected, a
further reduction in cost is required.

Test case selection algorithms with varying function test intensi-
ties are compared. The PDF-SA algorithm examines the distribution
of infrastructure functions based on test intensity thresholds. In
Table 7, we specify several test intensity thresholds and various
parameters.

To explore how a function test intensity affects a selection
ptimization for large code problems. J. Syst. Software (2011),

algorithm, we  employed four thresholds, i.e. NA% (no threshold
specified), 80%, 90%, and 100%. With different thresholds, we can
verify which selection algorithm is more effective than others, after

and function’s test intensity.

dx.doi.org/10.1016/j.jss.2011.05.021


ARTICLE IN PRESSG Model
JSS-8718; No. of Pages 12

8  Y.-D. Lin et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Table 7
Summary of algorithms with thresholds and parameters.

Algorithms Test intensity threshold Other parameters

1 PDF-SA 0, 5, . . .,  100
2 CW-NumMin NA, 80, 90, 100
3 CW-CostMin NA, 80, 90, 100

r
r
B
i
t
�
a
t

4

t
r

4

s
r
o
f
1
i
T
w
a
a
t
i
s

d
r
e

4

i
9
m
o
t

T
C

Table 9
CW-CostCov-B under CW�100.

CW�100, �cov = 0.0 CW�100, �cov = 1.0

|Tsel|/| Tall | 1 1.20
|Fsel|/| Fall | 1 1.06
4  CW-CostCov-B NA, 80, 90, 100 �cov = {0, 0.1, . . . , 1}
5  CW-CovMax NA, 80, 90, 100 � = {500, 1000}
6 CW-CostMin-C NA, 80, 90, 100 � = {10, 20, . . .,  100}

emoving infrastructure functions. Speedup of the PDF-SA algo-
ithm under different test intensity thresholds is examined first.
oth CW-NumMin and CW-CostMin algorithm are used for exam-

ne how many test cases and how much cost can be reduced. While
he CW-CostCov-B algorithm investigates the impact of �cov and
cost on testing performance, the CW-CovMax algorithm selects 500
nd 1000 min  as the restriction time with the execution time of each
est case from 10 to 100 min.

.3. Result analysis

We  first discuss test coverage under different test intensity
hresholds, and then illustrate the performance of these six algo-
ithms.

.3.1. Test coverage under different test intensity thresholds
CW� indicates a subset of registered functions having test inten-

ities less than �, i.e. �fj
< �. Here � is a test intensity threshold. CW

epresents an entire set of registered functions without any thresh-
ld, or �fj

≤ 100%. In contrast, CW�100 is a subset of functions whose
unction’s test intensities are less than 100%; in other words, �fj

<

00%. Functions with 100% test intensity are excluded. We  exam-
ne the impact of various thresholds �’s on test cost and coverage.
able 8(a) shows the results of exercising CW-NumMin algorithm
ith different thresholds corresponding to CW�80, CW�90, CW�100,

nd CW, respectively. For instance, CW�80 is a function set in which
ll function’s test intensities are less than 80% ; in other words, func-
ions with test intensities more than or equal to 80% are considered
nfrastructure functions and removed from the original function
et.

Infrastructure functions are considered with little impacts on
eteriorating the accuracy of regressing testing, so they can be
emoved to speed up test case selection algorithms. Only CW�100 is
mployed to illustrate experimental results.

.3.2. CW-NumMin and CW-CostMin: 2.32% and 1.1%
The result of performing the CW-NumMin algorithm is shown

n Table 8(a). With CW�100, only 2.56% test cases are selected, but
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

2.96% function coverage and 64.82% function coverage for non-
odified functions are achieved. This drastically reduces the cost

f the selected test cases to 2.3%. Similarly, the result of exercising
he CW-CostMin algorithm is shown in Table 8(b). With CW�100,

able 8
onventional selection vs. CW-NumMin and CW-CostMin.

Percent CW�80 (%) CW�90 (%) CW�100 (%) CW (%)

(a) CW-NumMin
|Tsel|/| Tall | 2.56 2.56 2.56 2.56
|Fsel|/| Fall | 92.96 92.96 92.96 92.96
N̄mod(Fsel)/|Fall | 56.49 60.41 64.82 92.41
C(Tsel)/C(Tall) 2.32 2.32 2.32 2.32
(b)  CW-CostMin
|Tsel|/| Tall | 2.56 2.56 2.56 2.56
|Fsel|/| Fall | 90.44 90.44 90.44 90.44
N̄mod(Fsel)/|Fall | 53.98 57.89 62.30 89.89
C(Tsel)/C(Tall) 1.10 1.10 1.10 1.10
N̄mod(Fsel)/|Fall | 1 1.09
C(Tsel)/C(Tall) 1 2.60

only 2.56% test cases are selected, but 90.44% function coverage and
62.3% function coverage for non-modified functions are obtained.
The cost of selected test cases was  further reduced to 1.10%. The
cost reduction by the CW-CostMin algorithm is better than that by
the CW-NumMin algorithm, because each time the CW-CostMin
algorithm always selects a test cases with the lowest cost, while
the CW-NumMin algorithm chooses a test case with the largest
coverage.

4.3.3. CW-CostCov-B: paying small cost for higher non-modified
function coverage

The CW-CostCov-B algorithm employs both cost-driven and
coverage-driven strategies. First, we evaluate the impacts of cost
factor or coverage factor. The factor �cov is for non-modified func-
tion coverage and �cost, for cost. If �cov is larger than �cost, this means
the non-modified function coverage takes precedence. A compari-
son of performing this algorithm with �cov from 0.0, 0.1, . . .,  to 1.0,
and �cost from 1.0, 0.9, . . .,  to 0.0 is presented.

The curve of N̄mod(Fsel)/|Fall| where �cov ranges from 0.0 to 1.0 is
shown in Fig. 4. Note, if �cost = 1.0, the CW-CostCov-B algorithm
is the same as the CW-CostMin algorithm. Test cases selected
at �cov = 0.0, or �cost = 1.0, generates 62.3% function coverage for
non-modified functions. If �cov varies from 0.0 to 1.0, the func-
tion coverage of non-modified functions ranges from 62% to 69%.
The function coverage of non-modified functions keeps less than
69%, because infrastructure functions possess about 27% function
coverage. According to Fig. 4, the cost of the selected test suite,
however, increased by 1% up to 3%, no matter what �cov is. Though
the increase is small, it is still significant with the increase of non-
modified function coverage. This may  be derived from the test cases
selected having large function reachability but with small cost.

The results of emphasizing either on the function coverage of
non-modified functions or on cost are compared between �cov =
0.0 (�cost = 1.0) and �cov = 1.0 (�cost = 0.0), shown in Table 9, which
have now normalized at �cov = 0.0. It appears that to obtain an
extra 6% (68.5% − 62.5%) coverage for non-modified functions at
�cov = 1.0 causes a cost 2.6 times the cost at �cov = 0.0 (the increase
in cost is from 1.097% to 2.853%), and a total of test cases 1.2 times
the total at �cov = 0.0. Thus, we conclude that specifying �cov = 0.0
can be a better choice for regression testing on the MPLS test area
of Cisco IOS.

4.3.4. CW-CovMax: high cost for more coverage
The CW-CovMax algorithm applies cost-driven policy with

restriction times (�), such as 500 or 1000 min. In Table 10(a),
when � = 500, the function coverage is 99.63%, and � = 1000, 100%.
In Table 10(b), the results have now normalized at � = 500. Fur-
thermore, � = 1, 000, the function coverage increases by 0.37%
(100.000%–99.630%), compared to that at � = 500, while the num-
ber of test cases at � = 1000 increased to 1.442 times the number at
� = 500, and the cost at � = 1000 increased to 1.98 times the cost at
� = 500. This means many test cases cover only a small number of
extra functions. The increase of number of test cases soon causes
ptimization for large code problems. J. Syst. Software (2011),

a higher cost but with little improvement on expanding function
coverage.

There are two  possible explanations for this. First, there exist
test cases of old-version, and new test cases are added without

dx.doi.org/10.1016/j.jss.2011.05.021


ARTICLE IN PRESSG Model
JSS-8718; No. of Pages 12

Y.-D. Lin et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 9

Fig. 4. Cost and non-modified functi

Table 10
CW-CovMax under CW�100.

CW�100, � = 500 (%) CW�100, � = 1000 (%)

(a)
|Tsel|/| Tall | 10.990 15.850
|Fsel|/| Fall | 99.630 100.000
C(Tsel)/C(Tall) 6.442 12.740

CW�100, � = 500 CW�100, � = 1000

(b)
|Tsel|/| Tall | 1.00 1.442

d
c
t
b

However, the coverage remains 68.82% when � varies from 10%
|Fsel|/| Fall | 1.00 1.004
C(Tsel)/C(Tall) 1.00 1.978

eleting old test cases. Functions, covered by old-version test cases,
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

an also appear in the test cases for new-version. Second, the func-
ion coverage granularity is too coarse. When a function is touched
y some test case, the function is marked as “covered”. In reality,

Fig. 5. Cost and coverage of CW
on coverage of CW-CostCov-B.

some test cases may  test different parts of the function. Because
testing resources are limited, for ease of management, this study
adopts function coverage as the coverage criterion. Therefore, the
fault detection capability is weakened while a coarse granularity is
adopted.

4.3.5. CW-CostMin-C: coverage over 90% is inefficient
The CW-CostMin-C algorithm is an extension of the CW-

CostMin algorithm. It applies a coverage-driven method to achieve
a minimal cost with sufficient function coverage. Each time the CW-
CostMin algorithm always selects the test case of the smallest cost
until the function coverage is adequate, as the effective-confidence
level � varies from 10% to 100%. Fig. 5 indicates that the CW-
CostMin-C algorithm has 68.82% function coverage at � = 10%.
ptimization for large code problems. J. Syst. Software (2011),

to 60%. This indicates that even new test cases are added in the
selected test suite, the coverage does not expand. On the other
hand, the cost of the selected test suite has increased drastically

-CovMin-C under CW�100.

dx.doi.org/10.1016/j.jss.2011.05.021


ARTICLE IN PRESSG Model
JSS-8718; No. of Pages 12

10 Y.-D. Lin et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Table 11
CW-CovMin-C under CW�100.

CW�100, � = 90 CW�100, � = 100

|Tsel|/| Tall | 1.00 8.85

w
i

b
c
A
t
t
o
o

4

i
c
f
t
F
i
t
v
T
e
t
f
s
c

s
C
h
n
m

Table 12
Function space reductions by PDF-SA.

CW�80 CW�90 CW�100

The number of functions that can be ignored 8427 7510 6463
The  reduced function space, in percent 36.20 32.20 27.73
|Fsel|/| Fall | 1.00 1.11

C(Tsel)/C(Tall) 1.00 24.08

hen � varies from 90% to 100%. Because the increase is significant
n cost, a further discussion is required.

At � = 90%, as 1.79% test cases are selected, the cost increases
y only 0.529%. At � = 100%, as 15.85% test cases are chosen, the
ost increases by 12.74%. Table 11 shows the normalized results.
s the effective-confidence level varies from 90% to 100%, though

he increase in the number of test cases at � = 100% is only 8.85
imes the number of test cases at � = 90%, the increase in the cost
f the selected test suite at � = 100% becomes 24.08 times the cost
f a test suite at � = 90%.

.3.6. PDF-SA: the selection time is reduced to 10%∼70%
Since the results of the above five algorithms have been exam-

ned, now we go forward to investigate how the PDF-SA algorithm
an benefit other algorithms. Fig. 6 shows the probability density
unction (pdf) and cumulative density function (cdf). Both are func-
ions of test intensity. To simplify the figure, each test intensity in
ig. 6 represents the aggregation percent of functions correspond-
ng to every separate division as above. For example, the value at
est intensity 20% means an aggregation value of the test intensity
aries from 20% to 25%, where 20% is included, but 25% is excluded.
he distribution of pdf is non-uniform as shown in Fig. 6. The cov-
rage at both 100% and 0% test intensity has higher values than
hose at other test intensities. This indicates that a large portion of
unctions is covered by test cases due to the initial procedures and
pecial features, but the rest coverage is left unreachable. Test cases
an have no functions in this coverage.

If the test intensity threshold � = 100, functions with test inten-
ity 100% are considered infrastructure functions. Thus, with
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

W�100, 6463 functions are considered infrastructure functions
ere. If all infrastructure functions are removed from the origi-
al function space, the function space may  reduce by 27.73%. Two
ore test intensity thresholds, 80% and 90%, are used in Table 12.

Fig. 6. Test intensity
Fig. 7. Reducing the selection time by PDF-SA.

Under CW�80, there are 8,427 infrastructure functions, while under
CW�90 7,510 infrastructure functions. This led to 36.20% and 32.20%
reductions in function space, respectively.

In Fig. 7 five piecewise lines represent costs for five corre-
sponding algorithms – CW-NumMin, CW-CostMin, CW-CostCov-B,
CW-CovMax, and CW-CostMin-C. Y-axis represents the execution
time for each algorithm in seconds, while X-axis represents the
function space with specified test intensity thresholds. In this fig-
ure different test intensity thresholds result in different amounts
of reductions in execution time. There is a substantial reduction
of cost for each algorithm because the function space is reduced
to 27.73% under CW . The speedup for each algorithm from
ptimization for large code problems. J. Syst. Software (2011),

�100
CW�100 to CW�90 or from CW�90 to CW�80 is not remarkable because
the PDF-SA algorithm reduces the function space by only 4.47%
and 4%, respectively. The CW-CostCov-B algorithm has a larger

 of functions.

dx.doi.org/10.1016/j.jss.2011.05.021


ARTICLE ING Model
JSS-8718; No. of Pages 12

Y.-D. Lin et al. / The Journal of Systems a

Table  13
Selection times with and without PDF-SA.

CW�80 (%) CW�90 (%) CW�100 (%) CW (%)

CW-NumMin 37.61 54.70 62.39 100.00
CW-CostMin 34.19 48.72 52.99 100.00
CW-CostCov-B 48.76 52.96 69.09 100.00

e
a
i
f

C
r
s
i
t
C
i
f

5

l
d
a
t
T
t
A
i
a
t
s
m
t
h

i
o
t
s
s
g
f
t
t
a
d
q
t
r
t
e
f
t
a
s

t
s
f

CW-CostMax 35.42 35.76 35.15 100.00
CW-CostMin-C 11.76 12.42 13.83 100.00
Average 33.37 40.91 48.46 100.00

xecution time than other algorithms because two parameters, �cov
nd �cost, are used for accumulating cost, and the value of N̄mod(Fti

)
s calculated for all test cases to solve the comprehensive function
cv(Fti

, Fmod, �cost, �cov).
In Table 13,  the execution time of algorithms with CW�100,

W�90, or CW�80 can be reduced to 10% up to 70%. Selection algo-
ithms with CW�100 take times to perform a variety of operations,
uch as union, intersection, and minus of set. Though removing
nfrastructure functions reduces the function space by only 27.73%,
he runtime of algorithms can be reduced to 48.46%, on the average.
hoosing a smaller � allows further reduction in execution time, but

t is impractical if too many functions are considered infrastructure
unctions using a low test intensity threshold.

. Conclusions

Regression testing of a large industrial software system with
arge code has become intractable. Hence, we  implement a
atabase-driven test case selection service for the MPLS testing
rea of Cisco IOS, and define two metrics, function’s test intensity and
est’s function reachability, to characterize the coverage information.
he former identifies whether a function is an infrastructure func-
ion by a specified threshold, and the latter is implicitly applied in
lgorithms 2 and 4–6 while selecting test cases of maximal mod-

fied or non-modified function coverage. Infrastructure functions
re trivial and can be removed in advance to speed up the time of
est case selection and test suite execution. Approaches to test case
election problems in the study are derived from prior work, but
odified to adapt to the environment of the automated regression

est system on Cisco IOS. Algorithms are implemented with greedy
euristic methods.

In literature many test suite reduction techniques rely on the
ndex of fault detection effectiveness to evaluate the performance
f these techniques. However, to calculate the fault detection effec-
iveness in literature depends on two conditions. First, faults were
eeded in subject programs of small code, and the total number of
eeded-faults is known. Second, only one version of subject pro-
ram was under test for test suite minimization problems, and
aults seeded were not fixed, even they are detected. However,
his is not the case here. We  apply regression testing to an indus-
rial software system, the Cisco IOS,which is not a small program,
nd the total number of real faults is unknown. In addition, faults
etected during testing are supposed to be fixed in every subse-
uent release. Therefore, we argue that only real faults can reflect
he phenomena and behaviors of faults occurred in a series of
eleases of an industrial software system. However, to obtain the
otal number of real faults that can be detected by performing an
ntire original test suite is rather costly; even there still exist many
aults that cannot be detected after performing this test suite. Hence
o acquire the total number of real faults is not only prohibitive, but
lso impossible by merely retesting all test cases of the original test
uite.
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

In this study, the problems we attacked are test case selec-
ion problems, and the test cases we selected for reduced test
uites are modification-traversing, which are used as substitutes for
ault-revealing test cases. The selection strategy we  adopted is the
 PRESS
nd Software xxx (2011) xxx–xxx 11

safe-mode regression test case selection strategy that can guarantee
a certain degree of fault detection effectiveness. Because it is impos-
sible to calculate the fault detection effectiveness for a reduced test
suite in our study, further approaches to the topics of fault predic-
tion on large software systems (Ostrand et al., 2005) and Pareto-like
fault distribution (Catal, 2010; Ostrand and Weyuker, 2002) can
support further studies in regression testing.

The algorithms developed in this study have reached the follow-
ing achievements. First, the CW-NumMin algorithm, mainly aiming
at minimizing the number of test cases, has reduced the size of
test suite to 2.56%, and the testing cost to 2.32%. The CW-CostMin
algorithm, emphasizing on minimizing the total cost of test cases,
decreased the size of test suite to 2.56%, and the testing cost to
1.10%. The CW-CostCov-B algorithm, balancing the cost of test cases
against the function coverage of non-modified functions, reached
a better trade-off between cost-driven and coverage-driven strate-
gies. Compared to the condition at �cov = 1.0, the cost of the test
suite at �cov = 0.0 has increased 2.6 times (1.097% → 2.853%) and
the size of the test suite at �cov = 0.0 has expanded 1.2 times, but the
size of code at �cov = 0.0 increased by only 6% (96.25% − 90.44%).
The CW-CovMax algorithm, for maximizing function coverage, is
a cost-driven algorithm. When the restriction time � was relaxed
from 1000 to 500, the function coverage increased by only 0.37%;
in contrast, the size of test suite has enlarged 1.44 times and the
testing cost has risen 1.98 times. Thus, specifying an appropriate
restriction time is critical to speed up the CW-CovMax algorithm.
Finally, the CW-CostMin-C algorithm is another cost-driven algo-
rithm that minimizes test cost by an effective-confidence level. If
the requested function coverage increased from 90% to 100%, the
size of test suite will increase 8.85 times, and the testing cost, 24.08
times. Hence, selecting an appropriate effective-confidence level is
crucial for regression testing. In addition, with CW�100, CW�90,
and CW�80, if the PDF-SA algorithm is still applied for removing
infrastructure functions, the execution time of the CW-CostMin-C
algorithm can be further reduced to 48.46%, 40.91%, and 33.37%,
respectively. This indicates that PDF-SA algorithm can provide
other test case selection algorithms with a significant cost reduc-
tion in regression testing.

In future researchers can further explore the following issues
for regression testing over a series of releases of large-scale soft-
ware systems. First, if multiple test beds can test different features
and multiple activities of regression testing can exercise simulta-
neously, allocate test cases among test beds and exercise them in
parallel. Second, the function coverage generated by CTC++ tool
may  have flaws or be inadequate, further studies to evaluate the
effectiveness of function coverage using different tools, such as
attack tool, protocol fuzzier tool, and real traffic test data are
required. Finally, it is worthwhile for studies in regression testing
to further compare the efficiency and/or effectiveness between dif-
ferent coverage criteria such as function-level, statement-level, or
path-level criteria.

Acknowledgements

This work was  done when the first author had his sabbatical stay
at Cisco Systems in San Jose in 2007–2008. It was supported in part
by Cisco Systems and in part by National Science Council of Taiwan.

References
ptimization for large code problems. J. Syst. Software (2011),

Black, J., Melachrinoudis, E., Kaeli, D., 2004. Bi-criteria models for all-uses test suite
reduction. In: Proceedings of the 26th International Conference on Software
Engineering, Edinburgh, UK, pp. 106–115.

Catal, C., 2010. Software fault prediction: A literature review and current trends.
Expert Systems with Applications.

dx.doi.org/10.1016/j.jss.2011.05.021


 ING Model
J

1 tems a

C

C

C

G

H

H

H

J

J

L

L

M

M

M

O

O

R

R

national Workshop on Incorporating COTS Software into Software Systems:
ARTICLESS-8718; No. of Pages 12

2 Y.-D. Lin et al. / The Journal of Sys

hen, Y., Rosenblum, D., Vo, K., TestTube:, 1994. A system for selective regression
testing. In: Proceedings of the 16th International Conference on Software Engi-
neering, Sorrento, Italy, pp. 211–220.

hen, T.Y., Lau, M.F., 1998a. A new heuristic for test suite reduction. Information and
Software Technology 40 (5–6), 347–354.

hen, T., Lau, M., 1998b. A simulation study on some heuristics for test suite reduc-
tion. Information and Software Technology 40 (13), 777–787.

arey, M., Johnson, D., 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, San Francisco.

arrold, M.,  Soffa, M.,  1989. Interprocedual data flow testing. ACM SIGSOFT Software
Engineering Notes 14 (8), 158–167.

arrold, M.,  Gupta, R., Soffa, M.,  1993. A methodology for controlling the size of a test
suite. ACM Transactions on Software Engineering and Methodology (TOSEM) 2
(3), 270–285.

arrold, M.,  1999. Testing evolving software. Journal of Systems and Software 47
(2–3),  173–181.

effrey, D., Gupta, N., 2005. Test suite reduction with selective redundancy. In: Pro-
ceedings of the 21st IEEE International Conference on Software Maintenance,
Budapest, Hungary, pp. 549–558.

effrey, D., Gupta, N., 2007. Improving fault detection capability by selectively
retaining test cases during test suite reduction. IEEE Transactions on Software
Engineering 33 (2), 108–123.

eung, H., White, L., 1989. Insights into regression testing. In: Proceedings of the
International Conference on Software Maintenance, Miami, FL, USA, pp. 60–69.

eung, H., White, L., 1990. Insights into testing and regression testing global vari-
ables. Journal of Software Maintenance 2 (4), 209–222.

a,  X., He, Z., Sheng, B., Ye, C., 2005. A genetic algorithm for test-suite reduction. In:
Proceedings of the IEEE International Conference on Systems, Man  and Cyber-
netics, vol. 1, pp. 133–139.

alishevsky, A., Rothermel, G., Elbaum, S., 2002. Modeling the cost-benefits trade-
offs for regression testing techniques. In: Proceedings of the 18th International
Conference on Software Maintenance, Montreal, Canada, pp. 204–213.

ansour, N., El-Fakih, K., 1999. Simulated annealing and genetic algorithms for opti-
mal  regression testing. Journal of Software Maintenance: Research and Practice
11  (1), 19–34.

strand, T., Weyuker, E., 2002. The distribution of faults in a large industrial software
system. In: Proceedings of the 2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis, Roma, Italy, pp. 55–64.

strand, T., Weyuker, E., Bell, R., 2005. Predicting the location and number of faults
in  large software systems. IEEE Transactions on Software Engineering 31 (4),
340–355.

othermel, G., Harrold, M.,  1993. A safe efficient algorithm for regression test selec-
Please cite this article in press as: Lin, Y.-D., et al., Test coverage o
doi:10.1016/j.jss.2011.05.021

tion. In: Proceedings of the Conference on Software Maintenance, Montreal, CA,
pp.  358–367.

othermel, G., Harrold, M.,  1994a. A framework for evaluating regression test
selection techniques. In: Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy, pp. 201–210.
 PRESS
nd Software xxx (2011) xxx–xxx

Rothermel, G., Harrold, M.,  1994b. Selecting tests and identifying test cover-
age  requirements for modified software. In: Proceedings of the 1994 ACM
SIGSOFT International Symposium on Software Testing and Analysis, ACM,
pp.  169–184.

Rothermel, G., Harrold, M.,  1996. Analyzing regression test selec-
tion techniques, Software Engineering. IEEE Transactions 22 (8),
529–551.

Rothermel, G., Harrold, M.,  1997. A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering and Methodology (TOSEM) 6 (2),
173–210.

Rothermel, G., Harrold, M., Ostrin, J., Hong, C., 1998. An empirical study of the effects
of  minimization on the fault detection capabilities of test suites. In: Proceedings
of  the International Conference on Software Maintenance, Bethesda, MD,  USA,
pp.  34–43.

Rothermel, G., Untch, R., Chu, C., Harrold, M., 1999. Test case prioritization: an
empirical study. In: Proceedings of the International Conference on Software
Maintenance, Oxford, UK, pp. 179–188.

Rothermel, G., Untch, R., Chu, C., Harrold, M.,  2001. Prioritizing test cases for regres-
sion testing. IEEE Transactions on Software Engineering 27 (10), 929–948.

Rothermel, G., Harrold, M.,  Von Ronne, J., Hong, C., 2002. Empirical studies
of test-suite reduction. Software Testing Verification and Reliability 12 (4),
219–249.

Testwell CTC++, 2011. URL http://www.testwell.fi/ctcdesc.html.
White, L., Leung, H., 1992. A firewall concept for both control-flow and data-flow in

regression integration testing. In: Proceedings of the International Conference
on  Software Maintenance, Orlando, FL, USA, pp. 262–271.

Whitten, T., 1998. Method and computer program product for generating a computer
program product test that includes an optimized set of computer program prod-
uct test cases, and method for selecting same. US Patent 5,805,795 (September
8, 1998).

Wong, W.,  Horgan, J., London, S., Mathur, A., 1998. Effect of test set minimiza-
tion on fault detection effectiveness. Software – Practice and Experience 28 (4),
347–369.

Wong, W.,  Horgan, J., Mathur, A., Pasquini, A., 1999. Test set size minimization and
fault detection effectiveness: A case study in a space application. Journal of
Systems and Software 48 (2), 79–89.

Yoo, S., Harman, M.,  2010. Regression testing minimization, selection and prioriti-
zation: a survey. Software Testing, Verification and Reliability. Published online
in  Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/stvr.430.

Zheng, J., Williams, L., Robinson, B., Smiley, K., 2007. Regression test selection for
black-box dynamic link library components. In: Proceedings of the Second Inter-
ptimization for large code problems. J. Syst. Software (2011),

Tools and Techniques, Minneapolis, MN, USA, pp. 9–14.
Zhong, H., Zhang, L., Mei, H., 2006. An experimental comparison of four test suite

reduction techniques. In: Proceedings of the 28th International Conference on
Software Engineering, Shanghai, China, pp. 636–640.

dx.doi.org/10.1016/j.jss.2011.05.021
http://www.testwell.fi/ctcdesc.html

	Test coverage optimization for large code problems
	1 Introduction
	1.1 Test suite minimization problem
	1.2 Test case selection problem
	1.3 Test case prioritization problem

	2 Test suite reduction problems
	3 Designing six corresponding algorithms
	3.1 PDF-SA algorithm
	3.2 CW-NumMin, CW-CostMin, and CW-CostCov-B algorithms
	3.2.1 Algorithm CW-NumMin: Nmod(Fti)
	3.2.2 Algorithm CW-CostMin: Wmod(Fti)
	3.2.3 Algorithm CW-CostCov-B: fcv(Fti,Fmod,λcost,λcov)
	3.2.4 An example for the CW-CostCov-B algorithm
	3.2.5 Steps of the rest

	3.3 CW-CovMax algorithm
	3.4 CW-CostMin-C algorithm

	4 Experimental results
	4.1 System design and implementation
	4.2 Characteristics of the test-function mappings
	4.3 Result analysis
	4.3.1 Test coverage under different test intensity thresholds
	4.3.2 CW-NumMin and CW-CostMin: 2.32% and 1.1%
	4.3.3 CW-CostCov-B: paying small cost for higher non-modified function coverage
	4.3.4 CW-CovMax: high cost for more coverage
	4.3.5 CW-CostMin-C: coverage over 90% is inefficient
	4.3.6 PDF-SA: the selection time is reduced to 10%∼70%


	5 Conclusions
	Acknowledgements
	References


