This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL

Time-and-Energy-Aware Computation Offloading in
Handheld Devices to Coprocessors and Clouds

Ying-Dar Lin, Fellow, IEEE, Edward T.-H. Chu, Member, IEEE, Yuan-Cheng Lai, and Ting-Jun Huang

Abstract—Running sophisticated software on smart phones
could result in poor performance and shortened battery lifetime
because of their limited resources. Recently, offloading compu-
tation workload to the cloud has become a promising solution
to enhance both performance and battery life of smart phones.
However, it also consumes both time and energy to upload data or
programs to the cloud and retrieve the results from the cloud. In
this paper, we develop an offloading framework, named Ternary
Decision Maker (TDM), which aims to shorten response time and
reduce energy consumption at the same time. Unlike previous
works, our targets of execution include an on-board CPU, an
on-board GPU, and a cloud, all of which combined provide a
more flexible execution environment for mobile applications. We
conducted a real-world application, i.e., matrix multiplication, in
order to evaluate the performance of TDM. According to our
experimental results, TDM has less false offloading decision rate
than existing methods. In addition, by offloading modules, our
method can achieve, at most, 75% savings in execution time and
56 % in battery usage.

Index Terms—Android, cloud computing, computation offload-
ing, coprocessors.

I. INTRODUCTION

EARLY 300 million smart phones were sold in 2010,

and its number is expected to increase by 80% in 2011
[1]. In order to satisfy the needs of billions of users, smart
phones feature versatile mobile applications. Examples of the
latest functions include multimedia, real-time games, GPS nav-
igation, and communication. Most of these mobile applica-
tions are user-interactive and data-processing intensive, both of
which require quick response and long battery life. However,
most commercial off-the-shelf smart phones, compared with
desktops, are generally equipped with low-speed processors
and limited-capacity batteries. Running sophisticated software
on smart phones can result in poor performance and shorten
battery lifetime. Therefore, it becomes a crucial issue in de-
signing smart phones to deliver adequate performance and

Manuscript received September 19, 2012; revised May 17, 2013; accepted
August 24, 2013. This work was supported in part by the National Science
Council of Taiwan and in part by the Institute for Information Industry.

Y.-D. Lin and T.-J. Huang are with the Department of Computer Sci-
ence, National Chiao Tung University, Hsinchu 300, Taiwan (e-mail: ydlin@
cs.nctu.edu.tw; tjHuang.lec @ gmail.com).

E. T.-H. Chu is with the Department of Electronic and Computer Science In-
formation Engineering, National Yunlin University of Science and Technology,
Douliou 64002, Taiwan (e-mail: edwardchu@yuntech.edu.tw).

Y.-C. Lai is with the Department of Information Management, National
Taiwan University of Science and Technology, Taipei 106, Taiwan (e-mail:
laiyc@cs.ntust.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2013.2289556

prolong battery life. A lot of advanced hardware technologies,
such as instruction-level parallelism, leakage power control,
and dynamic voltage scaling, have been proposed to improve
processor speed and reduce energy consumption. Although
advanced technology can deliver better performance, adopting
high-end processors is not always appropriate for budget-
limited projects. Recently, cloud computing has become an-
other possible solution to enhance the computing capability of
smart phones. The cloud computing vendors provide comput-
ing cycles for the registered users to reduce computation and
energy consumption of smart phones, such as Amazon Elastic
Compute Cloud (EC2), Amazon Virtual Private Cloud (VPC),
and PacHosting. However, it takes both time and energy to
upload data or programs to the cloud and retrieve the results
from the cloud. The computation capacity of the cloud can also
affect the total execution time. In order to save both time and
energy consumption, there is a clear need for the development
of a decision-making mechanism before offloading.

There have been many research efforts dedicated to of-
fload data- or computation-intensive programs from a resource-
poor mobile device [2]-[5]. Gu et al. [2], Li et al. [3], and
Chen et al. [5] partitioned source codes into client/server parts
and then saved energy consumption by running the server parts
at remote servers. All these methods perform well for small-
size applications but may induce a significant overhead when
partitioning large-size applications. Kumar and Lu [6] proposed
a simplified energy model to quickly estimate the energy saved
from cloud services. However, several key power-related pa-
rameters were not considered, which may lead to an incorrect
offloading decision. In addition, all of the above works ignored
the impact of offloading on execution time, which may result
in performance degradation. On the other hand, Ou er al. [4]
developed an offloading middleware, which provides runtime
offloading services to improve the response time of mobile
devices. Wolski er al. [7] used bandwidth data to estimate
the performance improvement through offloading. Both works
did not investigate the energy consumption of uploading and
retrieving data and may shorten battery lifetime. In addition,
important timing-related factors were not considered, which
can result in an incorrect offloading decision. Because it is
response time and energy consumption that determine user
satisfaction, we address a multiobjective optimization problem
that simultaneously optimizes these two key performance in-
dexes of smart phones.

In this paper, we develop an offloading framework, named
Ternary Decision Maker (TDM), which aims to shorten re-
sponse time and reduce energy consumption at the same time.
Unlike previous works, our targets of execution include an

1932-8184 © 2013 IEEE


mailto: ydlin@cs.nctu.edu.tw
mailto: ydlin@cs.nctu.edu.tw
mailto: edwardchu@yuntech.edu.tw
mailto: laiyc@cs.ntust.edu.tw

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL

TABLE 1
COMPARISON OF CURRENT OFFLOADING WORKS
Paper Works [Reference #] Adaptability | Portability | Accuracy %glg(::d
Partition Scheme [3] no framework low cloud
o Study Energy Tradeoffs [5] no framework n/a cloud
~§ Component Migration & Replication [9] no framework medium cloud
ﬁ Cooperative Dynamic Power Management [11] no framework n/a cloud
%" Offload H.264 Encoder [13] no framework n/a cloud
& Content-Based Image Retrieval [10] yes language medium cloud
5 MAUI Code Offload [8] yes framework n/a cloud
Can Offload Save Energy [6] yes language medium cloud
Face-Recognize with GPU [12] no language n/a GPU
Adaptive Offloading [2] no framework low cloud
%D Effective Offload Service [17] no framework n/a cloud
é Calling the Cloud [14] no framework n/a cloud
.QE: eyeDentify Cyber Foraging [15] no framework n/a cloud
: Heterogeneous Auto-Offload Framework [18] no framework n/a cloud
© Using Bandwidth to Make Offloading Decision [7] yes language medium cloud
VPN Gateway over Network Processors [16] no kernel n/a g:;?:srskor
3w Computation Offload Scheme [20] no framework medium cloud
> B
’a:‘f 5 Energy Efficiency of Mobile [19] yes language n/a cloud
Sl Our Work yes language high cGlgllii

on-board CPU, an on-board GPU, and a cloud, all of which
provide a more flexible execution environment for mobile ap-
plications. Since response time and energy consumption may
be two conflicting objectives, we first design a customizable
cost function, which allows end users to adjust the weight
of response time and energy consumption. We then develop
a lightweight profiling method to estimate the performance
improvement and energy consumption from offloading. In order
to make correct decisions, several key system factors, such
as network transmission bandwidth, mobile CPU speed, and
memory bandwidth, are considered when constructing cost
functions. Finally, an offloading decision is made based on the
user-defined cost function, estimated response time, and energy
consumption.

In order to investigate the applicability and performance of
TDM, several experiments were conducted on a popular smart
phone: HTC Nexus One. First, we evaluated the overhead of
TDM by measuring the execution time and energy consumption
of each function. Next, a case study of matrix multiplication
was conducted. In this case study, we implemented different
versions of the offloaded modules for different offloading tar-
gets. In addition, we evaluated the accuracy of our method in
approximating the execution time and the energy consumption
of offload modules by measurement. Finally, TDM was com-
pared with existing methods in making offloading decisions.

The rest of this paper is organized as follows: Section II
introduces related works with computation offloading and some
concepts for GPU programming. Section III gives the problem
statements and terminologies for the later sections. Section IV

proposes the methodologies of offloading decisions, and then,
Section V details the implementation. Section VI shows the
experimental result and evaluation. Section VII concludes this
work and gives important areas of future work.

II. BACKGROUND

Here, we first give a comprehensive comparison between our
work and related works. We then introduce OpenGL|ES, which
is used in our experiments.

A. Related Works

There have been many research efforts dedicated to offload
data- or computation-intensive programs from a resource-poor
mobile device [2], [3], [5]-[18]. Some of them focused on
energy saving [3], [5], [6], [8]-[13], whereas others targeted
performance improvement. Only few of them considered both
energy saving and performance improvement [19], [20]. For
ease of reference, all these works are summarized in Table I,
which are classified into three categories: on energy saving,
on time saving, and on energy and time saving. For each
work, we further characterize it in four attributes: adaptability,
portability, accuracy, and offload target.

Adaptability indicates the capability of the proposed method
to adapt itself efficiently to dynamic workload, resulting from
the variance of data input at runtime. If the proposed method
can only handle deterministic workload, this shows that its
adaptability is poor. Portability represents the ability of the



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

LIN et al.: COMPUTATION OFFLOADING IN HANDHELD DEVICES TO COPROCESSORS AND CLOUDS 3

proposed method to be ported from one execution environ-
ment to another, such as from Linux to Windows. The term
language/framework/kernel represents the way we port the
method to another platform. For example, if the portability
of a work is Language, it implies that some modifications of
programming language are required when the work is applied
to another platform. On the other hand, if the portability of a
work is framework (or kernel), it requires the modification of
the framework (or operating system) when the work is applied
to another platform. Methods with Language portability are
desirable because most of the existing codes can be reused.
Accuracy is the approximation correctness of the energy model
or the execution time model of offloading. Higher accuracy
indicates fewer incorrect offloading decisions. For this attribute,
the works that did not develop any execution model or energy
model are labeled as n/a. The offload target is the targets that
can process offloaded data or programs. The more targets we
have, the more flexible the execution environment will become.
According to Table I, our work is the only one that aims at sav-
ing both time and energy while maintaining high adaptability,
high portability, high accuracy, and multiple offload targets. In
the following, we compare our work with each of the related
works in detail.

1) Works on Energy Saving: Maximizing battery lifetime
is one of the most crucial design objectives of smart phones
because they are usually equipped with limited battery capacity.
Some of them adopted profiling—partitioning technology to
identify offloaded parts of an application for energy saving
[3], [8], [9], [11], [21]. They first profiled the energy con-
sumption of each function of the application. According to the
profiling result, they next generated a cost graph, in which
each node represented a function to be performed, and each
edge indicated the data to be transmitted. The maximum-flow/
minimum-cut algorithm or optimization algorithms were then
used to partition the cost graph to obtain client and server parts.
Finally, the server parts were executed at remote servers for
reducing energy consumption of a mobile device. Chen et al.
designed a similar method to determine whether Java methods
and bytecode-to-native code compilation should be executed at
remote servers for energy saving [5]. In addition, they assumed
that the workload was deterministic, which means that the
workload will not vary at runtime. As a result, their methods
cannot be applied to dynamic workload, resulting from the
variance of data input at runtime.

On the contrary, in order to reduce the profiling overhead,
we only profile the energy consumption and execution time
of frequently used modules, such as fast Fourier transform
(FFT), inverse FFT, convolution, matrix multiplication, and so
on. In addition, we take into account the impact of data size
on execution time and energy consumption in order to handle
dynamic workload at runtime.

Some works built energy models to approximate the en-
ergy consumption of offloading [6], [10], [13], [22]-[24]. The
energy models can be used to construct the aforementioned
cost graph or make offloading decisions. However, several key
parameters, such as workload dynamics, bandwidth variability,
and idle-mode energy consumption, are not included in their
models, which may lead to inappropriate partitions or incorrect

offloading decisions. According to our experimental results, our
energy model ensures higher accuracy than previous works by
considering these key parameters. Wang et al. demonstrated
the possibility of utilizing GPU for offloading [12]. They first
identified bottlenecks of programs and then used OpenGL|ES
to rewrite and remove the bottlenecks. However, CPU and
GPU are usually integrated on the same chip and cannot be
switched off individually. Without considering the idle energy
consumption of the chip, offloading data or programs to GPU
may increase the total energy consumption. Our work, on the
other hand, achieves higher accuracy by modeling the idle
energy consumption. We also provide the ability of offloading
data or programs to GPU or Cloud. Recently, Ristanovic et al.
[25] designed two algorithms, i.e., MixZones and HotZones,
to offload bulky socially recommended content from 3G net-
works. However, their method mainly focused on the need of
operators rather than on that of end users. On the contrary, we
designed a customizable cost function, which allows end users
to adjust the weight of response time and energy consumption.
Barbera er al. [26] studied the feasibility of both mobile com-
putation offloading and mobile software backups. They gave an
evaluation of the feasibility and costs of both off-clones and
back-clones in terms of bandwidth and energy consumption.
However, how to measure the energy consumption of a smart
phone was not discussed in depth. In our work, we developed
a software-based energy estimation method, which can be
applied to all Android smart phones without extra hardware
equipment, such as a DAQ card.

2) Works on Time Saving: Responsiveness of mobile appli-
cations is important because the mobile applications are usually
real-time and user-interactive. Many research efforts have been
devoted to offload data or part of a program to remote servers
in order to reduce execution time [2], [7], [14], [17]. Most of
them adopted the aforementioned similar profiling—partitioning
technology to identify the offloaded parts of an application.
Gu et al. designed an offloading engine that dynamically par-
titions an application when the required resources, such as
memory and CPU, approach the maximum capacity of the
mobile devices [2]. Yang et al. developed an offloading service
that dynamically partitions Java applications and transforms
Java classes into a form that can be executed at remote servers
[17]. Giurgiu et al. developed an exhaustive search algorithm,
which is called ALL, to examine all possible partitions in
order to find an optimal partition [14]. They also proposed a
heuristic algorithm to partition a program in reasonable time.
All these methods perform well on small-size applications but
may induce a significant overhead when partitioning large-size
applications. On the contrary, we only profile the energy con-
sumption and execution time of frequently used modules in or-
der to reduce the overhead of profiling and partition. Unlike [2],
[14], and [17], Wolski et al. dynamically predicted offloading
cost at runtime according to the feedback of a resource monitor
[7]. However, some important parameters, such as workload dy-
namics and bandwidth variability, are not included, which may
lead to inappropriate predictions and incorrect offloading deci-
sions. Our work, on the other hand, achieves higher accuracy by
modeling these important parameters. According to our experi-
mental results, fewer incorrect offloading decisions are made.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

Several works developed offloading mechanisms by integrat-
ing existing software packages rather than those started from
scratch [15], [16], [18]. Kemp et al. used Ibis middleware
to offload computationally intensive Java programs to remote
servers [15]. Zhang et al. adopted a Firefox plug-in framework
to transparently offload computations to remote servers [18].
Since these works are closely coupled with specific software
packages, it becomes difficult to extend their methods to other
execution environments. Lin ef al. explored the possibility of
offloading programs to network processors in order to reduce
execution time [16]. They first profiled the IPSec module to
identify bottlenecks and then rewrote the IPSec-related kernel
and driver code. Although the performance improvement of
network throughput can reach as much as 350%, the energy
consumption of network processors may significantly increase.
In addition, a modification of the OS kernel and drivers is
required, which reduces the portability of the proposed method.
In this paper, we realize our idea of offloading by developing a
Linux program at user space in order to increase the portability.
We do not rely on any specific software packages. In addition,
we do not require any modifications of OS or drivers.

3) Works on Energy and Time Saving: Both energy and time
saving are crucial design objectives of smart phones. However,
few research efforts have been devoted to optimizing the two
objectives simultaneously [19], [20]. Wang and Li used similar
profiling—partitioning technology to identify offloaded parts
and consider energy and time saving at the same time [20]. A
similar method was developed by Miettinen and Nurminen to
offload the most power-hungry parts in order to reduce energy
consumption [19]. However, both of them use execution time
of a program to approximate its energy consumption. The esti-
mated energy consumption, without considering the parameters
of CPUs, may be incorrect. Kosta et al. designed ThinkAir,
and Kemp et al. developed Cuckoo to execute applications
[27], [28] on the cloud. However, the models used to estimate
the energy consumption and execution time model were not
given. In this paper, we provide a higher accuracy energy and
execution model by considering important parameters of CPU
and offloading targets. Our experimental results indicate that
the proposed method can achieve better performance in saving
energy and time. Security is also an important issue when
designing an offloading mechanism. A secure communication
channel is required before we offload private data and pro-
grams. A detailed and in-depth discussion on this subject is
beyond the scope of this paper. The interested reader can refer
to the survey paper [29].

B. OpenGL|ES

OpenGLJES, which is a Khronos-developed graphics stan-
dard of embedded system, is derived from OpenGL. Almost
every smart phone now uses OpenGL|ES as a rendering engine.
In this paper, we adopt OpenGL|ES 2.0, which is widely
supported by many of today’s GPUs, in our experiments.

Fig. 1 gives an overview of the graphics processing flow of
GPU. The vertex shader provides a programmable method to
operate vertices, usually for projection or lighting. To operate
vertices, developers need to write a C-like shading program

IEEE SYSTEMS JOURNAL

[ Vertex Buffer |
Objects

e EE—

| Primitive Vertex \
— %

| Processing Shader |

! \—’(

y 8

( Fragment
OpenGL|ES 2.0 programmable pipeline.

API

' Primitive —.(Raslerlzer
\ Assembly

<
Depth
Stecil

)

Frame
Buffer

Colour

Buffer Blend Dither

Shader

L S

Fig. 1.

Application call module()
Software
v v 31
CPU Coprocessor Network | (28]
Interface Card — — — Network
|luCP“’ Pcﬂ”l |”cpu; Pcpu | B :
t |
|
A’input |
Hardware . v
AAA 4 { )
/" Cloud /
([ vemon )
-/lczd
~ Mobile System |p, .| :

Fig. 2. Flow of application execution.

[30] and compile it as a vertex shader. Then, each time we
feed vertices into a vertex shader, the shader will calculate the
result and then transmit it to primitive assembly blocks. The
fragment shader is used to operate fragments, which are pro-
duced by previous vertices. Due to the flexibility of the shader
program, some works [12], [31], [32] have offloaded general-
purpose computation onto GPU. In this paper, we implement a
matrix multiplication module by using OpenGL|ES 2.0 shading
language.

III. PROBLEM STATEMENT

We design a smart phone offloading framework to determine
an execution unit, such as CPU, coprocessor, or cloud, for
frequently used modules. Here, we first describe the model of
mobile application, CPU, coprocessor, and cloud. We next give
the problem statement and describe the challenges.

A. System Model and Problem Statement

Mobile applications usually adopt frequently used modules,
such as FFT, convolution, and matrix multiplication, to process
data [12], [31], [32]. As Fig. 2 shows, the application first
involves a module to process data with the size of Vi, p,,¢, which
is stored in memory. The data are then processed by CPU,
coprocessor, or cloud. Finally, the processed data with the size
of Noutpus are written back to memory. Let Tcpu denote the
execution time if the module is executed on a local CPU. We
divide Tcpu into two parts. The first part is transmission time
tirans, Which is used for fetching data from and writing them
back to memory. The second part is pure computation time
tcomp»> Which is consumed by the CPU to execute codes.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

LIN et al.: COMPUTATION OFFLOADING IN HANDHELD DEVICES TO COPROCESSORS AND CLOUDS 5
TABLE II
NOTATION TABLE
Cost Function Definition
target Major unit for computation, e.g. CPU/Coprocessor/Cloud
T, arget Measured execution time when execute on target
A, arget Estimated execution time when execute on target
E, arg et Measured energy consumption when execute on target
Ef arg et Estimated energy consumption when execute on target
Decision Factor | Unit | Variable | Definition
B Kbps o Transmission bandwidth
Leomp Second (0] Module execution time on mobile CPU
N, input KB (o} Amount of processing data into processing unit
Ngmpm KB (0} Amount of resulting data from processing unit
Hepu MHz X Mobile CPU speed
Heop MHz X Mobile Coprocessor speed
Heid MHz (o} Cloud speed
Honem Mbps X Memory access bandwidth
Psic Watt X Basic power when idle
P Watt X Mobile CPU running power
Pmp Watt X Mobile Coprocessor running power
P, Watt X Network Interface power consumption

In addition, the bandwidth of memory access iS fimem, at
which the data are read from or written into the memory by
CPU, coprocessor, or network interface. If the data processing
is offloaded to the cloud, the network transmission speed is B.
Let ficpu, feop> and piciq denote the speed of CPU, coprocessor,
and cloud, respectively. In addition, the power consumption of
CPU is P, of coprocessor is Peop,, and of network interface is
P,ic.- When the system is idle, its power consumption is P asic.
We summarize the notations in Table II, in which we use a
circle to indicate a dynamic variable and a cross to indicate a
static variable. The static decision factors are deterministic and
module independent, whereas the dynamic decision factors are
uncertain or module dependent.

Given decision factors B, fcomp, Ninput> Noutputs fepus
Mcops Hclds Mmems PbaSiC7 Pcpus Pcops and Pnic’ we address
the problem of selecting an execution environment from CPU,
coprocessor, and cloud in order to reduce both execution time
and energy consumption.

B. Challenges

Several challenges need to be addressed while we tackle the

offloading problem. Some of them are listed as follows.

1) There may not be positive correlation between execu-
tion time and system-wide energy consumption in a
heterogeneous computation environment: As shown in
Section II-A, many previous works assumed that
short execution time implies low energy consumption.
However, this assumption does not always hold, partic-
ularly in a heterogeneous computation environment. For

example, in some multicore platforms, GPU is faster
than CPU but consumes more energy. Hence, if a task
is executed on a GPU, its execution time is shorter than
that on a CPU. However, its energy consumption is larger
than that on a CPU. It becomes challenging when we aim
to reduce execution time and energy consumption at the
same time (see Section I'V).

2) The unit of execution time is different from the unit of
energy consumption: Due to the different units of execu-
tion time and energy consumption, a naive cost function
that sums up execution time and energy consumption is
not appropriate to our problem. As a result, there is a
clear need for developing a new cost function that can
reflect both execution time and energy consumption (see
Section IV).

3) A cross-platform power measurement method is desired:
In order to make a correct offloading decision, the infor-
mation of power consumption is crucial. However, most
smart phones are not equipped with power meters or a
data acquisition (DAQ) card. The shortage makes it diffi-
cult to obtain the necessary information for decision mak-
ing. As a result, a software-based cross-platform power
measurement method is desired in order to improve the
applicability of the proposed method (see Section V-E).

IV. TIME-AND-ENERGY-AWARE TDM

Here, we first give an overview of our offloading frame-
work, i.e., TDM, and introduce the mechanism of creating and
updating factor tables. We then introduce the equations used



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

6
* Creute & Factors table.xi E
Import Update |
Factor Table yes Collect Factors
' ists ?
Factes exists ?
Measurement
Create Factor Table Build Cost
(fill in static factors) Functions
I
L
Decide to 5.9
Execute Module A on CPU
Ternary Decision
Making l yes
Write Back Collected Offload Module A and
Information Execute it
—— Flow
Signal
@ End —> Data
Fig. 3. Flow of TDM.

to calculate the execution time and energy consumption of
a module when it is executed on local CPU, local GPU, or
cloud. Finally, we describe the methodology of ternary decision
making.

A. Overview of the TDM Flow

Our TDM is a daemon that runs as a background process.
The TDM includes two parts: factor measurement and ternary
decision making. Before a system starts to run, we measure
tmem> Poasics Pepus Peop, and Ppic. We also obtain ficp, and
leop from the datasheet. We call these factors static decision
factors because they are deterministic and module independent.
Atruntime, as shown in Fig. 3, when a module is invoked, TDM
first checks the existence of the associated factor table of the
module, which records necessary parameters to estimate energy
consumption and execution time. If the factor table does not
exist, the module will be executed on CPU directly, and a corre-
sponding factor table will be created. TDM adds static decision
factors, such as Hmem > Pbasim Pcpua Pcops Pnic’ Hepus and Hcops
to the factor table. TDM also adds module-dependent decision
factors, i.e., Ninput and Nouepus, provided by the module, to
the factor table. After the module is completed, execution time
tcomp Will be added to the factor table for future use. Instead,
if the associated factor table exists, TDM will extract the afore-
mentioned decision factors from the decision table. TDM next
asks the cloud to provide its execution speed (i.1q and estimates
wireless bandwidth B. These decision factors are then passed
to the cost functions. Based on the results of cost functions,
the decision maker determines whether the module should be
offloaded or not. In this paper, a module is a frequently used
function of mobile applications, such as FFT, convolution,
matrix multiplication, and so on. The workloads of these fre-
quently used functions are usually deterministic. If a module is
offloaded, it will be executed on the cloud or a local GPU.

B. Create and Update Factor Tables

Each module has its own factor table. A factor table records
necessary parameters to estimate energy consumption and
execution time of the associated module. We divided these

IEEE SYSTEMS JOURNAL

parameters into static and dynamic decision factors. The static
decision factors include ficpu, ficops fmems Phasics Pepus Peops
and P,;., which are deterministic and module independent. The
dynamic decision factors include B, Niyput, Noutputs Meld, and
tcomp, Which are uncertain or module dependent. The static
decision factors are obtained before a system starts to run.
When the module is invoked at the first time, a factor table
is created to store static decision factors, and the module is
executed on CPU. After the module is completed, TDM adds
module-dependent decision factors, such as tcomp, Ninput, and
Noutput, to the factor table. If the same module is invoked
again, TDM refers to its associated factor table and runtime
information, i.e., B and pi14, to estimate the execution time and
energy overhead of offloading. In Section I'V-C, we will explain
how we used these decision factors to estimate offloading cost
and make a decision. In addition, Section V will describe the
methods used to obtain decision factors B, ficpu, fcops Hmems
Helds tCOIIlp’ Pyasics Pcpu, Pcop’ and Pic.

C. Ternary Decision

This subsection first discusses the execution time and energy
consumption of a module when it is executed on different
execution environments: local CPU, local GPU, or cloud. It
then introduces the algorithm used for decision making.

1) Execution Time and Energy Consumption: First of all,
we estimate the execution time Tcpu of the case that the module
is executed on a local CPU. As (1) shows, Tcpu includes two
parts, i.e.,

Tcpu = ttrans + tcomp- (])

The first part is transmission time tans, Which is used for
fetching data from and writing them back to memory. The
second part is pure computation time ?comp, Which is consumed
by the CPU to execute codes. Since ti;ans depends on the
amount of processed data, we have

Ninput + Noutput

Hmem

ttrans - (2)
Based on (1), the energy consumption of the local CPU is
estimated by

Ecpu - (Pbasic + PCpu) X Tcpu-

Similarly, if the module is executed on a local GPU, also the
coprocessor, the estimated execution time T¢y, is

. teomp X [L
Tcop = Ttrans M~ (3)
Hecop

In addition, the estimated energy consumption ECOP is

Ecop = (Pbasic + Pcop) X Tcop~

After considering the above two cases, we now discuss the
execution time and energy consumption in the case of offload-
ing the module to the cloud. We define Tdd as the estimated
execution time of the module when it is offloaded to the cloud.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

LIN et al.: COMPUTATION OFFLOADING IN HANDHELD DEVICES TO COPROCESSORS AND CLOUDS 7

In order to calculate Tcld, we first determine the amount of data
to be transmitted by

- Ninput + Noutput
MTU

—‘ X (DATA Packet Size)

in which MTU stands for the maximum transmission unit.
Moreover, the ACK packets used during the transmission are
determined by

Uack o ’7Ninput + Noutput

UTU —‘ X (ACK Packet Size).

Then, Tdd is determined by

o+ o.ack o+ O.ack
cld =
Hmem B

tcornp X fepu (4)
Mecld

~»

In (4), the first term on the right-hand side is the time spent
for fetching data from and writing them back to memory. The
second term is network transmission time. The third term is the
time spent on the cloud. The energy consumption of the cloud
is then determined by

. . o+ aack 0+0ack
Ecld = Pbasic X Tcld+Pnic X < + (5)

Hmem B

in which Py;. is the power consumption of the network in-
terface. In Section V, we will describe the methodology of
meaSUfing B? tcomps Hepus Heops Helds Hmem s Pbasim Pcpu’ Pcopa
and Py;c.

2) Decision Making: At runtime, we dynamically measure
teomps Ninput» Noutput, and B and then use them to calculate

Tcpu, Ecpu, Tcop, Ecop, Tr1a, and Eqq. We define B as

/Br = (Tcpu

- T.’r)/Tcpu

in which x can be cpu, cop, and cld. .., represents the fraction
reduction in execution time by offloading the module to the
coprocessor. In addition, .14 is the percentage reduction in ex-
ecution time by offloading the module to the cloud. Obviously,
we have (., = 0 since the module is not offloaded. Similarly,
in order to indicate the energy reduction, we define -, as

Yz = (Ecpu - EI)/EC})U

in which x can be cpu, cop, and cld. v.op is the percentage
reduction in energy by offloading the module to the coprocessor
and ¢4 is that to the cloud. To further differentiate the impor-
tance of the execution time and the energy consumption, we
define a composite cost function as

f(a,l‘)za'ﬂm-F(l—a)'% (6)

where « is a user-specified variable in the range [0, 1]. If &« = 0,
it implies that the energy consumption is the only criterion in
determining the offload target. On the other hand, if o = 1, the
execution time is the only criterion.

In order to determine an offload target of the module, we
calculate the cost function f(a,x) of each possible offload
target and select the one with a minimum value as the offload

target. In other words, given the user-specified o, we offload the
module to target y, which is determined by

y = arg min { f(c 2)}

zeN

where N is the set of {cpu, cop, cld}.

V. MEASUREMENT OF DECISION FACTORS

Here, we first introduce the device under test (DUT). We then
describe the methods used to measure bandwidth, component
speed, execution time, and power consumption individually.

A. DUT

We adopted HTC Nexus One, which is a popular and pow-
erful smart phone, as our DUT. Nexus One is equipped with
a Qualcomm QSD8250 1-GHz processor, a 512-MB Flash
ROM, a 512-MB RAM, and a Wi-Fi IEEE 802.11 b/g interface.
The operating system used in Nexus One is Android 2.2. We
implemented our offloading framework in C language on user
space so that it can operate without any privilege restrictions
and become more efficient.

B. Wireless Bandwidth: B

As mentioned in the previous section, the wireless bandwidth
B is a crucial decision factor in our offloading framework.
In order to adapt to environment changes, we dynamically
measure the transmission bandwidth at runtime. Many tools
have been developed to measure the transmission bandwidth.
Some of them are platform dependent, such as Iperf and ttcp,
whereas others are platform independent. To make our method
easily applicable to other Android smart phones, we use ping,
which is a popular utility, located at the path of /system/bin, to
measure the network bandwidth.

For each measurement, the ping utility first sends the packets
of ICMP-Request from Nexus One to the cloud and then
receives the packets sent back by the cloud. In order to have
a more accurate approximation of bandwidth, we sent out data
that can be fragmented to several packets. In our experiment,
we used the command “ping -¢ 10 -s 6000 -i 0.1 cloud” to issue
ten ICMP requests, in which the amount of data to be sent is
6000 bytes, and the wait interval between sending each packet
is 0.1 s. As Fig. 4 shows, the measurement starts at time #;
and stops at to. For ease of measurement, we set the MTU of
NIC to 1500 to avoid extra packet fragmentation. As a result,
for each ICMP request, it needs four IP packets and one ICMP
packet because the maximal size of the data in the Ethernet-
frame is 1500 bytes. Similarly, four IP packets and one ICMP
packet are required to send an ICMP reply back to Nexus One.
For example, if o —¢; is 10 ms, the network bandwidth is
approximated by

(4 x 1514 + 122) x 2 x 10 x 8(bit)

B = 10 (ms) = 9884 Kb/s.

Compared with other bandwidth measurement methods, our
method has two advantages. First, it can be applied to all
Android smart phones. Second, the overhead of measuring



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

Fragmentation

Rl

\I (?61\(/)10 0 bytes
P requesy ™ —1514
bytes (1p
1514 Packet)—m
bytes (1p DPacket)—p)

1
\1253 ll:yt 8 (IP packer)_p] \
122 pyp 18 (IP packey)

Ytes (acmp b

g pam»%_
Z
S <
= z g a
3] 2 % 5
w o
g 5 & &
= o @
g o
Q et)
§_ 1514 bytes (pp o)

L
‘/4 <
- (1P
514 bytes
D Tl
6000 bytes /

e CMP reply Reassemble

i

Fig. 4. ICMP request and reply with a payload size of 6000 bytes.

bandwidth is low. In order to reduce the effect of network
uncertainty on decision making, we measure the transmission
bandwidth whenever a module needs to be offloaded.

C. Component Speed: [icpu, ficops Hclds fmem

In our experiments, we obtain the local CPU speed jicpu
and the local GPU speed .o, by referring to the datasheet. At
runtime, we issue a query to the cloud to get cloud speed fic1q. A
simple loop program is then executed on the cloud to estimate
Leld- In addition, we measure memory bandwidth fiyen at
runtime. The memory bandwidth is estimated by measuring the
time of accessing a large amount of data stored in the memory.
For example, if it takes 20 ms to read 1 000 000 16-bit integers
from the memory, memory bandwidth fien, 1S estimated by

1000 000 x 16(bits)
20 (ms)

= 800 Mb/s.

D. Execution Time: tcomp, tirans

As mentioned in Section IV, t¢,m;, represents the pure com-
putation time used by the CPU to execute codes. We calculate

tcomp by
tcomp = Tcpu — tirans

in which T¢,,, is the total execution time, and %,y is the mem-
ory transmission time. In order to obtain T¢,, we insert the
Android-supported function clock_gettime() at the beginning
and the end of the program and then calculate the difference.
The value of ti,ans is obtained by (2). The definition of £comp is
similar to “worst case execution time,” and only those regular
computations are worthy to be offloaded.

E. Power: Pbasic; Pcpu, Pcop, Pnic

Due to the hardware limitation, we are not able to mea-
sure the energy consumption of each component directly. As
a result, we design four different scenarios: 1) idle the sys-
tem; 2) execute CPU-bound workload; 3) execute GPU-bound

IEEE SYSTEMS JOURNAL

Time (sec.) Energy log (Joule)
197 J7
l Start |
t;+50 J>
t+100 Js
t+150 Jy
t+200 Js
(a)
Time | mV | uAh

300 3796 772800

350 3796 769600

400 3796 766400

450 3795 763300

500 3795 761600

550 3795 758400

600 3795 755200

battery log
(®)
Fig. 5. (a) Energy measurement in Android. (b) Example of measured values.
TABLE III
POWER PARAMETERS OF NEXUS ONE
Phasic P cpu Pwp Phic
power (W) 0.886 1.539 1.056 2.262

workload; and 4) send a large amount of data to the cloud.
For each scenario, we use an Android daemon-maintained
battery log, located at the path of /sys/kernel/debug/battery_log,
to obtain power information. As Fig. 5(a) and (b) shows, an
Android daemon updates voltage, current, and power informa-
tion every 50 s.

In scenario 1, we close all unnecessary user programs and
keep the system idle for a while. Fig. 5(b) illustrates a battery
log in the scenario of idling the system. Based on the log, the
energy consumption of the system in [400 s, 450 s] is

3796 x 766400 — 3795 x 763300

= 12.53 mWh.
1000 x 1000 m
Therefore, we have
12.53, mWh
sic — b A - 2 W.
basic = "5 seconds 902 m

A similar approach is used in the other scenarios. In scenario 2,
we execute a CPU-bound program to make the CPU busy. In
scenario 3, we execute an OpenGL|ES 2.0 program on the
GPU and keep the CPU idle. In scenario 4, we send a large
amount of data to the cloud for a long period. The measurement
results are listed in Table III, in which P,;. is the average power
consumption of the WiFi interface. Compared with other energy



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

LIN et al.: COMPUTATION OFFLOADING IN HANDHELD DEVICES TO COPROCESSORS AND CLOUDS 9

:} offload_to_cloud(mm, data) %.
I

Matrix
Multiplication

Matrix
Multiplication

= | matrix_mult(data)

Matrix
Multiplication

DTN
» offload_to_gpu(data)
T

[P1geL 10084 | SjIOMBWEL] UOISIAQ

Matrix Mq:ltlplication

matrix_mult(data)

A

‘mm, data

Select Service

user space |

kernel space |

Cloud |

1
I
user space i

—p Function call

kernel space I

Nexus One

GPU driver ‘ ‘Wi-Fi Driver L_L_______

T
I

| |
J—

—-—> Data path

Fig. 6. Experiment environment.

profiling methods, our method has two advantages. First, it
can be applied to all Android smart phones. Second, no extra
hardware equipment is required, such as a DAQ card.

VI. EXPERIMENT AND EVALUATION

In order to evaluate the effectiveness of our TDM framework,
we conducted several experiments based on real-world applica-
tions and compared TDM with the methods that consider only
execution time or energy consumption. First of all, we introduce
our experiment environment in Section VI-A. Next, we discuss
the overhead of our TDM framework in Section VI-B. Finally,
a case study of matrix multiplication is given in Section VI-C.

A. Testbed

As Fig. 6 shows, the experiment environment includes a
Nexus One smart phone and a cloud. In order to eliminate
uncertainty and unpredictability, we set the backlight always
on and closed unnecessary processes. We implemented our
decision framework on Nexus One and installed matrix mul-
tiplication applications for experiment. Each application has
at least one or more modules to be offloaded. A PC with a
2.4-GHz Intel processor and 4-GB RAM is used to simulate
the execution environment of cloud, and the operating system
of the cloud is Linux 2.6.35.

B. Overhead of TDM

In order to understand the overhead of our decision frame-
work TDM, we measured the execution time and energy con-
sumption of each function. As Table IV shows, creating a
factor table and collecting factors consume significant energy
if the factor table does not exist. For example, the function
Create Factor Table consumes 43.03% of total execution time
and 33.79% of total energy consumption. On the other hand,
if the factor table is already created, most of time (98.54%)
and energy (98.99%) are spent on the function Collect Fac-
tors. Since the function Create Factor Table is only executed
once, the function Collect Factors dominates the overhead of

TABLE IV
PROPORTIONS OF TIME AND ENERGY IN OUR DECISION FRAMEWORK
Factor Table Exist? No Yes

Functions Time Energy | Time | Energy
Create Factor Table 43.03% | 33.79%
Collect Factors 56.14% | 65.53% | 98.54% | 98.99%
Build Cost Functions 0.32% 0.25% | 0.55% | 0.38%
Make Decision 0.20% 0.16% | 0.34% | 0.24%
Update Factor Table 0.32% 0.27% | 0.56% | 0.39%

Total 1641 ms | 3135 mJ | 935 ms | 2075 mJ

our decision framework. We further break down the energy
consumption of the function Collect Factor. As Fig. 7 shows,
collecting the information of bandwidth consumes most time
and energy. This overhead is induced by the ping program
and the Wi-Fi driver, which can be reduced by decreasing the
measurement time.

C. Case Study: Matrix Multiplication

Matrix multiplication is a CPU-intensive module, which has
been widely used in the applications of encoding, decoding,
image compression, and rotation. In order to evaluate the
effectiveness of TDM, we implemented three versions of the
matrix multiplication for different offloading targets. One is for
the execution of local CPU; the other two are for local GPU
(i.e., coprocessor) and the cloud. In the version of local CPU,
it includes three steps: reading data, processing the multipli-
cation, and storing the results. As mentioned in Section II-B,
two programs are implemented in the version of GPU. One is
vertex shader, and the other is fragment shader. Because the
most popular smart phones are nowadays equipped with QVGA
(320 x 240) displays [33], we limited the size of rendering
images to 320. Once of fload_to_gpu() is invoked, it first



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

Collect Factors - Time Proportion

Initialize Factor
0.74%

\ 1.04%

Import Factor Table

Collect Bandwidth
98.22%

Collect Factors - Energy Proportion

Initialize Factor
0.29%

I t Factor Tabl
Collect Bandwidth o racioriae
99.29%

Fig. 7. Proportions of time and energy in the function Collect Factors.

Tziane (s) Matrix Computation Time - 3G network

mon CPU mon GPU Bon Cloud
15

10 _—| =
I | o

ol o el el el W

180 200 220 240 260 280 300 320
Size of Matrix

Fig. 8. Matrix multiplication via a 3G network.

communicates with the GPU driver and compiles shader codes
into the executable format of GPU. Next, the data are fed to
GPU. Finally, the processed data are written back to the buffer
pBuffer, and the communication is terminated.

In order to offload the computation to the cloud, on
the smart phone, we implemented a function, named
of fload_to_cloud(), to send offloaded data to the cloud. On
the site of the cloud, a service is deployed to receive the
offloaded requests and forward them to a proper function. As
shown in Fig. 6, for the matrix multiplication, the module is
first forwarded to the function matriz_mult(). The results are
then sent back to the smart phone.

1) Estimation Accuracy: This subsection evaluates the ac-
curacy of our method in approximating the execution time
of an offloaded module in different execution environments.
We first measured the execution time of the offloaded module
by varying the matrix size. We then compared our estimated
execution time with measurement data.

We evaluated our method in both Wi-Fi and 3G networks.
According to our experimental results, as shown in Fig. 8, the
execution time significantly increases if we offload modules to
the cloud through the 3G network. As a result, in the following
experiments, we adopt the Wi-Fi network when we offload
modules to the cloud.

Fig. 9(a) shows the measurement results of execution time,
in which the x-axis is the size of matrix, and the y-axis is the

IEEE SYSTEMS JOURNAL

Time (s)
8

Matrix Computation Time Energy (J)  Matrix Computation Energy
10

Eon CPU ®mon GPU Hon Cloud Eon CPU ®mon GPU Bon Cloud

6

4

Jae-tm B EE 0] ‘
80 120 160 200 240 280 320 80 120 160 200 240 280 320
Size of Matrix Size of Matrix
(a) (b)

Fig. 9. Matrix multiplication. (a) Execution time. (b) Energy consumption.

60%

p N . . —o—err(CPU)
\ Time Estimation Error Rate #— err(Cloud)
g 40% —a— err(GPU)
-1
13
£
[; 20%
0% - S
40 80 120 160 200 240 280 320 360
Size of Matrix
(a)
0,
60% —o—err(CPU)
Energy Estimation Error Rate —g— crr(Cloud)
—a— err(GPU
£ 40% ex(GE)
-1
1
=]
e
E 20 Valn S

0% -

40 86 120 160 200 240 280 320 360

Size of Matrix
(b)

Fig. 10. Estimation error rate. (a) Execution time. (b) Energy consumption.

0,
40% —8-Size=100

——Size=200

\—a— Size=300

30%

20%

10% - -‘:/»

0%

False Decision Rate

— ;A
1.0 Alpha

00 01 02 03 04 05 06 07 08 09

Fig. 11. False decision rate of matrix multiplication.

execution time. For example, in the case of 320 x 320, the
speedup ratio is 1.27 if the computation is offloaded to the
local GPU and 3.89 if it is offloaded to the cloud. In other
words, the percentage reduction in execution time can reach
almost 75%(= (6.20 — 1.55)/6.20) in the best case. Similarly,
Fig. 9(b) shows the measurement results of energy consump-
tion, in which the x-axis is the size of matrix, and the y-axis
is the energy consumption. The percentage reduction in energy
consumption can reach almost 56%(= (9.20 — 4.00)/9.20) in
the case of size-320 matrix.

We define the error rate of execution time as

Tt t Tt t
err (target) = M
target

target € {CPU, GPU, Cloud} @)



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

LIN et al.: COMPUTATION OFFLOADING IN HANDHELD DEVICES TO COPROCESSORS AND CLOUDS

800%

—&— time-only

300% =

—@— hybrid ——&— time-only , -
A ~+—— hybrid A A A A A
*~o * ——f— energy-onl; A—A—A—P—DBA |
600% ey — energy-only | |
200% f 200% T :
B | z | —&— time-only
S 400% - [ '§ —— hybrid
& ; [ & ~—#— energy-only
100% \ 100%
200% ]
0% - 0% B8 0%
Alpha Alpha 00 02 04 06 08 10  Apn
(b)

Fig. 12.  False decision penalty of (a) size-100, (b) size-200, and (c) size-300.

in which Ttarget is the estimated execution time, which is
obtained by (1), (3), or (4). As Fig. 10(a) shows, the error rate
becomes larger when the size of the matrix is smaller. This
is because the overhead of the OS context switch cannot be
ignored for small-size matrix multiplication.

Similarly, the error rate of energy consumption is defined as

Et< t Et‘ rget
err, (target) = M
target

target € {C'PU, GPU, Cloud}. (3)
As Fig. 10(b) shows, if the size of the matrix is larger than 80,
the error rate of energy consumption is around 20%.

2) Decision Accuracy: Since the error rate can result in an
incorrect offloading decision, we define the false decision rate,
i.e., p, as

# of correct decisions

p=1 # of decisions

In our experiment, we varied the value of « in the range [0,1]
and fixed the matrix size in 100, 200, and 300. As Fig. 11 shows,
the false decision rate is less than 15% in most cases. When
matrix size becomes larger, the false decision rate is smaller.
This is because the overhead of the OS context switch cannot
be ignored in the case of small matrices. For example, when o
is 0.6, the false decision rates of size-300 matrix and size-200
matrix are smaller than that of size-100 matrix. If « is set at 0
or 1, the false decision rate is almost zero since only the energy
consumption or execution time needs to be predicted.

Let F,p and T5,,¢ denote the energy consumption and exe-
cution time of the optimal offloading decision. Moreover, for
an offloading decision, we use FEand T to represent the energy
consumption and execution time. We define penalty as

E— Eopt

T - Topt
Eopt .

Topt

+

Obviously, if an offloading decision is optimal, the penalty is
zero. As shown in Fig. 12, the z-axis is the value of alpha
(a), and the y-axis is the penalty. For each «, we measure
the associated o and 75, We also measure E and T for
different offloading methods. The term “hybrid” is TDM, which
has a low penalty in each size. However, the other two methods,
i.e., time-only and energy-only, suffer from a high penalty
because they did not consider time and energy at the same time.

As Fig. 12 shows, by varying the value of «, we have 11
test cases in each subgraph. There are, in total, 33 test cases
in three subgraphs. Our method makes near-optimal decisions
(i.e., penalty is close to 0) in 24 cases. This is because the
penalty of the second best decision is almost the same as
that of the optimal decision. On the contrary, the time-only
method makes 18 near-optimal decisions, and the energy-only
method makes only ten near-optimal decisions. As a result, our
improvement in making the number of near-optimal offloading
decision can reach, at most, twice as that in the energy-only
method.

3) Evaluate Decision Overhead: We have analyzed the
overhead of our decision framework in Section VI-B. Now,
we are going to evaluate the impact of the overhead on energy
and time reduction. According to our experimental results, for
the case where the matrix size is 100, the execution time is
197 ms if the module is executed on the local CPU. On the other
hand, the execution time becomes 118 ms if it is uploaded to
the cloud. Since it takes extra 935 ms to complete the execution
of the proposed method, the total execution time increases to
1053 ms. In this case, performing local computation is much
better than offloading the computation to the cloud. According
to our experimental results, in order to save energy and time by
offloading, the matrix size should be larger than 250.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have designed and implemented a decision
framework for computation offloading. The decision is based
on estimated execution time and energy consumption. We aim
to save both execution time and energy consumption at the same
time. Unlike previous works, which consider only binary deci-
sions, our ternary decision is suitable for multiple offloading
targets.

In our experiment, we presented a case study to validate
the applicability in different situations. Based on our decision
framework, the matrix multiplication module tends to be of-
floaded to more powerful processors, such as local GPU or
cloud. By offloading modules, we can achieve, at most, 75%
savings in execution time and 56% in battery usage. Our results
also demonstrate high accuracy and low false decision rates of
the proposed decision framework. Generally speaking, the false
decision rate is less than 15% in most cases. Our future work
includes three aspects. First, we will implement a lightweight
ping function in order to further reduce the overhead in



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

collecting the parameter of bandwidth. Second, we plan to in-
vestigate effects of different smart phones, mobile applications,
and network environment on the accuracy of TDM. Finally,
we will extend this work by considering different wireless
technologies, such as LTE and WiMAX, and security issues.

REFERENCES

[1] Lavendershih, “Booming popularity of smartphone helps to increase nand
flash demand,” DRAMeXchange, Tech. Rep., 2011.

[2] X.Gu, A. Messer, 1. Greenberg, D. Milojicic, and K. Nahrstedt, “Adaptive
offloading for pervasive computing,” IEEE Pervasive Comput., vol. 3,
no. 3, pp. 6673, Jul./Sep. 2004.

[3] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy on
handheld devices: A partition scheme,” in Proc. 2001 Int. CASES, 2001,
pp. 238-246.

[4] S. Ou, K. Yang, and J. Zhang, “An effective offloading middleware for
pervasive services on mobile devices,” Pervasive Mobile Comput., vol. 3,
no. 4, pp. 362-385, Aug. 2007.

[5] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and

R. Chandramouli, “Studying energy trade offs in offloading computation/

compilation in java-enabled mobile devices,” IEEE Trans. Parallel Dis-

trib. Syst., vol. 15, no. 9, pp. 795-809, Sep. 2004.

K. Kumar and Y. Lu, “Cloud computing for mobile users: Can offload-

ing computation save energy?” Computer, vol. 43, no. 4, pp. 51-56,

Apr. 2010.

R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, “Using bandwidth

data to make computation offloading decisions,” in Proc. IEEE IPDPS,

Apr. 2008, pp. 1-8.

E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,

R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with

code offload,” in Proc. 8th Int. Conf. MobiSys, Jun. 2010, pp. 49-62.

S. Han, S. Zhang, and Y. Zhang, “Energy saving of mobile devices based

on component migration and replication in pervasive computing,” in Proc.

Ubiquitous Intell. Comput., Aug. 20006, pp. 637-647.

[10] Y. Hong, K. Kumar, and Y. Lu, “Energy efficient content-based
image retrieval for mobile systems,” in Proc. IEEE ISCAS, May 2009,
pp. 1673-1676.

[11] B. Seshasayee, R. Nathuji, and K. Schwan, “Energy-aware mobile service
overlays: Cooperative dynamic power management in distributed mobile
systems,” in Proc. 4th ICAC, Jun. 2007, p. 6.

[12] Y. Wang, B. Donyanavard, and K. Cheng, “Energy-aware real-time face
recognition system on mobile CPU-GPU platform,” in Proc. 11th ECCV,
Sep. 2010, pp. 411-422.

[13] X. Zhao, P. Tao, S. Yang, and F. Kong, “Computation offloading for
H.264 video encoder on mobile devices,” in Proc. IMACS, Oct. 2006,
pp. 1426-1430.

[14] 1. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: Enabling mobile phones as interfaces to cloud applications,”
in Proc. 10th ACM/IFIP/USENIX Int. Conf. Middleware, Dec. 2009,
pp. 1-20.

[15] R. Kemp, N. Palmer, T. Kielmann, F. Seinstra, N. Drost, J. Maassen, and
H. Bal, “eyedentify: Multimedia cyber foraging from a smartphone,” in
Proc. 11th IEEE ISM, Dec. 2009, pp. 392-399.

[16] Y. Lin, Y. Lin, Y. Lai, and C. Lin, “VPN gateways over network proces-
sors: Implementation and evaluation,” J. Internet Technol., vol. 11, no. 4,
pp. 457-463, Jul. 2010.

[17] K. Yang, S. Ou, and H. Chen, “On effective offloading services for
resource-constrained mobile devices running heavier mobile Internet ap-
plications,” IEEE Commun. Mag., vol. 46, no. 1, pp. 56-63, Jan. 2008.

[18] Y. Zhang, X. Guan, T. Huang, and X. Cheng, “A heterogeneous auto-
offloading framework based on web browser for resource-constrained
devices,” in Proc. 4th ICIW, May 2009, pp. 193—199.

[19] A. Miettinen and J. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. 2nd USENIX Conf. HotCloud, Jun. 2010,
p. 4-4.

[20] C. Wang and Z. Li, “A computation offloading scheme on handheld
devices,” J. Parallel Distrib. Comput., vol. 64, no. 6, pp. 740-746,
Jun. 2004.

[21] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proc. 6th ACM
SIGOPS/EuroSys, 2011, pp. 301-314.

[22] C. Cai, L. Wang, S. U. Khan, and J. Tao, “Energy-aware high perfor-
mance computing: A taxonomy study,” in Proc. 17th IEEE ICPADS, 2011,
pp. 953-958.

[6

—_

[7

—

[8

—

[9

—

IEEE SYSTEMS JOURNAL

[23] M. Guzek, J. E. Pecero, B. Dorrosoro, P. Bouvry, and S. U. Khan,
“A cellular genetic algorithm for scheduling applications and energy-
aware communication optimization,” in Proc. ACM/IEEE/IFIP Int. Conf.
HPCS, 2010, pp. 241-248.

[24] S. U. Khan, “A goal programming approach for the joint optimization of
energy consumption and response time in computational grids,” in Proc.
28th IEEE IPCCC, Dec. 2009, pp. 410-417.

[25] N. Ristanovic, J.-Y. Le Boudec, A. Chaintreau, and V. Erramilli, “Energy
efficient offloading of 3G networks,” in Proc. IEEE 8th Int. Conf. MASS,
2011, pp. 202-211.

[26] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing,” in Proc.
IEEE INFOCOM, 2013, pp. 1285-1293.

[27] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for mo-
bile code offloading,” in Proc. 31st Annu. IEEE (INFOCOM) Int. Conf.
Comput. Commun., 2012.

[28] R. Kemp, N. Palmer, and T. Kielmann, “Cuckoo: A computation offload-
ing framework for smartphones,” presented at the Proc. 2nd Int. Conf.
Mobile Comput., Appl., Serv., Santa Clara, CA, USA, 2010.

[29] A. N. Khan, M. L. Mat Kiah, S. U. Khan, and S. A. Madani, “Towards
secure mobile cloud computing: A survey,” Future Generation Computer
Systems, vol. 29, no. 5, pp. 1278-1299, Jul. 2013.

[30] A. Munshi, D. Ginsburg, and D. Shreiner, OpenGL ES 2.0 Programming
Guide. Reading, MA, USA: Addison-Wesley, 2008.

[31] L. Marziale, G. Richard, III, and V. Roussev, “Massive threading: Using
GPUs to increase the performance of digital forensics tools,” Digit. Inves-
tigation, vol. 4, pp. 73-81, Sep. 2007.

[32] S.Han, K. Jang, K. Park, and S. Moon, “Packetshader: A GPU-accelerated
software router,” ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 4,
pp. 195-206, Oct. 2010.

[33] IMSDroid. [Online]. Available: https://code.google.com/p/imsdroid/

Ying-Dar Lin (F’13) received the Ph.D. degree in
computer science from the University of California,
Los Angeles, CA, USA, in 1993.

He is a Professor of computer science with Na-
tional Chiao Tung University, Hsinchu, Taiwan.
Since 2002, he has been the Founding Director
of Network Benchmarking Lab (www.nbl.org.tw),
which reviews network products with real traffic. In
2002, he cofounded L7 Networks Inc., which was
later acquired by D-Link Corporation. He published
a textbook titled “Computer Networks: An Open
Source Approach” (McGraw-Hill, 2011). His research interests include net-
work security, wireless communications, and embedded systems.

He is an IEEE Fellow and serves on the editorial board of several IEEE
journals and magazines.

-

Edward T.-H. Chu (M’11) received the Ph.D. de-
gree in computer science from National Tsing Hua
University, Hsinchu, Taiwan, in 2010.

He has more than four years of work experience in
the industry, where he worked on embedded software
and owns a Chinese patent. In 2009, he was a Visit-
ing Scholar with Purdue University, West Lafayette,
IN, USA. In 2010, he joined the Department of
Electronic and Computer Science Information Engi-
neering, National Yunlin University of Science and
Technology, Douliou, Taiwan, as an Assistant Pro-
fessor. His research interests include low-power embedded systems and real-
time operating systems.

Dr. Chu received the Best Paper Award at the 2012 IEEE International
Symposium on Computer, Consumer and Control (IS3C) in Taiwan.


https://code.google.com/p/imsdroid/
www.nbl.org.tw

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

LIN et al.: COMPUTATION OFFLOADING IN HANDHELD DEVICES TO COPROCESSORS AND CLOUDS

Yuan-Cheng Lai received the Ph.D. degree from
National Chiao Tung University, Hsinchu, Taiwan,
in 1997.

In August 1998, he joined the faculty of the
Department of Computer Science and Information
Science, National Cheng Kung University, Tainan,
Taiwan. In August 2001, he joined the faculty
of the Department of Information Management,
National Taiwan University of Science and Technol-
ogy, Taipei, Taiwan, where he has been a Professor
since February 2008. His research interests include
performance analysis, protocol design, wireless networks, and web-based
applications.

Ting-Jun Huang received the B.S. degree in com-
puter science from National Tsing Hua University,
Hsinchu, Taiwan, in 2009 and the M.S. degree in
computer science from National Chiao Tung Univer-
sity, Hsinchu, in 2011.

He is currently with Lionic, Inc., Taiwan. His
research interests include cloud computing and
embedded systems.



