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ABSTRACT

Botnet has become one major Internet security issue in recent years. Although signature-based solutions are accurate, it
is not possible to detect bot variants in real-time. In this paper, we propose behavior-based botnet detection in parallel
(BBDP). BBDP adopts a fuzzy pattern recognition approach to detect bots. It detects a bot based on anomaly behavior in
domain name service (DNS) queries and transmission control protocol (TCP) requests. With the design objectives of being
efficient and accurate, a bot is detected using the proposed five-stage process, including: (i) traffic reduction, which shrinks
an input trace by deleting unnecessary packets; (ii) feature extraction, which extracts features from a shrunk trace; (iii)
data partitioning, which divides features into smaller pieces; (iv) DNS detection phase, which detects bots based on DNS
features; and (v) TCP detection phase, which detects bots based on TCP features. The detection phases, which consume
approximately 90% of the total detection time, can be dispatched to multiple servers in parallel and make detection in real-
time. The large scale experiments with the Windows Azure cloud service show that BBDP achieves a high true positive
rate (95%+) and a low false positive rate (�3%). Meanwhile, experiments also show that the performance of BBDP can
scale up linearly with the number of servers used to detect bots. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Botnet has become one major threat to Internet users in
recent years. A botnet is comprised of a large number
of bots, which are networked computers compromised by
malicious attackers. With a botnet, an attacker controls the
bots to launch various types of attacks, such as phishing
and spamming, and thereby receives huge economic bene-
fits. Consequently, detecting bots’ activities and preventing
users from being infected are critical to security experts
and researchers.

Most commodity solutions detects bot activities based
on predefined patterns and signatures retrieved from well-
known bots [1–6]. Although signature-based solutions are
able to detect bots accurately, it has two major drawbacks.
First, a bot is able to evade signature-based detection
by using a code obfuscation technique. For example, the
Mariposa bot adopts such a technique to prevent it from
being detected [7]. Second, patterns or signatures used to
detect bots are retrieved from known bots. This means that
there would be no protection for a new bot before its pat-
terns or signatures are identified. Therefore, we believe that

a behavior-based (or anomaly-based) solution would be a
good alternative to detect bots. With well-tuned param-
eters, behavior-based solutions are able to achieve high
detection rates and low error rates. In addition, it is able to
detect bot variants and even unknown bots.

This study presents a behavior-based botnet detection
technique that is capable of detecting bots in parallel. On
the basis of our previous work [8], we show that a behavior-
based botnet detector not only detects bots effectively but
also efficiently. The proposed solution also leverages a
fuzzy pattern recognition approach and detects bots in
two phases. The domain name service (DNS) phase ana-
lyzes DNS queries requested by clients and investigates
possibly malicious queries sent from bots. In contrast,
the transmission control protocol (TCP) phase examines
TCP request packets and response packets and identifies
anomaly access patterns in terms of packet counts and
packet sizes. We revise the previously proposed algorithm
to have more sophisticated membership functions in order
to achieve higher detection (true positive) rates and lower
error (false positive) rates. In addition, a parallel process
design is proposed as well to improve the performance of
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the detection system. By adopting modern infrastructure as
a service cloud computing services, the required detection
time of the proposed system can be shortened linearly to
the number of allocated detecting servers.

The remaining of this paper is organized as follows.
Section 2 briefly introduces the behavior of botnet and
reviews several previous works related to the proposed
solution. Section 3 explains the proposed approach in
detail. Section 4 presents the experiment results for the pro-
posed solution using commodity cloud computing services
and real-world botnet traces. Finally, Section 5 provides
the conclusion.

2. BACKGROUND AND
RELATED WORK

2.1. Overview of botnet behavior

Figure 1 shows the two common phases of a bot’s behav-
ior, that is, the infection phase and the attack phase. In the
infection phase, a bot master attempts to intrude in a vic-
tim and then turn the victim into a bot. There are many
techniques to intrude in a host such as remote exploits
and drive-by downloads. Once the bot master has success-
fully intruded in a victim, remote controllable software
(bot software) is downloaded and installed into the victim.
The infection phase then finished after the bot software has
been successfully installed and configured. Bot software is
usually configured to launch automatically when the sys-
tem boots. The attack phase then starts as well. In the
attack phase, the bot software is responsible for reporting
the status of the infected host to the bot master, receiv-

ing attack commands from the bot master, and launching
commanded tasks. Possible commands include, but not
limited to, launching distributed denial of services, setting
up phishing sites, relaying malicious traffic, and sending
spam mails. Behavior-based solutions can detect bots in
the infection phase, the attack phase, or both, depending on
how the algorithms are designed.

2.2. Related work

Park et al. [9] proposed an automated approach to generate
semantic patterns for bot detection. They proposed to iden-
tify one pattern that represents the important behavior of
an entire class of bots, rather than of individual instances.
They adopted static analysis techniques to characterize bot
behavior and proposed to use hierarchical clustering of the
resulting semantic patterns from a set of bot programs. The
major contribution of this work is that patterns and signa-
tures are generated automatically. However, because it is
based on static analysis from assembly source codes, the
effectiveness is therefore limited when code obfuscation
techniques are applied. In addition, signature-based detec-
tion limits its ability to detect bot variants and unknown
bots.

Yu et al. [10] proposed online botnet detection based on
an incremental discrete Fourier transform (DFT) approach.
They first defined the concept of “feature streams” to
describe raw network traffic. They then compared fea-
ture streams originated from different hosts and detect
suspicious bot activities if similar feature streams are
identified. It is innovated to represent network traffic as
feature streams and detecting bots using incremental DFT.

(a) The infection phase. (b) The attack phase.

Figure 1. Two common phases of a bot’s behavior: (a) the infection phase and (b) the attack phase.
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However, the proposed solution has two issues. First, rep-
resent network traffic as feature streams and detect using
DFT is a computation-intensive work. It could be inef-
ficient to detect bot activities. Second, according to the
experiment data provided by the authors, the error rates
(false positive rates) is not low enough.

A number of works attempted to detect and discuss spe-
cific type of bots. Perdisci et al. [11] proposed to detect
bots that leverage hypertext transfer protocol (HTTP)
channels to communicate. Hsu et al. [12] and Lin et al. [13]
proposed to detect a specific type of bots called fast-flux
bots, which attempts to extend the life time of malicious
web or Internet services using dynamic domain names with
shorter time to live. Shirley et al. [14] discussed the possi-
bilities that a bot could evade detection if a bot detection
mechanism did not associate bots’ communications with
the corresponding hosts. Huang [15] proposed to detect
bots based on failures generated from bots. If a bot never
generate a failure, it could be missed.

Wang et al. [8] proposed to detect bots based on a
fuzzy pattern recognition approach. They proposed a traf-
fic reduction algorithm to reduce the amount of network
traffic that the solution needs to process. To work with
fuzzy pattern recognition techniques, they then designed
several membership functions to compute the probability
of being bot activities from aggregated DNS and TCP traf-
fic. Although the simple functions adopted by this work are
able to perform well on detection bots, the detection accu-
racy can be improved with more sophisticated membership
functions. Some network traces generated by regular net-
work activities such as checking new software updates
may lead to false positives. With more sophisticated mem-
bership functions, it is possible to reduce the error (false
positive) rates caused by regular network activities.

The proposed solution differs from previous researches
in several aspects. First, it does not examine the binary
codes or source codes of bot software. Detection is made
on the basis of external behaviors. Therefore, code obfus-
cation does not prevent a bot from being detected. Second,
because it is a behavior-based detector, bot variants and
event unknown bots can be detected. The proposed solu-

tion extends Wang’s et al. work. Similar to their work,
the proposed solution adopts a fuzzy pattern recogni-
tion approach. However, it extends the previous work in
two directions. First, the proposed solution adopts even
more sophisticated membership functions to detect bots. It
hence improves the overall detection (true positive) rates
and reduces the error (false positive) rates. Second, the
proposed solution pays more attention on detection bot
activities in large scale networks. Therefore, the workload
of detection tasks can be dispatched to multiple servers and
detect bots in parallel. The efficiency of the detector can be
improved linearly when the number of allocated detection
server increases.

3. THE PROPOSED SOLUTION

3.1. Design objective

Given a network packet trace, the goal of the proposed
behavior-based botnet detection in parallel (BBDP) is to
detect bot activities from the trace. Two objectives of the
proposed solution are accuracy and efficiency. The pro-
posed solution should be able to detect as many bots as
possible in a reasonable detection time. To achieve the
goal, BBDP splits the process of the trace into five stages,
as shown in Figure 2. The five stages (in the order) are
traffic reduction, feature extraction, data partitioning, DNS
detection, and TCP detection. The first two stages are used
to reduce the amount of data that has to be processed by
the system. To be more efficient, BBDP attempts to par-
allelize the detection process by dispatching workloads
to multiple detectors in the third stage. Finally, BBDP
detects bots in two phases, which focus on DNS queries
and TCP requests generated by bots. Although the two
phases are similar to our previous work [8], we revised
the detection algorithms and adopted more detection poli-
cies to improve the overall detection accuracy. The details
of each stage are discussed later in this section. In addi-
tion to detect bot activities, BBDP retrieves bot relevant
domain names and Internet protocol (IP) addresses from

Figure 2. The five stages of the proposed behavior-based botnet detection in parallel.
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the detected activities and sends the information to fire-
walls and/or intrusion detection systems to prevent other
hosts from being attacked.

3.2. Traffic reduction

To improve the system efficiency, it would be better if the
system only process required packets. Therefore, BBDP
adopts a packet filtering process to reduce the number of
packets that the system has to examine. Figure 3 shows
the packet filtering process. On the basis of our observa-
tions, we found that a bot’s activities often start from DNS
lookups. This is because a bot often has to obtain new com-
mands from the bot master or the command and control
(C&C) servers, which are usually hard-coded as a list of
domain names in bot software. With the bot master’s or the
C&C servers’ IP addresses, the bot then attempts to interact
with each of the returned IP addresses from DNS queries.
We also found that most bots interact with the bot mas-
ter or the C&C servers using TCP connections. Therefore,
the proposed solution currently focused only on examin-
ing TCP packets. The filter process discards a packet if
it is neither a DNS request/response packet nor a packet
with known source/destination IP addresses. If a packet is
not discarded, it is passed to the next stage and is used for
detecting bot activities.

3.3. Feature extraction

Since bot activities often start with DNS queries and then
followed by interactions using TCP flows, BBDP retrieves
several features relevant to DNS queries and TCP flows for
botnet detection. For DNS features, we observed that a bot
often sends DNS queries regularly in a period. Figure 4
shows an example of DNS query packets sent from a bot.
BBDP collects DNS packets for a period and then retrieves
relevant DNS features including the queries round trip
times, queries intervals, and queries frequencies.

For TCP features, we also observed that a bot would
setup regular network flows to the bot master or the C&C
server, as shown in Figure 5. BBDP collects TCP pack-
ets for a period as well and then retrieves relevant TCP
features including packet count per second, byte count per
packet, requests intervals, and request frequencies. Both
the retrieved DNS and TCP features are passed to the next
stage for botnet detection.

3.4. Data partitioning

Behavior-based botnet detection in parallel aims to be an
accurate and efficient bot detection system. It is straightfor-
ward to improve system efficiency by splitting the whole
workloads into smaller pieces and then dispatching pieces
to multiple servers. However, if workloads are not split
properly, the detection accuracy could be degraded. There-
fore, the system has to consider how input features are
split so that it can achieve high efficiency without losing

Figure 3. The packet filtering process to reduce the number of
processed packets for the proposed system.

Figure 4. The number of domain name service (DNS) query
packets sent by an observed live bot. (x-axis: time in seconds;

y-axis: total number of DNS query packets.)

Figure 5. The number of transmission control protocol (TCP)
request packets sent by an observed live bot. (x-axis: time in

seconds; y-axis: total number of TCP request packets.)

its accuracy. BBDP splits features by following a similar
manner to traffic reduction. Since a bot’s activities start
with DNS queries and then followed by a number of rel-
evant TCP flows, the DNS queries and the incurred TCP
flows should not be split into different pieces. For example,
suppose a host H made a DNS lookup to a domain name
D and receives a list of n corresponding IP addresses IP1,
IP2, . . . , IPn. The DNS features involved with D and the
TCP features involved with IP1, IP2, . . . , IPn should not be
split into different pieces. For the ease of processing, we
use H’s IP address as the key to split traffic. Consequently,
both DNS features and relevant TCP features for H would
be placed in the same piece. Because BBDP detect bots
for an entire network, features collected for different hosts
can be split into different pieces and therefore improves
the parallelism.
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3.5. Behavior-based botnet detection
in parallel

Behavior-based botnet detection in parallel adopts a fuzzy
pattern recognition approach to identify bots. The bot
detection process contains two phases—the DNS detection
phase and the TCP detection phase. The two phases
detect bots using features retrieved from DNS packets and
TCP packets, respectively. BBDP attempts to detect a bot
in the DNS detection phase first. If a bot is detected
in the DNS detection phase, BBDP ignores TCP fea-
tures associated with the DNS features and reports the
detection result. In contrast, if no bot is detected, the
TCP detection phase is then applied to detect a bot. Both
the DNS detection phase and the TCP detection phase
detect bots using the max membership principle to deter-
mine whether a retrieved feature is more close to bot
activities or benign activities. A number of fuzzy mem-
bership functions are defined to determine a retrieved
feature set from host activities is a member of bot fea-
tures or benign features. Given a feature set retrieved
from a networked host, if membership functions for bots
output higher values, the host is detected as a bot. Sim-
ilarly, if membership functions for benign hosts output
higher values, the host is detected as a benign host.
The basic concept of the max membership principle is
shown in Figure 6. The detection is made by finding
the maximal values from the defined membership func-
tions. We summarize host behaviors inspected by the
proposed solution in Table I. The details of how the
membership functions are defined are discussed later in
this subsection.

3.5.1. Domain name service detection phase.

Given a predefined observation period and a trace file,
we defined a packet feature vector x = (˛, ˇ, � , �) for
the DNS detection phase. ˛ is a set of time intervals mea-
sured between a pair of a DNS query and the corresponding
DNS response. Suppose n DNS queries are observed from
a host, each measured time interval in ˛ is notated as ˛i,
where 1 � i � n. ˇ is a set of counters, which count
the number of concurrent DNS queries within the period
defined by ˛. The cardinality of ˇ (|ˇ|) should be equiv-
alent to that of ˛ (|˛|) because the observation is made
for exact the same trace file. Each counter in ˇ is notated
as ˇi, where 1 � i � n. � is another set of counters,
which count the number of total times that a domain name
or an IP address has been queried by a host. Suppose a
monitored host has queried N distinct remote IP addresses,
the cardinality of � (|� |) would be N. A counter �i 2 � ,
1 � i � N, maintains the number of times that a domain
names or IP addresses found in the trace. � is also a set of
counters, which count the number of DNS queries in each
second within the observation period. Suppose a trace has
been monitored for M seconds, there would be M counters
in �. In the DNS detection phase, we defined four states
and proposed the corresponding membership functions, as
described in the following.

(i) Normalized variance of number of concurrent
DNS queries

A bot often generates concurrent DNS queries
to shorten its online time. A higher variance of
number of concurrent DNS queries indicates a
host is possibly a bot. Therefore, we defined a

Figure 6. The max membership principle.

Table I. Summary of inspected host behavior.

Type Equation Description

X1 Number of concurrent queries
Domain name service X2 Cumulated queries to each distinct domain

X3 Query frequency

X1 Average packet rate (per connection)
X2 Average packet size (per connection)

Transmission control protocol X3 Packet count variance (per connection)
X4 Packet size variance (per connection)
X5 Average packet rate (per host)

Security Comm. Networks 2014; 7:1849–1859 © 2013 John Wiley & Sons, Ltd. 1853
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membership function X1 for calculating the nor-
malized variance of number of concurrent DNS
queries as follows.

X1(x) =

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

0, if all
�
ˇi–ˇ

�2
< Tx1

max

��
ˇi–ˇ

�2
�

P��
ˇi–ˇ

�2
� , otherwise;

(1)
for i 2 {1, 2, . . . , n}, where n is the total number of
DNS queries and Tx1 is the variance threshold of
being abnormal.

(ii) Normalized total times that a node queried the
same domain name or IP address

A bot may query specific domain names or
IP addresses many times when it is activated.
Therefore, we calculated the number of queries
to a domain name or an IP address to identify
abnormal hosts. We defined a membership func-
tion X2 for calculating normalized total times
that a node queried the same domain name or
IP address.

X2(x) =

8̂<
:̂

0, if all �i < Tx2

max(�i)P
(�i)

, otherwise;
(2)

for i 2 {1, 2, . . . , N}, where N is the number
of domain names and IP addresses that a host
has queried and Tx2 is the threshold of the abnor-
mal contact counts for a domain name and an IP
address.

(iii) Normalized total number of DNS query and
response packets per second

A bot sends DNS queries several times when
it is activated. Therefore, we calculate the total
number of DNS queries per second to identify
anomalies. We defined a membership function X3
for calculating normalized total number of DNS
query and response packets per second as follows.

X3(x) =

8̂
<
:̂

0, if all �i < Tx3

max(�i)P
(�i)

, otherwise;
(3)

for i 2 {1, 2, . . . , M}, where M is the duration of
an input trace in seconds and Tx3 is the threshold
for the total number of DNS query and response
packets per second.

The first three membership functions define bots’ DNS
activities. We also defined a membership function X4 for
calculating the probability of being a normal DNS activity.

X4(x) = 1 – max(X1(x), X2(x), X3(x)) (4)

3.5.2. Transmission control protocol

detection phase.

We defined a packet feature vector x = (˛, ˇ, � , �)
as well for the TCP detection phase. ˛ is a set of time
intervals measured between a pair of a TCP request and
the corresponding response. Suppose n TCP requests are
observed, each measured time interval in ˛ is notated as
˛i, where 1 � i � n. ˇ is a set of counters, which count
the number of TCP request packets involved in each TCP
request. The cardinality of ˇ (|ˇ|) should be equivalent to
that of ˛ (|˛|) because the observation is made for exact the
same trace file. Each counter in ˇ is notated as ˇi, where
1 � i � n. � is a set of counters, which count the number of
payload bytes that are sent in a TCP request. Similarly, the
cardinality of � (|� |) should be equivalent to that of ˛ (|˛|).
Each counter in � is notated as �i, where 1 � i � n. � is
another set of counters, which count the average number of
TCP request and response packets sent per second. In the
TCP detection phase, we defined six states and proposed
the corresponding membership functions, as described in
the following.

(i) Normalized packet counts per second
It is abnormal for a TCP connection to send a

large number of request packets in a second. On the
basis of the assumption, we defined a membership
function X1 for calculating the normalized packet
counts per second as follows.

X1(x) =

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

ˇt/˛t

Tx1

– 1, 1 <
ˇt/˛t

Tx1

< 2

1,
ˇt/˛t

Tx1

>= 2

0, otherwise;

(5)

where ˇt is the total number of TCP packets in
an input trace, ˛t is the duration of an input trace
in seconds, and Tx1 is the threshold for abnormal
packet count per second.

(ii) Normalized byte counts per packet
If a bot master attempts to send commands to

its controlled bots, the byte count per TCP packet
may reflect the anomaly. We defined a membership
function X2 for calculating the normalized byte
count per packet as follows.

X2(x) =

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

�t/ˇt

Tx2

– 1, 1 <
�t/ˇt

Tx2

< 2

1,
�t/ˇt

Tx2

>= 2

0, otherwise

(6)

where �t is the total number of bytes in an input
trace, ˇt is the total number of TCP packets in an
input trace, and Tx2 is the threshold for abnormal
byte counts per packet.
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(iii) Normalized variance of total number of TCP
packets in each request

A bot often sends a large number of request
packets in a short time. The burst can then be
found through the high variance of requested TCP
packets. Therefore, we defined a membership func-
tion X3 for calculating the normalized variance
of total number of TCP packets in each request
as follows.

X3(x) =

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

0, if all
�
ˇi–ˇ

�2
< Tx3

max

��
ˇi–ˇ

�2
�

P��
ˇi–ˇ

�2
� , otherwise;

(7)
for i 2 {1, 2, . . . , n}, where n is the total number of
TCP requests and Tx3 is the variance threshold of
being abnormal.

(iv) Normalized variance of the total number of
payload bytes in each request

In addition to send packets in a burst, we
observed that the sizes of the payloads carried by
the packets from a bot are large. Therefore, we
defined a membership function X4 for calculat-
ing the normalized variance of the total number of
payload bytes in each request as follows.

X4(x) =

8̂̂
<̂
ˆ̂̂:

0, if all (�i – � )2 < Tx4

max
�

(�i – � )2
�

P�
(�i – � )2

� , otherwise;

(8)
for i 2 {1, 2, . . . , n}, where n is the total number of
TCP requests and Tx4 is the variance threshold of
being abnormal.

(v) Normalized total number of TCP request and
response packets per second

A bot may send TCP request and response pack-
ets many times when it is activated. Therefore, we
calculated the total number of TCP request and
response packets per second to identify anomalies.
We defined a membership function X5 for calcu-
lating the normalized total number of TCP request
and response packets per second as follows.

X5(x) =

8̂<
:̂

0, if all �i < Tx5

max(�i)P
(�i)

, otherwise;
(9)

for i 2 {1, 2, . . . , M}, where M is the duration of
an input trace in seconds, �i is the total number of
TCP request and response packets in the ith second,
and Tx5 is the threshold of the total number of TCP
packets per second.

The first five membership functions define bots’ TCP
activities. We also defined a membership function X6 for
calculating the probability of being a normal TCP activity.

X6(x) = 1 – max(X1(x), X2(x), X3(x), X4(x), X5(x)) (10)

4. PERFORMANCE EVALUATION

4.1. Trace collection

We collected a large number of bot traces from 250 real
bot samples and iteratively launched each of them in a
controlled environment, as shown in Figure 7. Each bot
was launched in a virtual machine running an unpatched
Windows XP service pack 3 operating system. Each vir-
tual machine moves a bot from the share folder to its local
disk, launches the bot for 2 h, and then restores itself to
a clean state. The virtual machines repeatedly launch bots
from the share folder until all bots have been examined.
The traces generated from the virtual machines were then
captured by an external sniffer. In the experiments, 240 out
of the 250 bots had generated network traces. Both packet
headers and the complete packet payloads were stored. We
called the collected malicious traces “data set M.”

In addition to bot traces, we collected benign traces to
evaluate the proposed system. Benign traces were collected
from two different sources. One was collected from the
campus dormitory network [16], and the other was col-
lected from our lab. We collected traces generated from
695 hosts in the dormitory network and from five hosts in

Figure 7. The experimental environment for botnet traces
collection.
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our lab. Each host was collected for 2 h as well. These
traces contained many types of benign applications includ-
ing Internet Relay Chat (IRC), HTTP, and peer-to-peer
traffic. We called the traces collected from dormitory net-
work “data set B1" and the traces collected from our lab
“data set B2.”

4.2. Feature evaluation

Behavior-based botnet detection in parallel detects bots
based on counting membership values for the selected fea-
tures. Therefore, we have to know whether the selected
features are able to differentiate bots from benign hosts
before making experiments. We randomly selected 25
bot traces and 25 normal traces to evaluate the selected

features. Figure 8 shows the scatter-plots for the selected
features. The scatter-plots are plotted from six selected
features including the variance of packet interarrival time,
the variance of bytes per packet, the number of pack-
ets between request and response packets, and the contact
counts per host, the average number of packets per second,
and the average number of bytes per packet. Therefore,
there are total C6

2 plots. We found that bots and normal
hosts can be roughly differentiated on the basis of the
combinations of the selected features. In addition, we also
found that some features are especially useful for detect-
ing certain types of bots. For example, “the number of
packets between request and response packets" and “the
contact counts per host” are better for detection IRC bots.
In contrast, “the average number of packets per second”

Figure 8. Scatter-plots for combinations of selected features. Blue-cross for normal traces and red-diamond for bot traces.
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and “the average number of bytes per packet” are better for
detection HTTP bots.

4.3. Detection threshold

To work with the proposed solution, we have to decide the
thresholds used by the membership functions. We obtained
the thresholds by making statistics to the collected benign
and bot traces. The thresholds used for detection are listed
as follows:

(1) Tx1 for Equation (1): 4
(2) Tx2 for Equation (2): 45
(3) Tx3 for Equation (3): 1.25
(4) Tx1 for Equation (5): 1.5
(5) Tx2 for Equation (6): 75
(6) Tx3 for Equation (7): 4
(7) Tx4 for Equation (8): 45
(8) Tx5 for Equation (9): 1.25

4.4. Detection accuracy

We used the collected traces to evaluate BBDP. A summa-
rization of the detection accuracy is provided in Table II.
In addition to high traffic reduction rates, BBDP has a
low false negative rate (4.17%) and low false positive rates
(3.45% for data set B1 and 0% for data set B2). Among the
total 10 false negatives, we found that six instances are IRC
bots and four instances are HTTP bots. In contrast, there
are total 24 false positives. We further investigated the ori-
gin of false positives. Figure 9 shows the origin of false
positives in the DNS detection phase and the TCP detec-
tion phase. The statistics also show that false positives are
distributed evenly across all the membership functions.

4.5. Detection efficiency

We investigated the distribution of execution time in each
stage of BBDP. The experiments show that the traffic
reduction stage spent approximately 10% of the total exe-
cution time, the DNS detection phase spent approximately
37% of the total execution time, and the TCP detection

Table II. Detection accuracy of the proposed solution.

Data Data Data
set M set B1 set B2

Type Malicious Benign Benign
Number of traces 240 695 5
Captured size 3.4 GB 32.4 GB 910 MB
Average reduction rate (%) 75.4 77.3 73.1
Correctly classified 230 671 5
Incorrectly classified 10 24 0
True positive rate (%) 95.83 N/A N/A
True negative rate (%) N/A 96.55 100
False negative rate (%) 4.17 N/A N/A
False positive rate (%) N/A 3.45 0

Figure 9. The statistics on the origin of false positives.

Figure 10. The total execution time and the performance
improvements in a cloud-based configuration. We used the
Windows Azure cloud service to implement the detection

servers.

phase spent approximately 53% of the total execution time.
Therefore, it suggests that dispatching the DNS detection
phase and the TCP detection phase to multiple servers is
able to effectively improve the detection efficiency.

Figure 10 shows total execution time with respect to
number of server instances of the proposed botnet detec-
tion system in a cloud-based configuration. We conducted
the experiments in both a single-host configuration and
a cloud-based configuration. In the single-host configura-
tion, we used a commodity personal computer equipped
with an AMD Athlon X2 4000+ (2.1 GHz) dual-core
CPU and 2 GB of RAM. In the cloud-based configura-
tion, we varied the number of allocated servers from one
to five to evaluate how the performance of the detec-
tion load distributed to a various number of servers. Note
that we adopted the Windows Azure cloud service to host
the detection servers. Each machine is equipped with two
1.6 GHz CPUs and 3.5 GB of RAM. However, it is able to
be deployed in any infrastructure as a service architecture.
The experimental results show that the total execution time
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Table III. Comparison of the proposed solution against other previous works.

The proposed solution (BBDP) Park et al. [9] Yu et al. [10] Wang et al. [8]

Basic idea Fuzzy pattern Static analysis and Feature stream Fuzzy pattern
recognition with data-mining approaches recognition
data partitioning

Evaluated bots 250 IRC+HTTP 110 IRC+HTTP 4 IRC 250 IRC+HTTP
(real bots) (real bots) (self-made bots) (real bots)

True positive rate (%) 95.83 94.35 100 90.41
False positive rate (%) 3.45 4.39 14.70 9.59
False negative rate (%) 4.17 5.65 0 5.41

Required execution time (s) 398.1 N/A N/A N/A
(with five servers) (s) (84.2) N/A N/A N/A

BBDP, behavior-based botnet detection in parallel; IRC, Internet Relay Chat; HTTP, hypertext transfer protocol.

can be reduced almost linearly to the number of allocated
servers. The single-host configuration requires 398.1 s to
finish processing all the 2-h data sets. However, due to
extra overheads in the cloud-based configuration, running
a single botnet detector under the cloud-based configura-
tion requires 419.14 s. Nevertheless, when there are five
servers allocated, the cloud-based configuration requires
only 84.16 s, which is 4.73 times faster than the single-host
configuration.

4.6. Summary

We finally compared the proposed BBDP against sev-
eral alternative solutions to detect botnets activities. The
comparison is shown in Table III. Although most exist-
ing researches evaluated their bot detection solution using
self-made or limited number of bot samples, we used 250
real bot samples to evaluate BBDP. The proposed solu-
tion performs better than compared solutions except Yu’s
et al. work [10]. However, their work was only evaluated
by four self-made bots. Their performance is not known
when working with real bots. One special note for Wang’s
et al. work [8] is that, we used exact the same 250 bots
to reproduce their experiments. Therefore, the numbers
shown in the table is different from that in their paper,
which conducted experiments with only 44 live bots. For
the detection efficiency in terms of the required detection
time, we only show our numbers because we did not have
numbers for the other solutions. However, on the basis of
the design of the previous algorithms, we believe that it is
difficult for those detection algorithms to scale up by using
multiple servers.

5. CONCLUSION

In this paper, we presented BBDP. BBDP extends our
previous work in terms of detection accuracy and effi-
ciency. The detection accuracy is improved by tuning the

membership functions used by the fuzzy pattern recog-
nition approach. In contrast, the detection efficiency is
improved by dispatching workloads to multiple servers
concurrently. We implemented BBDP on the Windows
Azure cloud service and evaluated it using a large num-
ber of benign traces (generated from more than 670 hosts)
and malicious traces (generated from 240 live bots). Exper-
iments show that BBDP is able to detect more than 95%
of bots and only has a false positive rate lower than 3.5%.
In addition to good detection accuracy, the implementa-
tion shows that the proposed parallel process architecture
improves the detection efficiency linearly to the number
allocated detection servers. We believe that the demand
on scaling out detection servers would be necessary when
monitored networks get larger and more complex.

ACKNOWLEDGEMENTS

This research was supported in part by National Science
Council under the grants NSC 99-2221-E-009-081-MY3,
NSC 102-2219-E-009-012, and NSC 102-2219-E-019-
001. We would also like to thank the anonymous reviewers
for their valuable and helpful comments.

REFERENCES

1. Roesch M. Snort - Lightweight intrusion detection
for networks, Proceedings of the 13th USENIX Con-
ference on System Administration (LISA’99), Seattle,
Washington, USA, 1999; 229–238.

2. Paxson V. Bro: a system for detecting network intrud-
ers in real-time. Computer Networks 1999; 31(23–24):
2435–2463.

3. Lu W, Tavallaee M, Rammidi G, Ghorbani AA.
Botcop: an online botnet traffic classifier, Proceedings
of the 7th IEEE Annual Communications Networks

1858 Security Comm. Networks 2014; 7:1849–1859 © 2013 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



K. Wang et al. Behavior-based botnet detection in parallel

and Services Research Conference, Moncton, New
Brunswick, Canada, 2009; 70–77.

4. Alserhani F, Akhlaq M, Awan IU, Cullen AJ. Detec-
tion of coordinated attacks using alert correlation
model, Proceedings of IEEE International Confer-
ence on Progress in Informatics and Computing (PIC),
Shanghai, China, 2010; 542–546.

5. Szymczyk M. Detecting botnets in computer networks
using multi-agent technology, Proceedings of the 4th
International Conference on Dependability of Com-
puter Systems, Brunow, Poland, 2009; 192–201.

6. Braun L, Munz G, Carle G. Packet sampling for worm
and botnet detection in TCP connections, Proceed-
ings of IEEE Network Operations and Management
Symposium (NOMS), Osaka, Japan, 2010; 264–271.

7. Sinha P, Boukhtouta A, Belarde VH, Debbabi M.
Insights from the analysis of the mariposa botnet,
Proceedings of the 5th IEEE International Confer-
ence on Risks and Security of Internet and Systems
(CRiSIS), Montréal, Québec, Canada, 2010; 1–9.

8. Wang K, Huang CY, Lin SJ, Lin YD. A fuzzy pattern-
based filtering algorithm for botnet detection. Com-
puter Networks 2011; 55(15): 3275–3286.

9. Park Y, Zhang Q, Reeves D, Mulukutla V. Antibot:
clustering common semantic patterns for bot detec-
tion, Proceedings of the 34th IEEE Annual Computer

Software and Applications Conference, Seoul, Korea,
2010; 262–272.

10. Yu X, Dong X, Yu G, Qin Y, Yue D, Zhao Y. Online
botnet detection based on incremental discrete fourier
transform. Journal of Networks 2010; 5(5): 568–576.

11. Perdisci R, Ariu D, Giacinto G. Scalable fine-grained
behavioral clustering of http-based malware. Com-
puter Networks 2013; 57(2): 487–500.

12. Hsu CH, Huang CY, Chen KT. Fast-flux bot detec-
tion in real time, The 13th International Symposium on
Recent Advances in Intrusion Detection (RAID-2010),
Ottawa, Ontario, Canada, 2010; 464–483.

13. Lin HT, Lin YY, Chiang JW. Genetic-based real-
time fast-flux service networks detection. Computer
Networks 2013; 57(2): 501–513.

14. Shirley B, Babu L, Mano C. Bot detection evasion:
a case study on local-host alert correlation bot detec-
tion methods. Security and Communication Networks
2012; 5(12): 1277–1295.

15. Huang CY. Effective bot host detection based on net-
work failure models. Computer Networks 2013; 57(2):
514–525.

16. Lin YD, Chen IW, Lin PC, Chen CS, Hsu CH. On
campus beta site: architecture designs, operational
experience, and top product defects. IEEE Communi-
cations Magazine 2010; 48(12): 83–91.

Security Comm. Networks 2014; 7:1849–1859 © 2013 John Wiley & Sons, Ltd. 1859
DOI: 10.1002/sec


	Behavior-based botnet detection in parallel
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Overview of botnet behavior
	Related work

	THE PROPOSED SOLUTION
	Design objective
	Traffic reduction
	Feature extraction
	Data partitioning
	Behavior-based botnet detection in parallel
	Domain name service detection phase
	Transmission control protocol detection phase


	PERFORMANCE EVALUATION
	Trace collection
	Feature evaluation
	Detection threshold
	Detection accuracy
	Detection efficiency
	Summary

	CONCLUSION


