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SUMMARY

It is generally assumed that using more diverse traffic to test network devices could achieve larger code
coverage. However, how to describe the diversity of traffic traces and the relationship between the traffic
diversity and code coverage is still an issue. In this paper, the traffic diversity is defined using the number
of packets and the size of the subnets involved, and traces having various diversity are used to evaluate the
corresponding code coverage for the programs in a network device. Experiment results show that more
number of packets or larger size of network segments can generate larger diversity indices and thus larger
code coverage. For Snort, as the number of packets increases from 1 to 10,000,000, representative diversity
index and the code coverage can increase from 0 to 0.95 on the basis of Simpson’s index and from 19.1% to
32.2%, respectively. As the size of network segments increases, representative diversity index and the code
coverage can increase from 0.41 to 0.82 and from 28.2% to 32.2%, respectively. Similar results can be
obtained in the case of Linux kernel. If the mappings among different diversity indices and the corresponding
code coverage can be built beforehand, the quality of the tests can improved. Copyright © 2014 John Wiley
& Sons, Ltd.

Received 11 March 2014; Revised 22 June 2014; Accepted 4 August 2014

KEY WORDS: traffic diversity; code coverage; diversity index; network test

1. INTRODUCTION

Network traffic traces can be used to test and verify network devices [1–3]. For example, NCTU
Beta Site [4] captures daily traffic generated from hundreds of volunteers to test network devices
and security appliances. The context of real-world traffic is hard to predict in advance because of
different hosts, periods, and activities involved. Even for two traffic traces with the same number
of hosts involved, it is still possible that they are totally dissimilar because of different network seg-
ments or during different capture time periods. In order to distinguish and measure the differences
between traffic traces, the diversity of packet traces should be defined.
A metric, biological diversity [5], is defined to denote the degree of variation of life species

within a given ecosystem for measuring the health of a given ecosystem. On the basis of the
definition, greater diversity implies better health. Considering packets that belong to a defined type
as individuals of a life species, the concept of biological diversity can be used to describe how
diverse a network traffic trace is. Furthermore, a traffic diversity index is also needed to quantify
the differences of any two traffic traces. Several well-known diversity indices, such as Simpson’s
index [6], Shannon’s index [7, 8], and Renyi’s index [9, 10], are thus proposed to calculate traffic
diversity. In this work, the traffic diversity index is defined by the header of IP addresses with fixed-
length fields. All diversity indices of a traffic trace will be grouped into a diversity vector and then
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merged as a combined diversity index. The diversity of a traffic trace will be compared according to
every single traffic diversity index and the combined traffic diversity index.
Code coverage [11, 12] is a metric defined to present the coverage of a source program being

tested, where the source code is instrumented by code coverage analysis tools. More code coverage
obtained can ensure more robust product quality because more codes can be verified. However, the
code coverage is nontrivial to obtain in every different test round. Different context of tested traffic
can trigger distinct kinds of product failures. In order to clarify the relationship between traffic
diversity of traffic traces and the code coverage, packet traces with various traffic diversities are
applied to test target programs installed in a network device, and then, the corresponding code
coverage is measured and analyzed.
The organization of this paper is as follows. In Section 2, related works including introductions to

diversity index, well-known diversity indices, and code coverage will be presented. In Section 3,
definitions and problem statement will be presented. System architecture and proposed methodology
will be presented in Section 4. Experiment results and observations will be presented in Section 5.
Finally, conclusion of this thesis will be presented in Section 6.

2. RELATED WORK

In this section, two related terms, diversity index and code coverage, are introduced as follows.

2.1. Diversity index

A diversity index is a statistic to measure the local members of a set consisting of various types of
objects. It was first introduced in ecology [8] to measure the biodiversity of an ecosystem and can be
also applied to other areas. For example, in economics, the diversity index can be defined to measure
the distribution over sectors of economic activity in a region; whereas in information science, the
diversity index can be used to explain the complexity of a set of information.
There are two basic factors of measuring diversity index: species richness and species evenness

[5]. Species richness is the number of different species present in an ecological system and assert
that the more species present in a habitat will result in a higher richness of the habitat. Species
richness does not take the abundances of the species or their relative abundance distributions into
consideration. On the contrary, species evenness expresses how close in numbers each species in
a system are. Species evenness is designed to show the relative abundance or proportion of individuals
among the species. Three well-known metrics used to measure diversity degrees are described as
follows.

2.1.1. Simpson’s index [6]. Simpson’s index in terms of ecology, denoted asD, concerns the species
richness and the species evenness. It represents the probability that two randomly selected individ-
uals in a habitat will belong to the same species. The calculation of Simpson’s index D is defined

as D ¼ ∑S
i¼1ni ni � 1ð Þ

N N�1ð Þ , where N represents the total number of individuals of all species, ni is the

number of individuals in species i, and S is the number of species. However, it is more often to
use eD, where eD ¼ 1� D, to present diversity intuitively. In such kind of notation, index 0 represents
no diversity of species, and index 1 means infinite diversity. A higher value of eD represents larger
diversity.

2.1.2. Shannon’s index [7, 8]. The Shannon’s index H cares the species richness and the species
evenness as well. It shows the information entropy of the distribution, and the species and the rel-
ative population sizes are treated as symbols and the probabilities, respectively. The calculation of
Shannon’s index H is defined as H ¼ �∑S

i¼1pi lnpi, where pi represents the relative abundance of
each species and is calculated as ni/N, S is the number of species, ni is the number of individuals
in species i, and N the total number of all individuals.
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2.1.3. Renyi’s index [9, 10]. Renyi’s index is a generalization of Shannon’s index. The Renyi’s
index of order α is defined as H ¼ 1

1�α ln∑
S
i¼1p

α
i , where α ≥ 0, α≠ 1, pi represents the relative abun-

dance of each species and is calculated as ni/N, ni is the number of individuals in species i, N is the
total number of all individuals, and S is the number of species. Lower value of α, approaching to 0,
more equally gives an index with an increasingly weights to all possible events, regardless of their
probabilities. If α is approaching to 1, Renyi’s index will reach to Shannon’s index; if α is ap-
proaching to 0, Renyi’s index leads to the maximum of Shannon’s index.

2.1.4. Comparison. All aforementioned indices consider both richness and evenness and are com-
pared in the view of sample size sensitivity and the difficulty of calculation [8]. Because Simpson’s
index has lower sample size sensitivity and its calculation is easier than Shannon’s index and Renyi’s
index, Simpson’s index is our final choice.

2.2. Code coverage

Testing networking devices before releasing them onto the market is a way of ensuring quality
and robustness. Raad and Monhamed [13] evaluated the performance comparison between differ-
ent traffic load density and the throughput. Shun-Ren [14] proposed a conformance test tool to
specify test cases at an abstract level, which makes it easier to generate more comprehensive
and extensible test cases. However, the number of test cases is far more than imaginable. For
example, regression testing is another type of testing that is performed to verify that new changes
do not damage the existing behavior of this software. Test suites tend to grow in size as software
evolves, which often makes it too costly to run entire test suites. Yoo and Harman [15] showed a
survey of regression testing on each area of test suite minimization, regression test case selection,
and test case prioritization. Test suit minimization seeks to eliminate redundant test cases, test
case selection seeks to identify the test cases that are relevant to some set of recent changes,
and test case prioritization seeks to order test cases in such a way that early fault detection is
maximized.
Ying-Dar et al. [16] focused on the problem of how to achieve a maximal amount of function

coverage under certain constraints, such as the minimal number of test cases, the minimal cost of
test cases, limited testing time, or a required level of coverage, and proposed six corresponding
algorithms to solve these problems. Code coverage, proposed in [11, 12], is a measure invented
for systematic software testing to describe the coverage of the source code that a program has been
tested. To measure how well the program is evaluated by a test suite, one or more coverage criteria
have been proposed [17, 18]. Three main coverage criteria are the following: (i) function level
coverage – the percentage of functions called in a program; (ii) branch level coverage – the percentage
of branches of control structures decided in a program; and (iii) line level coverage – the percentage of
lines executed in a program. For example, a C-like function is as follows:

int foo (int x, int y)
{
int z=0;
if ((x>0) && (y>0)) z= x;
return z;

}

This function is assumed to be part of some bigger program, and this program is evaluated with a
test suite. If function foo is called at least once, the function level coverage for foo is satisfied. The
branch level coverage can be satisfied with test cases of foo(1, 1), foo(1, 0), and foo(0, 0). These
cases are necessary because in the first two cases, (x> 0) evaluates to true; whereas in the third case,
(x> 0) is false. The line level coverage can be satisfied if foo(1, 1) is required. In this case, every
line in this function is executed.
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3. TRAFFIC DIVERSITY VERSUS CODE COVERAGE

In this section, various diversity indices are elaborated to clarify the diversity of packet traces
accordingly. The code coverage of branches, C, is used to present the percentage of branches executed
in a program.
In order to find the relationship between the traffic diversity and code coverage, we define six

diversity indices, which are calculated on the basis of the definition of Simpson’s index. Simpson’s
index D can be used to represent the probability that two randomly selected individuals in the
habitat will belong to the same species in ecology. In other words, we can use eD ¼ 1� D to denote
the probability that two randomly selected individuals will belong to different species.
With Simpson’s index, six types of diversity indices are specified. Ds_IP, the diversity index of the

source IP address in a packet trace, means the probability of randomly selecting any two packets
from a packet trace with different source IPs. In the same way, Dd_IP stands for the diversity index
of destination IP address, Ds_port is used for source port, Dd_port is used for destination port, andDapp

is used for application header. A combined diversity index Dmix =Ds _ IP ×Dd _ IP ×Ds _ port×Dd _ port

is defined to be the probability of randomly selecting any two packets from a packet trace, where the
source IPs, destination IP, source port, and destination port are not the same.
Therefore, the goal of this work can be stated as follows. Given multiple packet traces with various

traffic diversity, which is represented byDmix, and different code coverageC, our goal is to clarify the
relationship between the traffic diversity of packet traces and the corresponding code coverage based
on defined diversity indices.

4. SYSTEM ARCHITECTURE AND METHODOLOGY

In this work, a system architecture including a diversity index calculator and a code coverage ana-
lyzer is designed. Furthermore, a methodology for calculating diversity indices and analyzing the
corresponding code coverage is also proposed.

4.1. System architecture

Figure 1 illustrates the overview of this system. The system consists of two components, one is a
diversity indices calculator and the other is a code coverage instrument/analysis tool. The diversity
index calculator is used to calculate the different diversity indices, namely, Dmix, Ds_IP, Dd_IP,
Ds_port, Dd_port, and Dapp, by different packet header fields on the basis of the definition of
Simpson’s index, whereas the code coverage instrument/analysis tool is used to evaluate the code
coverage of a target source code, which is instrumented first by a code instrument tool. Packet traces
with different diversity indices are then replayed to a device under test (DUT), which is a product
undergoing testing, to evaluate the corresponding code coverage. Finally, the results are collected.
In our context, a DUT is a network device that connects computers or other devices together and
handles network packets.

Figure 1. Diversity indices calculator and code coverage analysis tool.

Y.-D. LIN ET AL.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (2014)
DOI: 10.1002/dac



4.2. Methodology

Figure 2 illustrates the process of calculating diversity index using Simpson’s index. The process
includes the following: (i) the individual header field of packets in a trace, such as source IP,
destination IP, protocol, source port, destination port, and application header, are extracted and
stored separately in files; (ii) each file is sorted according to their contents, where identical items
can be grouped first; and (iii) each diversity index of a specific header field is calculated on the basis
of Simpson’s index.
Figure 3 shows the process of a code coverage analyzer. In Figure 3, the target source code is

first instrumented using tracking instructions by the instrumentation tool Gcov [19]. Gcov is a test
coverage program and can be configured to accumulate statistics by line, basic block, or branch.
Gcov creates a log file called file.gcov that indicates how many times each line or branch of a
source file file.c has executed. Therefore, in order to evaluate the code coverage of the target
source code, the target source code is first instrumented using Gcov, for example, on branch level.
Next, packet traces with different diversity indices are replayed to the DUT that executes the
instrumented source code to evaluate the code coverage. During the test, Gcov accumulates and
logs the branch level statistics of code coverage. We can then use the corresponding log file,
file.gcov, to evaluate the code coverage of the program. With the information of the different
diversity indices and corresponding code coverage, the relationship between them can be found
and explored.
Therefore, for a code coverage analyzer, it should try to find and formulate the relationship be-

tween different traffic diversity indices and corresponding code coverage. With this kind of infor-
mation, the testers can design distinct test plans to fit different test scenarios, test quality, and
product requirements.

Figure 2. The process of calculating the diversity index of a field.
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5. EVALUATIONS

In our experiments, Snort [20] and Linux kernel [21] were used as the evaluated programs, and
packets traces of different number of packets and distinct size of network segments were used to
evaluate the code coverage during the test.

5.1. Configurations

The programs to be tested are Snort-2.9.0.5 and Linux kernel-2.6.35. Snort is a user-level program,
whereas Linux kernel is a kernel-level program. Both programs were instrumented by Gcov and ran
on Ubuntu 10.10. A user-level program can be instrumented by Gcov directly, whereas a kernel-
level program needs to be instrumented by Gcov with kernel patches and modules.
Packet traces used in following experiments are captured from two different network segments,

140.113.243.0/24 and 140.113.249.0/24, which are later named packet source 1 and packet source 2,
respectively. The traffic captured from the network segment 140.113.0.0/16 is used for verification.
Each IP is used by at least one host behind. Packet trace can be further divided by the following:
(i) the number of packets (1.pcap, 10.pcap, 100.pcap, 1000.pcap, 10000.pcap, 100000.pcap,
1000000.pcap, 5000000.pcap, and 10000000.pcap) and (ii) the size of network segments (140.113.0.0/
16.pcap, 140.113.243.0/24.pcap, 140.113.243.0/26.pcap, 140.113.243.0/28.cap, 140.113.249.0/24.pcap,
140.113.249.0/26.pcap, and 140.113.249.0/28.cap). Two sets of packet traces are retrieved from
packet source 1 and packet source 2, respectively. In the category of the number of packets, a packet
trace with fewer packets is designed to be a subset of a trace with more packets. For example, 10.
pcap is a subset of 100.pcap and also a subnet of 10000.pcap. In the category of the size of network
segments, a packet trace with a smaller segment is a subset of a trace with a larger segment. For
example, 140.113.243.0/28.pcap is a subset of 140.113.243.0/26.pcap and also a subnet of
140.113.0.0/16.pcap.

Figure 3. The process of a code coverage analyzer.
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Figure 4. Effects of different number of packets on diversity index, richness, and code coverage for different
packet sources.
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5.2. Experiment results

In the following results, from Figures 4–8, the relationship between traffic diversity index, richness,
evenness, and code coverage were showed using different packet sources. In the following figures,
related results were put into the same figure to show their relationship. The left vertical axis denoted
diversity index, ranging from 0 to 1, and the right vertical one showed the numeric results
corresponding to different features. The horizontal axis shows different number of packets or size
of network segments.

5.2.1. Snort. Figure 4 illustrated that diversity indices and code coverage increased as the number
of packet increased. In Figure 4(a), the representative diversity index Dmix and code coverage of
packet traces from packet source 1 increased from 0 to 0.95 and from 19.1% to 32.2% as the number
of packets increased from 1 to 10,000,000.
Different diversity indices usually increased as the number of packets increased except two con-

ditions in our experiments: (i) the source IP diversity index Ds_IP and the source port diversity index
Ds_port when the number of packets increased from one million to five million and (ii) the destina-
tion port diversity index Dd_port when the number of packets increased from 10,000 to 100,000.
These exceptions are because Simpson’s index considers both richness and evenness. For the first
case, Ds_port decreased when the number of packets increased from one million to five million be-
cause the number of several source ports grew much larger than other source ports, causing that the
value of diversity index decreased from 0.98 to 0.96. For the second case, because the number of
several destination ports grew much larger than other destination ports, Dd_port of the number of
packets as 10,000 and 100,000 are 0.87 and 0.86, respectively. Also, Dmix might therefore decrease
because Dmix is defined as the product of Ds_IP, Dd_IP, Ds_port, and Dd_port. A decrease in any of the

Figure 5. Effects of different size of network segments on diversity indices and code coverage for different
packet sources.
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four diversity indices will make Dmix decrease as well. We also noticed that when the number of
packets exceeded 1,000,000, code coverage increased slowly. It means that the packet source 1 covered
most of source code when the packet number exceeded 1,000,000.
Similarly, in Figure 4(b), code coverage of packet traces from packet source 2 ranged from 19.4%

to 31.8% as the number of packets increases from 1 to 10,000,000. Dmix increased from 0 to 0.96,
and other diversity indices also increased as the number of packets increased. Note that as the

Figure 6. Effects of different number of packets and different size of network segments for different codes.
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number of packets increases, diversity indices increase from a macro view, but sometimes, it
decreases from a micro view, as shown in Figure 4(a) and explained earlier. This anomaly will
appear sometimes because the bias distributions among different species, but in most cases, diversity
indices increase as the number of packets increases.
In Figure 4(c), the values of richness for various header fields of packet traces from packet source

1 increased as the number of packets increased. A burst of network traffic from the same source IP
address leads to the decrease of evenness, which can cause the decrease of diversity indices. In
Figure 4(d), the richness of each header fields of packet traces from packet source 2 also increased
as the number of packets increased.
Figure 5 showed that diversity indices and code coverage increased as network segment size

became larger. In Figure 5(a), Dmix and code coverage of packet source 1 increased from 0.41 to
0.82 and from 28.2% to 32.2%, respectively, as the size of network segments became larger. A
larger size of network segments contained more hosts, implying more richness in IP diversity. In
Figure 5(b), Dmix and code coverage of packet source 2 increased from 0.31 to 0.9 and from
27.5% to 31.8%, respectively, as the size of network segments became larger. However, source
IP diversity index Ds_IP decreased in network segment 140.113.249.0/24, which means that traffic
bursts occurred in 140.113.249.0/24.pcap, resulting in worse evenness.
In Snort, the source codes in the directory ‘HttpInspect’ were used to decode user applications.

Given a data buffer, HttpInspect codes decode the data, locate HTTP fields, and normalize the fields.
Thus, this part of Snort source code should be greatly influenced by different packet traces. The percent-
age of branches of the directory HttpInspect to all source code is around 7%. In Figure 6(a), the code
coverage of HttpInspect codes and the whole Snort codes that packet source 1 could achieve ranged from
2.1% to 52.6% and from 19.2% to 32.2% as the number of packets increased from 1 to 10,000,000.

Figure 7. Effects of different number of packets on diversity indices and code coverage for different packet
sources.
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In Figure 6(b), the code coverage of HttpInspect codes and the whole Snort codes that packet source
2 can achieve ranged from 2.1% to 53.5% and from 19.4% to 31.8% as the number of packets
increased from 1 to 10,000,000.
The field ‘http.host’ having variable length in HTTP header was selected to monitor the code

coverage. Packet traces used here were pure HTTP traffic. In Figure 6(c), code coverage that packet
source 1 could achieve increased from 24.1% to 26.9% when the size of network segments became
larger. However, evenness made the diversity index decrease at the case of 140.113.249.0/26,
whereas richness increased when the size of network segments became larger. In Figure 6(d), code
coverage that packet source 2 could achieve increased from 22.7% to 26.8%, while the size of network
segments became larger. However, evenness decreased the diversity index from 140.113.249.0/28 to
140.113.0.0/16.

5.2.2. Linux kernel. Linux kernel-2.6.35was instrumented byGcovwith kernel patches and recompiled
again. We only evaluated the source codes in the directory ‘/net’ because the directory /net is directly
related to process network traffic. Figure 7 showed that diversity indices and code coverage increased
as the number of packets increased.
In Figure 7(a),Dmix and code coverage that packet source 1 could achieve increased from 0 to 0.92

and from 6.07% to 8.16%, respectively, as the number of packets increased from 1 to 10,000,000. In
Figure 7(b), Dmix and code coverage that packet source 2 can achieve increased from 0 to 0.96 and
from 5.81% to 9.47%, respectively, as the number of packets increased from 1 to 10,000,000.
Figure 8 illustrated that diversity indices and code coverage increased as the size of network

segments became larger. A larger size of network segment contains more hosts, which causes higher
richness in IP diversity. However, the source IP diversity index Ds_IP decreased in 140.113.249.0/24
using packet source 1, which meant evenness was worse.

Figure 8. Effects of different size of network segments on diversity indices and code coverage for different
packet sources.
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6. CONCLUSIONS

In this work, we defined diversity indices for both fixed-length and varied-length header fields and
proposed a methodology for calculating the diversity index and analyzing code coverage of a packet
trace. Traffic diversity was calculated on the basis of the definition of Simpson’s index that
considers the richness and evenness of the contents simultaneously. Two programs, Snort and
Linux kernel, were used as DUTs. The related programs were instrumented and analyzed by Gcov
to obtain the corresponding code coverage.
According to experiment results, diversity indices and code coverage all increased as the number

of packets or the size of network segments of different packet traces increased. For Snort, code cov-
erage of HttpInspect codes and the whole Snort codes that packet source 1 achieved increased from
2.1% to 52.6% and from 19.1% to 32.2%, respectively, as the number of packets increased from 1
to 10,000,000. As the size of network segments increased, the code coverage of the variant length of
http.host field and the whole Snort codes that packet source 1 achieved increased from 24.1% to
26.9% and from 28.2% to 32.2%, respectively. With packet source 2, code coverage of HttpInspect
codes and the whole Snort codes increased from 2.1% to 53.5% and from 19.4% to 31.8%, respec-
tively, as the number of packets increased from 1 to 10,000,000. As the size of network segments
increased, the code coverage of the variant length of http.host field and the whole Snort codes
increased from 22.7% to 26.8% and from 27.5% to 31.8%, respectively.
The effects of different number of packets and different size of network segments on diversity

indices and code coverage were similar for the case of Linux kernel. Code coverage of Linux
/net codes increased from 6.07% to 8.16% for packet source 1 and from 5.81% to 9.47% for packet
source 2 as the number of packet increased from 1 to 10,000,000. Richness of packet traces increased
when the number of packets or size of network segments increased. However, evenness may be
influenced by traffic bursts, which leads to decrease the diversity indices.
Network traffic is suitable to test network devices because it has complicated user behaviors and

hundreds to thousands of applications inside. With the help of traffic from different number of
packets or different size of network segments, distinct coverage of codes can be evaluated and
verified. In the trend of shorter development and test cycles and emerging number of products, if
the code coverage can be controlled or even predicted, the test efficiency and the quality of products
can be raised.
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