
IEEE Communications Surveys & Tutorials • 2nd Quarter 20062

etecting and filtering intrusions, worms, viruses, and
inappropriate Web pages involves string matching for
designated signatures in the application content, as

opposed to packet classification that matches fixed fields in the
packet header [1]. The position and length of the signatures in
the packet payload are unknown beforehand, so scanning
throughout the packet payload for signatures is normally less
efficient than packet classification. String matching is reported
to be a bottleneck for network content security applications
[2–5], and thus its efficiency is critical.

Signatures in content security applications are typically
represented as patterns in some forms. For clarifying the ter-
minology, a string is a sequence of characters, and a pattern is
an occurrence of a string in the text [6]. Signature characteris-
tics in different applications may vary wildly in the number,
length, and character distribution in the alphabet. For
instance, anti-virus systems feature a large number of long sig-
natures, while the intrusion detection systems may have short
signatures of one or two characters. No existing string match-
ing algorithms can search for signatures of various characteris-

tics faster than others can. The choice of a proper algorithm
therefore becomes important in the application design.

This work reviews existing string matching algorithms and
their applications in network content security. The character-
istics of signatures in three typical open source packages are
investigated: ClamAV (http://www.clamav.net) for anti-virus,
DansGuardian (http://dansguadian.org) for Web content fil-
tering, and Snort (http://www.snort.org) for intrusion detec-
tion systems (IDS). This work profiles the performance of
various algorithms. The most efficient algorithm for each
package is identified and then implemented on each package.
These revised packages are benchmarked and the improve-
ment in performance for sample sets of both synthetic and
real data is demonstrated. The impact of memory and cache
accesses on performance is also measured quantitatively.

In addition, this work proposes classified RKBT (Rabin-
Karp with binary search and two-level hashing) to accelerate
the performance of the original RKBT algorithm [7] for a
large pattern set. The RKBT algorithm can verify a possible
match found by some string matching algorithms [8], and its

D

PO-CHING LIN, ZHI-XIANG LI, AND YING-DAR LIN, NATIONAL CHIAO TUNG UNIVERSITY
YUAN-CHENG LAI, NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

FRANK C. LIN, CISCO SYSTEMS, INC.

ABSTRACT

The efficiency of string matching algorithms is essential for network con-
tent security applications, such as intrusion detection systems, anti-virus sys-
tems, and Web content filters. This work reviews typical algorithms and
profiles their performance under various situations to study the influence of
the number, the length, and the character distribution of the signatures on
performance. This profiling can reveal the most efficient algorithm in each
situation. A fast verification method for some string matching algorithms is
also proposed. This work then analyzes the signature characteristics of three
content security applications and replaces their original algorithms with the
most efficient ones in the profiling. The improvement for both real and syn-
thetic sample data is observed. For example, an open source anti-virus pack-
age, ClamAV, is five times faster after the revision. This work features
comprehensive profiling results of typical string matching algorithms and
observations of their application on network content security. The results
can enlighten the choice of a proper algorithm in practical design.

PROFILING AND ACCELERATING STRING
MATCHING ALGORITHMS IN THREE

NETWORK CONTENT SECURITY APPLICATIONS

2ND QUARTER 2006, VOLUME 8, NO. 2

www.comsoc.org/pubs/surveys

1553-877X

IEEE Communications Surveys & Tutorials • 2nd Quarter 2006 3

efficiency becomes critical as the number of possible matches
increases.

This work focuses on string matching algorithms that apply
to the field of network content security. For general discus-
sions of string matching algorithms and their applications in
other fields, the readers are referred to some recent text-
books, such as [6] and [9]. Moreover, a number of algorithms
can be accelerated by hardware parallelism. A comprehensive
survey of these hardware acceleration mechanisms deserve the
writing of another paper and is beyond the scope of this work.
Interested readers are referred to a brief survey in [10], and
some commercial solutions, such as SafeNet SafeXcel 4850
[11] or Tarari RegEx Content Processor [12].

The main contributions of this work are summarized as fol-
lows.
• This work offers a comprehensive survey as well as the

profiling results of typical string matching algorithms at
various aspects and their application on network content
security. The results can enlighten the choice of a proper
algorithm in practical design.

• This work suggests the most efficient algorithm for each
network content security package and demonstrates the
performance gain for both synthetic and real data
through implementation and benchmarking.

• A new verification method, classified RKBT, is proposed
to accelerate some string matching algorithms.
The rest of this work is organized as follows. We review

typical algorithms and three open-source network content
security packages. We will discuss verification in some algo-
rithms and propose a new method for verification. We present
the profiling results and identify the most efficient algorithm
for each application. The performance improvement for both
synthetic and real data after revising the packages is also
demonstrated. We then conclude the study.

RELATED WORKS

TYPICAL STRING MATCHING ALGORITHMS

The single string matching problem is to search for all
the occurrences of a string p, called the pattern, in the text
T = t1t2t3…tn on the same alphabet ⊆, where n is the length
of the text. Multiple string matching extends the problem to
search for the pattern set P = {p1, p2 …, pr} simultaneously in
the text. During the search, a search window of the pattern
length is moved along the text, and the pattern is searched for
within the window. Pattern matching can be exact or approxi-
mate. An exact matching algorithm stipulates that the pattern
and the matched text should be exactly the same, while an
approximate matching algorithm allows a limited error between
the pattern and the matched text. This work concentrates
on only the former because the majority of the content securi-
ty applications use it to find out the signatures. A tutorial
on the approximate matching algorithms can be found in
Navarro [13].

Exact string matching algorithms can be categorized in var-
ious ways. One way of categorization is grouping them into
three general approaches: prefix searching, suffix searching,
and factor searching, depending on which part of the pattern
is searched for within the search window [6, 14]. A string X is
the prefix, suffix, and factor of XY, YX, and YXZ, respective-
ly, where Y and Z are also strings. The time complexity of the
algorithms can be linear or sub-linear. A sub-linear time algo-
rithm is feasible by skipping characters that do not need to be
examined in the text.

This work categorizes the algorithms into four categories
to emphasize the data structure that drives the matching.

These categories are automaton-based, heuristics-based, hash-
ing-based, and bit-parallelism-based. An automaton-based
algorithm builds a finite state automaton from the patterns in
the preprocessing stage and tracks the partial match of the
pattern prefixes in the text by state transition in the automa-
ton. A heuristics-based algorithm allows skipping some char-
acters to accelerate the search according to certain heuristics.
Some algorithms require a verification algorithm following a
possible match to verify if a true match occurs. A hashing-
based algorithm compares the hash values of characters in the
text segment by segment with those of the characters in the
patterns. If both hash values are equal, a possible match may
occur. The characters in the text and those in the patterns are
then compared to verify if a true match occurs. A bit-paral-
lelism-based algorithm simulates the operation of a non-deter-
ministic finite automaton that tracks the partial match of the
prefix or the factor of the pattern by means of the parallel bit
operations inside a computer register word in which the state
transition status is encoded [15]. Table 1 summarizes typical
algorithms in these four categories. Each algorithm will be
detailed in the following text.

Automaton-based — The Aho-Corasick (AC) algorithm [16]
was proposed for multi-pattern matching. A finite automaton
that accepts all the strings in the pattern set is built in the pre-
processing stage. Each character in the text is then fed
sequentially to the automaton that tracks partially matched
patterns through state transition, so the time complexity is
O(n). If one of the final states is reached, a match is claimed.
Although the AC algorithm is theoretically independent of
the pattern set size in efficiency, it will become slow for a
large pattern set in practice because of the worse cache locali-
ty in accessing a large transition table. Effectively compressing
the transition table to reduce the memory requirement and
enhance the cache locality becomes active research in the
implementation of the AC algorithm.

Norton [17] presents the Optimized-AC algorithm to
reduces the memory requirement in the well-known IDS
package of Snort by compressing the transition table into a
compressed sparse vector format or a banded-row format.
These variants are generally faster than the standard AC algo-
rithm due to their better cache locality. Some hardware accel-
eration mechanisms are also proposed for the AC algorithm.
We name just a few in this article. Tuck et al. [18] use both
bitmap and path compression to compress the transition table.
This optimization in hardware implementation gains from 31
percent to twice the throughput for Snort rule sets. However,
the software implementation is not as good because some
inefficient bit operations in this optimization are inefficient in
software. Tan and Sherwood [19] split the finite automaton in
the AC algorithm into several ones in the bit level, say a set of
four automata, each responsible for two bits of an input char-
acter. The state transition in each automaton is driven by the
individual bits. By parallel tracking of these automata, they
claimed a system ten times faster than the best known
approaches for the Snort rule set.

Heuristics-based — The Boyer-Moore (BM) algorithm is a
single string matching algorithm. It allows skipping over char-
acters that cannot be a match in the text according to two
heuristics: the bad-character heuristic and the good-suffix
heuristic [20]. Two shift functions are pre-computed according
to the two heuristics before the search. The characters within
the search window are searched backward from the last char-
acter for the longest suffix that is also a suffix of the pattern.
The two shift functions are referred to only when a character
mismatch is found. The maximum of these two function val-

IEEE Communications Surveys & Tutorials • 2nd Quarter 20064

ues is the shift distance of the search window. If no mismatch
is found, a pattern match is claimed.

The BM algorithm has the best performance when the shift
distance is close to the pattern length. The time complexity is
sub-linear of O(n/m) in the best case and O(nlog|Σ|m/m) on
average [21], where m is the pattern length. However, the
worst-case performance can be O(nm) when both the pattern
and the text contain the same single character. Some modifi-
cations of the BM algorithm, such as Galil’s approach [22],
can guarantee the worst-case performance of O(n).

Horspool simplified the BM algorithm [23] by resorting to
only the bad-character heuristic, which is useful for a reason-
ably large alphabet, say the ASCII table, because the proba-
bility of a character mismatch with the characters of the
pattern within the search window is high. Although the BM
algorithm can have longer shift distance by taking the maxi-
mum of the bad-character function and the good-suffix func-
tion, the Horspool algorithm is generally faster in practice
because it spends time only in looking up one function, i.e.
the bad-character function, in each shift. The simplification
compensates for the loss of efficiency due to the shorter shift
distance.

The set-wise Horspool algorithm [6] extends the Horspool
algorithm to search for multiple patterns simultaneously. The
patterns to be searched are represented as a reverse trie. Like
the Horspool algorithm, the set-wise version compares the
characters backward from the rightmost one of the search
window with those in the reverse trie. The search window is
shifted along the text in a way similar to the bad-character
shift in the Horspool algorithm. A match is claimed if the
final state of the trie is reached.

The Horspool algorithm is not scalable for a large pattern

set because the rightmost character will be very likely to
appear in the patterns and so the average shift distance will
be decreased. The Wu-Manber (WM) algorithm [24] improves
the set-wise Horspool algorithm by reading a block of B char-
acters rather than only one character for the shift value. The
probability that a block of characters appear in the patterns is
less than the probability that a single character does, so longer
shift distance can be expected. The shift value for each differ-
ent block (totally |Σ|B different blocks) is stored in a shift
table. The memory space of the shift table limits the practical
value of B.

The WM algorithm requires that the patterns have the
same length. If all the pattern lengths are not equal, only the
first lmin characters of each pattern are considered, where lmin
denotes the length of the shortest pattern (LSP). The shift
table is built in the preprocessing stage according to the
heuristic similar to that in the Horspool algorithm.
1 The shift distance is lmin – B + 1 when the block of the

last B characters in the search window does not appear
in any patterns, i.e. not a substring of any patterns. The
reason is that any shift shorter than lmin – B + 1 will
locate the block of B characters inside the search window
again, contradicting that the block does not appear in
any patterns.

2 The shift distance is lmin – j otherwise, assuming that the
rightmost occurrence of the last B characters in the
search window ends in position j of some pattern.
The WM algorithm hashes the block of the last B charac-

ters in the search window to look up the shift table for the
shift distance during the scanning. The hash function may not
be one-to-one so that a shift table with fewer than |Σ|B

entries is possible. In this case, the shift value in an entry is

n Table 1. Categorization of typical string matching algorithms.

Algorithms Approach Time
Complexity

Search
Type

Multiple
String Key Ideas

Aho-Corasick
Automaton-
based

Linear Prefix Yes Finite automaton that tracks the partial prefix match.

Optimized-AC Linear Prefix Yes Compress the transition table of the finite automaton
in the Aho-Corasick algorithm.

Boyer-Moore

Heuristics-
based

Sub-linear Suffix No Bad-character and good-suffix heuristics to determine
the shift distance.

Horspool Sub-linear Suffix No Bad-character heuristics only.

Set-wise Horspool Sub-linear Suffix Yes Bad-character heuristics for multiple patterns.

Wu-Manber Sub-linear Suffix Yes Determine the shift distance from a block of
characters in the suffix of the search window.

Modified-WM Sub-linear Suffix Yes Tuning the table size and hash function in the
Wu-Manber algorithm.

FNP/FNP2 Sub-linear Prefix Yes
Determine the shift distance from a block of
characters in the prefix of the search window and the
suffix of the block.

Rabin-Karp
Hashing-based

Linear Prefix No Compare the text and the patterns from their hash
functions.

RKBT Linear Prefix Yes Two-level hashing with binary search.

SOG
Bit-parallelism-
based

Linear Prefix Yes Bit-parallelism and q-gram for prefix matching.

BG Sub-linear Factor Yes Bit-parallelism and q-gram for factor matching.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2006 5

the minimum shift value mapped to that entry.
Saving table space and having longer shift dis-
tance is a trade-off in the choice of the hash
function. A possible match occurs when the shift
value is 0. A verification algorithm, left open and
not specified by the WM algorithm, follows to
verify if a true match occurs. We will discuss the
verification algorithms more.

The time complexity of the WM algorithm is
sub-linear on average, but depends considerably
on lmin because the maximum shift distance is
lmin – B + 1. If lmin is small, the performance will
be degraded significantly.

The Modified-WM algorithm in Snort (see the comments
in mwm.c under the Snort source tree of /src/sfutil) is a variant
of the original implementation of the WM algorithm. Note
that some patterns in Snort are only one character long [25],
making the shift distance for a block size of B ≥ 2 undefined.
This variant involves a one- or two-character block and groups
all of the patterns with the same hash value from the pattern
prefix for verification. The Modified-WM algorithm is more
efficient than the original WM implementation, as will be pre-
sented later.

The shift distance of lmin – B + 1 in the WM algorithm can
be very short when lmin is close to the block size. The
FNP/FNP2 algorithms [25, 26] allow longer shift distance than
the WM algorithm by considering the appearance of not only
the whole block but also the suffix of the block in the pat-
terns. The observation is simple. For example, if a block “abc”
does not appear in any patterns, and both suffixes of “bc” and
“c” are not prefixes of any patterns, then the shift distance of
three characters is safe, i.e., not missing any possible match.
In contrast, the WM algorithm is more conservative because it
does not consider the suffix and allows the safe distance of
only one character (assuming lmin = 3 and B = 3 in this exam-
ple). The improvement is particularly significant for a pattern
set with short patterns, such as those in Snort. Like the WM
algorithm, verification for a true match follows if a partial
match within the search window is found.

Hashing-based — The Rabin-Karp (RK) algorithm [27] is
designed to handle single string matching. During the search,
the hash value of each segment of m characters in the text,
h(ts…s+m–1), is compared with the hash value of the pattern,
h(p), for s = 1…n–m + 1, where m is the pattern length and
h is the hash function. If h(ts…s+m–1) = h(p), a possible match
may occur at the position of s. The pattern is then compared
with this segment character by character to verify whether a
true match occurs or not.

The RK algorithm can be extended for multiple string
matching by storing the hash values of the patterns in the pat-
tern set in an ordered table. The comparison of the hash val-
ues becomes binary search in the ordered table, to find
whether the hash value of a text segment is equal to that of
some pattern in the ordered table. However, the binary search
requires table accesses on the order of log2r times, where r is
the number of patterns. The binary search is costly even for a
pattern set of moderate size, say roughly 10 accesses on aver-
age for 1,000 patterns.

Muth and Manber [7] use two-level hashing to accelerate
the binary search. Besides the ordered table of the first hash
values for binary search, a bitmap is constructed from a sec-
ond hash function for quick indexing. The bitmap indicates
whether a match is possible in the ordered table. The binary
search is performed only when the bitmap indicates the possi-
bility of a match, and hence the number of binary searches
can be reduced. This algorithm is denoted as RKBT herein to

stand for the BK algorithm with binary search and two-level
hashing. The detailed operation is left to a later section.

Bit-parallelism-based — The Shift-Or (SOR) algorithm
[28] and the Backward Nondeterministic DAWG Matching
(BNDM) algorithm [29] were proposed for single string
matching with bit-parallelism to simulate the tracking of a
non-deterministic finite automaton (NFA). The simulation in
both algorithms is similar; the difference is the parts in the
pattern that are tracked. The former keeps a set of all the pre-
fixes of the pattern that have been matched, while the latter
keeps the set of all the factors that have been matched. We
use the BNDM algorithm as the example to explain the bit-
parallelism operation. Consider the following NFA that recog-
nizes the suffixes of the reverse pattern of “parallel” in Fig. 1
(λ denotes the null string). Tracking the NFA can search the
factors in the pattern of “parallel”.

The state of the search is represented by an m-bit comput-
er word D = dm…d1, initialized by the 1m to denote the
λ-transitions. A table B stores a bit mask b1…bm for each
character c in Σ. The bit mask sets the bits bj to 1 in B[c] if
the j-th character of the pattern is c. For example, B[‘l’] =
00001101 for the pattern ‘l’. During the search, the search
window is scanned backward from the last character, and D is
updated for each character ts read in the window with the for-
mula D’ ← D & B[ts], followed by D” ← D’ << 1, where “&”
denotes the “and” operation. For example, assume D is
“11111111” in Fig. 1 in the beginning. D’ becomes “01010000”
after “a” is read, indicating that two factors of “a” appear in
the second and the fourth position of “parallel”. D’ then
becomes “10100000”, the next D in the beginning of the next
iteration. When “p” is read next, D’ becomes “10000000”,
indicating a factor “pa” in the first position of “parallel”. The
process goes on until the end of the text. A match is claimed
if the entire search window has been searched and D’ =
10m–1.

Factor-based search also allows skipping characters that
cannot be a match. The observation is simple. Assume a suffix
µ of the search window is a factor of the pattern, but the suf-
fix βµ is not, where β is a character. The search window can
be safely shifted after β. A shift smaller than β cannot get a
match because it violates the assumption that βµ is not a fac-
tor. Like the WM algorithm, the time complexity of BNDM is
also sub-linear time on average.

The SOG and BG algorithms [8] extend the SOR and
BNDM algorithms, respectively, for multiple string matching,
where G is short for q-Gram, as explained immediately. In
these two algorithms, multiple patterns are viewed as a single
pattern of classes of characters. The characters in the same
position of each pattern are grouped into a class. For exam-
ple, two patterns “cat” and “dog” are viewed as a single pat-
tern of “[cd][ao][tg]”. Therefore, multiple string matching is
transformed into single string matching. The SOR or BNDM
algorithm searches for the pattern of classes of characters.

n Figure 1. An NFA recognizing all the suffixes of the reverse pattern of “paral-
lel” in BNDM.

Parallel

Search window

An example of the bit-parallelism
Pattern

Text

0

1
1

λ λ λ λ λ λ λ λ λ

1 e a ar p1
2 3 4 5 6 7 8 9

IEEE Communications Surveys & Tutorials • 2nd Quarter 20066

False positives, however, may occur in this approach. For
example, “dag” can match “[cd][ao][tg]”, but it is neither “cat”
nor “dog”. A possible match should be verified to avoid a
false positive. To reduce the number of false positives, each
pattern in the pattern set is viewed as an m – q + 1 q-gram
sequence, where m is the pattern length. The patterns become
“ca-at” and “do-og” in the above example. A q-gram expands
the effective alphabet size from |Σ| to |Σ|q so that the num-
ber of false positives in the text and thus verifications can be
reduced. Both algorithms use the RKBT algorithm to acceler-
ate the verification.

Other Approaches — String matching algorithms have been
developed for decades. Full coverage of all algorithms in this
article is nearly impossible. This sub-section covers other algo-
rithms that do not belong to the above categories. For more
algorithms and their tutorial, readers are referred to some
good online resources, such as [30].

The ExB and E2xB algorithms [31, 32] are designed for
intrusion detection. They search for one pattern after another
sequentially, and exclude the pattern that is impossible to
appear in the packet content. The exclusion is based on this
simple observation: If a pattern has a character c, the text
must have the character c to contain a match. These two algo-
rithms assume that the intrusion signatures scarcely appear in
the real environment, so patterns that cannot be a match can
be quickly excluded. The BM algorithm follows if a match is
possible, i.e., not excluded. The two algorithms are not scal-
able to a large pattern set because of their sequential search
of patterns. They also may not apply when the patterns
appear frequently, a case that violates their assumption. The
Set Backward Oracle Matching (SBOM) algorithm [33] uses a
factor oracle to recognize at least all the factors in the pat-
terns. It is shown to be most efficient for a small character set,
and can better apply to bioinformatics. Some algorithms com-
bine two or more aforementioned algorithms, such as the
AC_BM algorithm [34]. This algorithm applies the bad-char-
acter and good-suffix heuristics on the automaton in the AC
algorithm so that skipping characters in the search window is
made possible. However, it has the same scalability problem
as the set-wise Horspool algorithm for a large pattern set
since the heuristics are based on characters rather than on
blocks.

SELECTED PACKAGES

Table 2 lists the number of patterns, the maximal and mini-
mum pattern lengths, and all supported algorithms in three
open-source packages of network content security applica-
tions. The details of each package will be explained in the fol-
lowing paragraphs.

ClamAV — ClamAV contains two types of virus patterns:
basic patterns that are a simple sequence of characters, and
multi-part patterns composed of multiple sub-patterns. The
former occupies 93 percent of the total patterns. ClamAV
scans basic patterns by the WM algorithm. If no virus is
found, the multi-part patterns are then scanned by a variant
of the AC algorithm, in which the automaton is represented
as a two-level trie [35]. Sub-patterns with a common prefix of
two characters are stored in a linked list under the leaf that
represents the common prefix. ClamAV uses a table to keep
the number of sub-patterns that have been found for each
pattern. All sub-patterns of a multi-part pattern must be
matched in sequence to assert a virus. ClamAV also supports
a simplified form of regular expressions. For example,
ClamAV allows “bounded gaps” that specify the minimum
and maximum distances allowable between two consecutive
sub-patterns by recording the position of a sub-pattern and
calculating the distance from its last sub-pattern.

DansGuardian — DansGuardian searches for all keywords
in the Web content, and determines whether the content
belongs to a banned category. DansGuardian implements the
Horspool algorithm and a deterministic finite automata
(DFA) algorithm. In the preprocessing, it builds a two-dimen-
sional array, called the graph data, to represent a transition
table of the whole DFA that accepts the keywords. Only one
copy of redundant keywords from different categories are
kept in the pattern set. The graph data is then searched for
the nodes that have common prefixes but have fewer than 12
branches (i.e., fewer than 12 keywords from that node). These
keywords represented by traversing from the root through
these nodes to leaves are moved into another group for
searching with the Horspool algorithm one by one. After the
Horspool search, DansGuardian continues to search for all
the keywords in the graph data. At least 12 keywords share
each prefix in the graph data so that traversing the DFA can
search for these keywords simultaneously. Finally, Dans-

n Table 2. Selected open source network content security packages.

Application Packages Version Algorithms1
Number of
Patterns Classified2

Pattern
Length

Char. Set
Distribution3

Anti-virus ClamAV 0.85 Aho-Corasick
Wu-Manber 26467 No 10~210 Type 1

Content-Filter DansGuardian 2.8.0.4 Horspool
DFA 5867 No 2~64 Type 2

IDS/IPS Snort 2.3.3

AC-std
AC-Full
AC-Sparse
AC-Banded
AC-SB
Modified-WM
LowMemTrie

Patterns for all
groups: 14295
Total rules:
2246

Yes
173 groups
Max group size:
1174
Min group size: 12

1~107 Type 1

1 The default algorithms are marked in bold.
2 Indicate whether the patterns are classified into several subsets, rather than collapsed in a single set.
3 Type 1: close to uniform distribution. Type 2: biased to English character set.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2006 7

Guardian determines whether the
content should be banned accord-
ing to the matched keywords. If the
forcequicksearch option is enabled
in the configuration, all the key-
words will be searched for with the
Horspool algorithm one by one.

Snort — Snort divides its rules into
rule subsets associated with unique
characteristics in the packet header,
such as port numbers, ICMP types,
and transport protocol identifiers.
The packet header is examined for
the unique characteristics first to
determine which rule subset to be
referred to, and signatures in that
rule subset are then searched for
[36]. The Modified-WM algorithm
searches for the signatures by
default. If the signatures in a rule are found, the rest of the
rule, represented as options in the rule specification, is veri-
fied to claim a true match. If a complete rule match has been
found, Snort inserts the rule into the event queue. Finally,
Snort processes the event queue and selects a single event for
alert. Snort also supports signatures in regular expressions
conforming to the specification of Perl Compatible Regular
Expressions (PCRE) [37]. PCRE matching is one of the
options in the rule specification, and like the other options, it
is performed after the search of the rule subset. To accelerate
the search, necessary factors of a regular expression are man-
ually added into the rule subset as a hint of possible appear-
ance of the regular expression. For example, “abcd” is a
necessary factor of the regular expression “(abc) + d”. PCRE
matching is performed only when the hint is found, and hence
unnecessary PCRE matching can be avoided.

THE VERIFICATION ALGORITHM

A number of string matching algorithms, such as the BG and
WM algorithms, rely on a verification algorithm to assert a
true match when a possible match is found, as discussed earli-
er. The RKBT algorithm can serve the purpose [8], but it can
be inefficient for a large pattern set because of its data struc-
ture discussed below. Classified RKBT (CRKBT) is proposed
herein to accelerate the verification.

THE PROPOSED CRKBT ALGORITHM

The operation of the RKBT algorithm is illustrated in Fig. 2a.
Each pattern in the pattern set is viewed as consecutive blocks
of four bytes, and so each block can form a 32-bit integer. If
the pattern length is not a multiple of four, the last block is
padded with zeros. The first hash function is defined by
xor’ing the integers in these blocks. In the preprocessing, an
ordered table is constructed to store the first 32-bit hash val-
ues of the patterns. A second hash function is derived from
the first by xor’ing the lower 16 bits and the upper 16 bits of
the first hash values. A bitmap of 216 entries is then built to
store the second hash values. The i’th bit of the bitmap is 1 if
at least one pattern has i as its second hash value, and is 0
otherwise.

The bitmap indicates whether binary search in the ordered
table is necessary. Assume the second hash value of a search
window is i in the search stage. If the i’th bit of the bitmap is
0, no possible match will occur and the verification fails.

When the i’th bit of the second hash value is 1, say the 2345th
bit in Fig. 2, the ordered table is searched for the first hash
value with binary search. If the first hash value is found, the
characters of the patterns with that value are compared with
those in the search window one by one to check if a true
match occurs. Otherwise, the verification fails.

The performance of the RKBT algorithm is degraded sig-
nificantly for a large pattern set. The probability that a bit in
the bitmap is set to 1 will be high in such a case. For example,
nearly 80 percent of the bits in the bitmap are 1 for 100,000
patterns from the probabilistic estimation. Consequently,
binary search in the ordered table of the large pattern set
becomes frequent and dominates the verification time.

A classified variant, namely CRKBT, is proposed herein to
accelerate the RKBT algorithm. Figure 2b illustrates its oper-
ation. CRKBT divides the ordered table for binary search into
several small tables associated with the second hash values.
The search scope is reduced to only a subset of the patterns
that have the same second hash value, so the binary search is
much faster. A pointer table replaces the bitmap in RKBT.
The i’th pointer points to an ordered table of only patterns
that have i as their second hash value, and points to NULL if
no patterns have the second hash value of i. The pointer table
is looked up when verification is required. If the correspond-
ing pointer of the second hash value is not NULL, the ordered
table that the pointer points to is searched with binary search.
The overhead of the CRKBT algorithm is 256 KB of the
pointer table (216 entries * 4-byte pointer) and at most 256
KB (4-byte integer for the length) to store the lengths of the
divided ordered tables. The cost is minor given the memory
space in the order of several hundreds MB to GB on modern
computers.

EXPERIMENTS

The execution time of both the RKBT and CRKBT algo-
rithms is benchmarked as follows. The text of 32 MB is ran-
domly generated from the alphabet of 8-bit characters. The
patterns are generated from the same alphabet and the short-
est pattern length is 8. Both the text and the patterns reside in
the main memory in the execution. The tests run on a com-
puter with a 2.8 GHz Pentium 4 processor, 1 GB of memory,
and 512 KB cache. Both algorithms are written in C, compiled
with the gcc compiler, and run on Linux kernel 2.6.5. Figure 3
presents the benchmark results.

The execution time of both algorithms for small pattern
sets is close because of few possible matches and thus few

n Figure 2. The operations of the RKBT algorithm (left) and the Classified RKBT algorithm
(right).

32 bits

RKBT algorithm

Binary search

32 bits

2

1

0

2345

1 2345

Classified RKBT algorithm

First hash value

Bitmap of the second hash value
Pointer table

Binary search

32 bits 32 bits

32 bits

NULL

32 bits

32 bits

1
2

chances of binary search in the ordered table. As the number
of patterns increases, the number of possible matches also
increases. The difference in execution time becomes obvious.
The search scope for binary search is small in the CRKBT
algorithm (only the subset of patterns that have the same sec-
ond hash value), so the binary search is fast. The CRKBT
algorithm is four times faster than the RKBT algorithm when
the number of patterns grows to 100,000 patterns. Therefore,
CRKBT is more scalable to a large pattern set.

We replace the RKBT algorithm with the CRKBT algo-
rithm in the SOG and BG algorithms, denoting the revised
versions as the SOG + and BG +. Figure 4 shows both the
SOG and BG algorithms are accelerated by this new verifica-
tion algorithm, particularly for a large pattern set. The BG +
algorithm is twice faster than the BG algorithm for the pat-
tern set of 100,000 patterns.

ANALYSIS

Binary search in a large pattern set can dominate the verifica-
tion time. The CRKBT algorithm reduces the size of the
ordered table by dividing the patterns into subsets to acceler-
ate the search. Assume the number of patterns is r. The
bitmap or the pointer table is checked first in both algorithms.
In RKBT, the probability that a bit is set to one is p, where p
can be estimated to be

If the bit is set to one, then binary search in the ordered table
follows. The expected number of memory accesses is log2r + 1
in the table. If the bit is zero, the verification fails. Therefore,
the expected number of memory accesses in the RKBT algo-
rithm is p(log2r + 1) + (1 – p). Because the expected size of
each ordered table to which a pointer points in the CRKBT
algorithm is

the expected number of memory accesses in the binary search
becomes only

which is much smaller than log2r+ 1 in the RKBT algorithm
for a large r. The expected number of memory accesses in the

binary search of the CRKBT algorithm is then

Therefore, the CRKBT algorithm is more scalable than the
RKBT algorithm.

PROFILING ALGORITHMS

In the external and internal profiling, the benchmarking envi-
ronment and configuration are the same as those described
earlier. We select the string matching algorithms from earlier
to benchmark their performance for various pattern lengths
and pattern set sizes. The CRKBT algorithm is also involved
in this benchmark. The implementation of the WM algorithm
leverages the code in the Agrep package [38], while that of
the AC, Optimized AC, and Modified-WM leverages the code
in Snort. The other algorithms are implemented from scratch.

EXTERNAL PROFILING

The external profiling measures the execution time of scan-
ning text of 32 MB. Figure 5 presents the benchmark results
with LSP = 8 first, where LSP denotes the length of the
shortest pattern. The benchmark results for LSP < 8 will be

p
r

plog ().2 1
65536

1 1+

+

+ −

log ,2 1
65536

1+

+r

1
65536

+ r
,

1
65535

65536
−

r

.

IEEE Communications Surveys & Tutorials • 2nd Quarter 20068

n Figure 3. The execution time of the RKBT and CRKBT algo-
rithms.

Number of patterns

10
0

0

2

Se
co

nd
s

4

6

8

10

12

14

16

18

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

RKBT
CRKBT

n Figure 4. a) The execution time of the 2-gram SOG and
2-gram SOG+ algorithms; and b) the execution time of the
2-gram BG and 2-gram BG+ algorithm.

2-gram SOG
2-gram SOG+
3-gram SOG

Number of patterns

(a)

10
0

0

0.4

Se
co

nd
s

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

2-gram BG
2-gram BG+
3-gramBG

Number of patterns

(b)

10
0

0

0.4

Se
co

nd
s

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

discussed later. To avoid many curves overlapping in one fig-
ure, the presentation of curves is separated into Fig. 5a and
5b for clarity.

Figure 5a demonstrates that the Modified-WM algorithm
is the most efficient when the pattern set size is smaller than
20,000. When the pattern set size is greater than 20,000, the
CRKBT algorithm is the most efficient. By the way, the exe-
cution time of the Optimized AC for the pattern set size larg-
er than 5,000 is not presented because the execution takes too
long to stop. The problem might be due to a bug in the origi-
nal implementation of Snort. The execution time of the Modi-
fied-WM and CRKBT algorithms is compared with that of the
BG + and SOG + algorithms in Fig. 5b. The 2-gram BG +
algorithm is the fastest when the pattern set size is smaller
than 50,000. For the pattern set size greater than 50,000, the
3-gram BG + algorithm is the fastest. This explanation is left
to the internal profiling in the next section.

INTERNAL PROFILING

The internal profiling intends to justify the observations in the
external profiling. For example, why is the Modified-WM
algorithm more efficient than the WM algorithm? Why is the
BG + algorithm very efficient? The effects of the average
shift distance, the percentage of possible matches, and the
number of memory accesses of each algorithm are profiled as
follows.

Shift Distance — Both the WM and BG + algorithms allow
skipping certain characters in the shift of the search window.
This benchmark profiles the average shift distance of both
algorithms. Figure 6 presents the profiling results. The aver-
age shift distance of the WM algorithm is close to one charac-
ter when the pattern set size is between 5,000 and 100,000, so
the WM algorithm can barely skip a character in this case.
The average shift distance of the Modified-WM algorithm is
greater than that of the WM algorithm, which can explain why
the Modified-WM algorithm is more efficient than the WM
algorithm. The results also explain why the 2-gram BG +
algorithm is the fastest when the pattern set size is small, and
why the 3-gram BG + algorithm is the fastest for a large pat-
tern set due to the long average shift distance.

The Percentage of Possible Matches — Some algorithms
filter the text first for possible matches and then verify
whether a true match occurs. As the number of possible
matches increases, the string matching will spend more time
in verification and the verification can dominate the execu-
tion. The percentage of possible matches in the shifts is pro-
filed for each algorithm.

Figure 7 shows the percentage of possible matches for each
algorithm. The Modified-WM algorithm has fewer possible

IEEE Communications Surveys & Tutorials • 2nd Quarter 2006 9

n Figure 5. Comparison of execution time of selected string
matching algorithms.

9

10

11

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
Classified RKBT

Number of patterns

(a)

10
0

0
1

Se
co

nd
s

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

Modified-WM
Classified RKBT
2-gram SOG+
2-gram BG+
3-gram SOG
3-gram BG

Number of patterns

(b)

10
0

0

1

Se
co

nd
s

2

3

4

5

6

7

8

12

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

n Figure 6. Comparison of the profiling results of average shift
distance.

Wu-Manber
Modified-WM
2-gram BG+
3-gram BG+

Number of patterns

10
0

0.0

C
ha

r.

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

n Figure 7. Comparison of the percentage of possible matches for
each algorithm.

Number of patterns

10
0

0%

Pe
rc

en
ta

ge

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

RKBT
Wu-Manber
Modified-WM
2-gram SOG+
2-gram BG+

IEEE Communications Surveys & Tutorials • 2nd Quarter 200610

matches than the WM algorithm. This also explains why the
Modified-WM algorithm is faster. The fast increasing of possi-
ble matches in the WM algorithm indicates that the WM algo-
rithm is not scalable to a large pattern set. This figure also
explains why the BG + algorithm is faster than the Modified-
WM algorithm because of its fewer possible matches.

Memory Accesses — It is insufficient to justify the external
profiling results solely from the shift distance and the percent-
age of possible matches. For example, why is the CRKBT
algorithm the fastest in Fig. 5a as the pattern set size is larger
than 50,000? This section attempts to observe the reason from
memory accesses.

Figure 8a–c each presents the number of memory accesses
of the algorithms in the same category (categorized earlier)
profiled by Valgrind [39]. For algorithms in the same catego-
ry, the fewer the memory accesses, the faster the algorithm in
the external profiling. However, this is not the case for algo-
rithms in different categories, as presented in Fig. 8d. For
instance, the CRKBT algorithm has more memory accesses
than the AC algorithm, but the former is faster. The number
of memory accesses is insufficient to justify the results in the
external benchmarks.

More memory accesses do not imply longer time spent in
accessing the memory. The number of cache misses can affect
the performance significantly. We profile the number of cache

misses to justify this point. Figure 9 shows the cache misses
for the CRKBT algorithm are fewer than that for the Modi-
fied-WM and AC algorithms. The number of cache misses for
the 2-gram BG + algorithm is the least. According to the
cache misses, we can justify the prior results, including that
the CRKBT algorithm is more efficient than the Modified-
MW and AC algorithms for a large pattern set. In addition,
the efficiency of the 2-gram BG + algorithm is also justified.

In addition to profiling the number of memory accesses,
the memory consumption of each algorithm is also observed
in Fig. 10. The CRKBT and 2-gram BG + algorithms have
slow growth in memory consumption, which primarily comes
from the increasing size of the ordered tables for binary
search. The Modified-WM algorithm uses fixed size of memo-
ry for building the shift table and hash table for verification.
The memory consumption in both the AC and Optimized-AC
algorithms grow larger than that in the others as the pattern
set increases. The memory consumption of the Optimized AC
algorithm for the pattern set size larger than 5,000 is not pre-
sented because a possible bug impedes the correct execution.

PROFILING FOR SHORT PATTERNS AND SUMMARY

The external and internal profiling demonstrates that the
2-gram BG + algorithm is the fastest for LSP = 8 with the
pattern set size smaller than 50,000, and the 3-gram BG +

n Figure 8. Comparison of the number of memory accesses in each algorithm.

Number of patterns

(a) (b)

10
0

0.00E+00

N
um

be
r

of
 m

em
or

y
ac

ce
ss

es

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

Number of patterns

(c)

10
0

0.00E+00

N
um

be
r

of
 m

em
or

y
ac

ce
ss

es

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

9.00E+08

1.00E+09

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

Number of patterns

(d)

10
0

0.00E+00

N
um

be
r

of
 m

em
or

y
ac

ce
ss

es

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

9.00E+08

1.00E+09

1.10E+09

1.20E+09

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

Number of patterns

10
0

0.00E+00

N
um

be
r

of
 m

em
or

y
ac

ce
ss

es 6.00E+09

5.00E+09

4.00E+09

3.00E+09

2.00E+09

1.00E+09

7.00E+09

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

Wu-Manber
Modified-WM

RKBT
CRKBT

2-gram SOG
2-gram BG
2-gram SOG+
2-gram BG+
3-gram SOG
3-gram BG

CRKBT
Modified-WM
Aho-Corasick
2-gram BG+

IEEE Communications Surveys & Tutorials • 2nd Quarter 2006 11

algorithm is the fastest for LSP = 8 with a larger pattern set
size. In addition, we also profile the performance for LSP
between 1 and 7. The ranks of each algorithm in efficiency for
LSP between 4 and 7 are similar to that for LSP = 8, so the
benchmark results are not presented here. However, the ranks
for LSP between 1 and 3 differ. Figure 11 shows that the AC,
FNPw2, and Modified-WM algorithms are the fastest algo-
rithm for LSP = 1, 2, and 3, respectively. Figure 12 summa-
rizes the fastest algorithm for different pattern set sizes and
pattern lengths.

EXPERIMENTS ON REAL APPLICATIONS

IMPLEMENTATION IN THREE CONTENT SECURITY PACKAGES

Each network content security application has different pat-
tern lengths and pattern set size, as discussed earlier. The
shadow area in Fig. 13 indicates the range of pattern lengths
and pattern set size of each application, overlapping with the
profiling results in Fig. 12. The shaded arrows indicate an
application has some patterns longer than the lengths in the
range of the shadow area. This figure can suggest which algo-
rithm to be better implemented in each application. We revise
the original content security packages mentioned previously
by implementing the suggested algorithms accordingly and
observe the acceleration below.

ClamAV — The LSP of basic patterns in ClamAV is 10 and
the pattern set size of them is larger than 30,000 to date. We
replace the WM algorithm with the 2-gram BG + algorithm
to handle exact matching of basic patterns described earlier.
When the pattern set size is even larger in the future, the
3-gram BG + algorithm should be used to enhance the effi-
ciency. In addition, the AC algorithm keeps matching regular
expressions of multi-part patterns mentioned earlier.

DansGuardian — According to our investigation, 25 content
keywords are scanned with the Horspool algorithm one by
one in the current implementation. If the forcequicksearch
option is enabled, every pattern in the pattern set will be
searched for with the Horspool algorithm. Enabling this
option will have the text scanned as many times as the num-
ber of patterns. We do not enable this option because multi-
ple passes through the content will actually slow down the
search. We group all the patterns together and implement the

n Figure 9. Comparison of the number of cache misses in each
algorithm.

Number of patterns
10k

0.00E+00

N
um

be
r

of
 c

ac
he

 m
is

se
s

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

1.00E+08

1.10E+08

20k 50k 100k

Aho-Corasick
2-gram BG+
Modified-WM
CRKBT

n Figure 10. Comparison of the memory consumption in each
algorithm.

Number of patterns

100
1.00E+02

M
em

or
y

co
ns

um
pt

io
n

(k
by

te
s)

1.00E+03

1.00E+04

1.00E+05

1.00E+06

200 500 1k 2k 5k 10k 20k 50k 100k

CRKBT
Modified-WM
2-gram BG+
AC
Optimized-AC

n Figure 11. Comparison of the execution time for LSP = 1, 2
and 3. (FNPw2 denotes FNP with w = 2.)

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

Number of patterns

LSP=1

20

0

Se
co

nd
s

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 50 10
0

20
0

Number of patterns

LSP=2

20
0

0
Se

co
nd

s
2
4
6
8

10
12
14
16
18
20
22

24

50
0 1k 2k 5k 10
k

20
k

50
k

10
0

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

Number of patterns

LSP=3

0

Se
co

nd
s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

IEEE Communications Surveys & Tutorials • 2nd Quarter 200612

Modified-WM algorithm to handle short patterns with
LSP = 2 and 3, and the 2-gram BG + algorithm to handle the
longer patterns.

Snort — Snort groups patterns into rule sets according to the
packet header. The LSP of every rule set is not the same. We
implement a hybrid method instead of enabling the default
method, the Modified-WM algorithm. The AC algorithm is
selected for LSP = 1; otherwise, the Modified-WM algorithm
still handles the pattern matching.

BENCHMARKING OF THE REVISED IMPLEMENTATION

The speed-up of each revised package is benchmarked in this
section. Besides, the performance for both the real and syn-
thetic sample data is also compared. Here the synthetic data
are generated from uniformly distributed random characters
in the character set. The comparison of both types of sample
data can exhibit whether the observation for the synthetic data
is also applied to real situations.

Benchmarking for ClamAV — We select 10 Windows execu-
tion files having the sizes between 32 KB and 16 MB as real
data in the benchmark. This benchmark also tests for synthet-

ic data of the same size. The execution time of both the origi-
nal ClamAV and its revised version is measured. Figure 14
exhibits the improvement of the revised implementation. As
the file size increases, the difference in scanning time between
both versions becomes obvious. For example, the revision is
five times faster than the original when the file size is 16 MB.
The acceleration comes primarily from that reduction of veri-
fication during the search. Figure 14 also compares the execu-
tion time for real and synthetic data in both versions. The
difference between both types of data is almost unnoticeable
because the character distribution in the patterns and files is
close to random in ClamAV.

Benchmarking for DansGuardian — We use wget
(http://www.gnu.org/software/wget/wget.html) to mirror an
RFC Web site at http://asg.web.cmu.edu/rfc/rfc-index.html
that contains more than 8,000 files, including HTML files and
ordinary text files. These files are scanned by DansGuardian’s
content filtering function. Figure 15 shows that the original
implementation takes 2128 seconds to mirror the entire site,
while the revised implementation needs 1708 seconds to fin-
ish. The acceleration is insignificant because DansGuardian
needs to find out all content keywords. The verification algo-
rithm has to look at every possible match that has the same
hash value. The filtering part in the entire searching process
becomes less significant, and so is its acceleration.

We also generate synthetic Web pages for comparison with
the real Web pages. The sizes and names of these files are the
same as all the RFC files except the content. First, we gener-
ate data from the character set of 256 characters and observe
the difference between real data and synthetic data. The exe-
cution for synthetic data is faster than that for real data,
because the character set distribution of synthetic data is close
to uniform distribution, but that of real data is biased toward
the English character set. Because the characters in real data
concentrate more on English characters, the character set is
effectively to be a small one. More possible matches occur
and more verification is required than those for a uniformly
distributed character set.

The character set of only 26 characters is also tested. The
probability of possible matches increases, and the processing
time of content inspection becomes three times longer than
that in the prior experiment with a character set of 256 char-
acters. However, the efficiency for the synthetic data from the
character set of 26 characters is still much faster than that for
the real data because keywords are more likely to appear in
real data than in randomly generated synthetic data so that
more possible matches occur and more verification is required.

n Figure 12. The fastest algorithm for different pattern set sizes
and pattern lengths. (C denotes |Σ|.)

10

Pattern length

2-gram BG+

3-gram BG+

987654321

100

200

500

1k

2k

5k

10k

20k

50k

100k

N
um

be
r

of
 p

at
te

rn
s

C=256

A
ho

-C
or

as
ic

k

A
ho

-C
or

as
ic

k
M

od
ifi

ed
W

M

FN
Pw

2

n Figure 13. The profiling summary. (C denotes |Σ|.)

10

Pattern length

2-gram BG+

3-gram BG+

987654321

100
200

500

1k

2k

5k

10k

20k

50k

100k

N
um

be
r

of
 p

at
te

rn
s

CF

IDS

C=256

A
ho

-C
or

as
ic

k

A
ho

-C
or

as
ic

k
M

od
ifi

ed
W

M

FN
Pw

2

Anti-virus

n Figure 14. The performance improvement for both random
and real data in the revised version of ClamAV.

File size

32
 K

B

0

5

Se
co

nd
s

10

15

20

25

30

64
 K

B

12
8

KB

25
6

KB

51
2

KB

1
M

B

2
M

B

4
M

B

8
M

B

16
 M

B

Random + original
Random + revised
Real + original
Real + revised

IEEE Communications Surveys & Tutorials • 2nd Quarter 2006 13

Benchmarking for Snort — HTTP traffic accounts for a
large quantity of the total traffic in the Internet, so we feed
HTTP traffic to Snort as we did in the previous section for
this benchmark. In addition, Snort is configured to run in the
inline mode in which the traffic will pass through Snort for
easy measurement of its throughput. Figure 16 presents the
benchmarking results of the throughput. First, we use a single
client to mirror the entire site. The acceleration of the revised
Snort inspection is insignificant. We then add up to five
clients, i.e., more traffic, and the acceleration of the revised
version becomes a little more obvious. However, the enhance-
ment is still insignificant as Snort only inspects the HTTP
header instead of the HTTP header plus HTTP body in most
cases [40]. Only a small portion of the traffic is inspected, so
the acceleration is not that obvious.

The comparison between real data and synthetic data is
not carried out here because the content inspection in Snort is
mostly restricted within the HTTP header. If we generate ran-
dom data instead of the real HTTP header, the transactions
between the HTTP client and the HTTP server are unable to
proceed, nor is the benchmark.

CONCLUSIONS

This research reviews and profiles some typical string match-
ing algorithms to observe their performance under various
conditions and gives an insight into choosing the most effi-
cient algorithm for designing network content security appli-
cations. The AC algorithm is suitable for LSP = 1. The
Modified-WM algorithm is suitable for LSP = 2 when the
pattern set size is smaller than 1,000, and the FNPw2 algo-
rithm is suitable for LSP = 2 when the pattern set size is larg-
er than 1,000. The Modified-WM algorithm is suitable for
LSP = 3, and the BG + algorithm is suitable for LSP ≥ 4.
These results are also justified by means of implementing
them in real applications. The new implementation is shown
to improve the performance. These results will also help to
select an efficient algorithm for future applications.

The CRKBT algorithm is proposed to accelerate the origi-
nal RKBT algorithm up to four times faster for a pattern set
of as large as 100,000 patterns. Moreover, the BG + and SOG +
algorithms that use CRKBT as the verification algorithm are
twice faster than the original algorithms.

This work also observes the difference between perfor-
mance for the real and synthetic data on practical applica-
tions. The performance of ClamAV is insensitive to the
synthetic data or the real data because the character set distri-

bution is close to uniform. However, the performance of
DansGuardian can be much different for the real data than
for the synthetic data because both the patterns and text in
DansGuardian are biased to the English vocabulary. Besides,
DansGuardian may spend a long time in verifying possible
matches because many content keywords have the same hash
value and thus more comparisons are needed.

ACKNOWLEDGMENT

This work was supported in part by the Program of Excellence
Research, National Science Council in Taiwan, and in part by
grants from Cisco and Intel.

REFERENCES
[1] P. Gupta and N. McKeown, “Algorithms for Packet Classifica-

tion,” IEEE Network, vol. 15, no. 2, Mar.–Apr. 2001, pp.
24–32.

[2] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos, “Gener-
ating realistic Workloads for Network Intrusion,” Proc. ACM
4th Int’l. Wksp. Software and Performance (WOSP), Redwood,
CA, Jan. 2004.

[3] S. Antonatos et al., “Performance Analysis of Content Match-
ing Intrusion Detection Systems,” Int’l. Symp. Applications and
the Internet (SAINT’04), Tokyo, Japan, Jan. 2004.

[4] M. Fisk and G. Varghese, “Fast content-Based Packet Handling
for Intrusion Detection,” UCSD Tech. Rep. CS2001–0670, 2001.

[5] Y. D. Lin et al., “Designing an Integrated Architecture for Net-
work Content Security Gateways,” IEEE Computer, May 2006.

[6] G. Navarro and M. Raffinot, Flexible Pattern Matching in
Strings, Cambridge University Press, 2002.

[7] R. Muth and U. Manber, “Approximate Multiple String
Search,” Combinatorial Pattern Matching (CPM), Lecture Notes
in Computer Science 1075, Laguna Beach, CA, 1996. pp.
75–86.

[8] J. Kytojoki, L. Salmela, and J. Tarhio, “Tuning String Matching
for Huge Pattern Sets,” CPM 2003, LNCS 2676, Morelia, Mexi-
co, June 2003, pp. 211–24.

[9] M. Chrochemore and W. Rytter, Jewels of Stringology, World
Scientific Publishing, 2003.

[10] I. Sourdis, “Efficient and High-Speed FPGA-Based String
Matching For Packet Inspection,” M.Sc. Thesis, Technical Uni-
versity of Crete, Greece, July 2004.

[11] SafeNet SafeXcel 4850, product information available: http://
http://www.safenet–inc.com/products/chips/safeXcel4850.asp

[12] Tarari RegEx Content Processor 4, Product information avail-
able: http://www.tarari.com/regexEAP/index.html

[13] G. Navarro, “A Guided Tour to Approximate String Match-
ing,” ACM Computing Surveys, vol. 33, no. 1, Mar. 2001, pp.
31–88.

n Figure 15. The performance improvement for both random
and real data in the revised version of DansGuardian. (C
denotes |Σ|.)

Synthetic data
(C=26)

0
200

Se
co

nd
s

400
600
800

1000

1200
1400
1600
1800
2000
2200
2400

Synthetic data
(C=256)

388
292

Real data

2128

1708

Revised
Original

867714

n Figure 16. The benchmarking result of Snort.

1 client 5 clients
0

5

Th
ro

ug
hp

ut
 (

M
bi

ts
/s

)

10

15

20

25

30

35

40

45

50

55
Snort (original)
Snort (revised)

IEEE Communications Surveys & Tutorials • 2nd Quarter 200614

[14] L. Cleophas, B. W. Watson and G. Zwaan, “A New Taxonomy
of Sub–Linear Keyword Pattern Matching Algorithms,” Depart-
ment of Mathematics and Computer Science, Technische Uni-
versiteit Eindhoven, Apr. 22, 2004.

[15] G. Navarro and M. Raffinot, “Fast and Flexible String Match-
ing By Combining Bit-Parallelism and Suffix Automata,” ACM J.
Experimental Algorithms, vol. 5, 2000, pp. 1–36.

[16] A. Aho and M. Corasick, “Efficient String Matching: An Aid
to Bibliographic Search,” Commun. ACM, vol. 18, no. 6, 1975,
pp. 333–40.

[17] M. Norton, “Optimizing Pattern Matching for Intrusion
Detection,” Available: http://www.snort.org/docs/

[18] N. Tuck et al., “Deterministic Memory–Efficient String Match-
ing Algorithms for Intrusion Detection,” IEEE INFOCOM, Hong
Kong, Mar. 2004.

[19] L. Tan and T. Sherwood, “A High Throughput String Match-
ing Architecture for Intrusion Detection and Prevention,” Int’l.
Symp. Comp. Architecture (ISCA), Madison, WI, June 2005.

[20] R. Boyer and S. Moore, “A Fast String Searching Algorithm,”
Commun. ACM, vol. 20, no. 10, 1977, pp. 762–72.

[21] A. C. Yao, “The Complexity of Pattern Matching for a Ran-
dom String,” SIAM J. Computing, vol. 8, no. 3, 1979, pp.
368–87.

[22] Z. Galil, “On Improving the Worst Case Running Time of the
Boyer Moore String Matching Algorithm,” Commun. ACM, vol.
22, no. 9, 1979, pp. 505–08.

[23] N. Horspool, “Practical Fast Searching In Strings,” Software –
Practice and Experience, vol. 10, 1980, pp. 501–06.

[24] S. Wu and U. Manber, “A Fast Algorithm For Multi–Pattern
Searching,” Report TR–94–17, Department of Computer Sci-
ence, University of Arizona, 1994.

[25] R. T. Liu et al., “A Fast String–Matching Algorithm For Net-
work Processor-Based Intrusion Detection System,” ACM Trans.
Embedded Computing Systems, vol. 3, no. 3, Aug. 2004, pp.
614–33.

[26] R. T. Liu et al., “A Fast Pattern–Match Engine For Network
Processor-Based Network Intrusion Detection System,” Proc.
Information Technology: Coding and Computing (ITCC), vol. 1,
Las Vegas, NV, Apr. 2004, pp. 97–101.

[27] R. Karp and M. Rabin, “Efficient Randomized Pattern-Match-
ing Algorithms,” IBM J. Research and Development, vol. 31,
no. 2, Mar. 1987, pp. 249–60.

[28] R. Baeza-Yates and G. Gonnet, “A New Approach to Text
Searching,” Commun. ACM, vol. 35, 1992, pp. 74–82.

[29] G. Navarro and M. Raffinot, “A Bit-Parallel Approach to Suffix
Automata: Fast Extended String Matching,” Proc. Combinatori-
al Pattern Matching (CPM), Piscataway, NJ, July 1998, pp.
14–33.

[30] C. Charras and T. Lecroq, Exact String Matching Algorithms,
available http://www–igm.univ–mlv.fr/~lecroq/string

[31] E. P. Markatos et al., “Exclusion-Based Signature Matching
For Intrusion Detection,” Proc. IASTED Communications and
Computer Networks (CCN), Cambridge, MA, Nov. 2002, pp.
146–52.

[32] K. G. Anagnostakis et al., “E2XB: A Domain Specific String
Matching Algorithm for Intrusion Detection,” Proc. 18th IFIP
Int’l. Information Security Conference (SEC), Athens, Greece,
May 2003.

[33] C. Allauzen and M. Raffinot, “Factor Oracle of a Set of
Words,” Tech. Rep. 99–11, Institute Gaspard-Monge, Université
de Marne–la–Vallée, 1999.

[34] C. J. Coit, S. Staniford and J. McAlerney, “Towards Faster
String Matching for Intrusion Detection or Exceeding the
Speed of Snort,” Proc. 2nd DARPA Information Survivability
Conf. and Exposition (DISCEX II), June 2001.

[35] Y. Miretskiy et al., “Avfs: An On-Access Anti-Virus File Sys-
tem,” USENIX Security Symp., San Diego, CA, 2004.

[36] M. Norton and D. Roelker, “Multi–Rule Inspection Engine,”
available: http://www.snort.org/docs/

[37] Perl Compatible Regular Expressions (PCRE), available:
http://www.pcre.org

[38] S. Wu and U. Manber, “Agrep – A Fast Approximate Pat-
tern–Matching Tool,” Proc. USENIX Winter 1992 Tech. Conf.,
San Francisco, CA, 1992, pp. 153–62.

[39] Valgrind, available http://valgrind.org/

[40] M. Norton and D. Roelker, “Snort 2.0 protocol Flow Analyz-
er,” available: http://www.snort.org/docs/

BIOGRAPHIES
PO-CHING LIN (pclin@cis.nctu.edu.tw) is a Ph.D. candidate in the
Department of Computer Science at National Chiao Tung Universi-
ty. His research interests include network security, string-matching
algorithms, hardware software codesign, content networking, and
performance evaluation. He received an MS degree in computer
science from National Chiao Tung University.

ZHI-XIANG LI (lizx@cis.nctu.edu.tw) is an MS student in the Depart-
ment of Computer Science at National Chiao Tung University. His
research interests include string-matching algorithms, network
security, content networking, high-speed networking, and perfor-
mance evaluation. He received a BS degree in computer science
from National Chiao Tung University.

YING-DAR LIN (ydlin@cis.nctu.edu.tw) is a professor in the Depart-
ment of Computer Science at National Chiao Tung University,
Hsinchu, Taiwan. His research interests include design, analysis,
implementation, and benchmarking of network protocols and
algorithms; wire-speed switching and routing; and embedded
hardware software co-design. He received a Ph.D. in computer
science from the University of California, Los Angeles. He is a
member of the IEEE and the ACM.

YUAN-CHENG LAI (laiyc@cs.ntust.edu.tw) is an associate professor in
the Department of Information Management at National Taiwan
University of Science and Technology, Taipei, Taiwan. His research
interests include high-speed networking, wireless network and
network performance evaluation, Internet applications, and con-
tent networking. He received a Ph.D. in computer science from
National Chiao Tung University.

FRANK C. LIN (fclin@cisco.com.) is a technical lead of Cisco Systems
Inc. His current interest is in automatic vulnerability inspection
and security testing. He has been in the computer, networking,
and telecommunication industry for 30 years, serving at Calcomp
in Taiwan, Univac/Sperry/Unisys in Salt Lake City, Octel, and
Ardent/Cisco in Silicon Valley. He received his Ph.D. in CS from the
University of Utah in 1986.

