
Request Scheduling for Differentiated QoS at Website Gateway

237

Request Scheduling for Differentiated QoS at Website Gateway

Ying-Dar Lin1, Ching-Ming Tien1, Shih-Chiang Tsao1, Shuo-Yen Wen1, Yuan-Cheng Lai2
1Department of Computer Science, National Chiao Tung University

2Department of Information Management, National Taiwan University of Science and Technology

Taiwan, R.O.C.

{ydlin, cmtien, weafon, sywen@cs.nctu.edu.tw}, laiyc@cs.ntust.edu.tw

Abstract

With the explosive growth of Web traffic, the load on

a Web server becomes heavier, leading to the longer

user-perceived latency. Website operators would like to

employ service differentiation to offer better throughput

and shorter user-perceived latency to some specific users.

This paper presents an HTTP request scheduling algorithm

deployed at the Website gateway to enable the Web quality

of service without any modification to client or server

software. A variation of the deficit round robin algorithm

for packet scheduling and a window control mechanism are

presented to decide the order and the releasing time of

requests, respectively. The order is decided by the response

size of the requests and the pre-defined service weights.

The ratio of the service rate got by the service classes is

determined by the weights, whereas the releasing time is

decided by the service rate of the Web server. The

evaluation shows the scheduling algorithm can provide

service differentiation and improve server throughput and

user-perceived latency. When the weight ratio 6:3:1 is

assigned to three service classes, the QoS Website gateway

makes them get 60%, 30%, and 10% of the overall

throughput as expected, regardless whatever page sizes. In

addition, the throughput and the user-perceived latency of

the class with the largest weight can be improved by up to

176% and 69% of the QoS-disabled values, respectively.

Keywords: Web QoS, service differentiation, request sched-

uling, gateway.

1 Introduction

Today more and more users connect to the Internet to

surf the World Wide Web. The more accesses to a website,

the heavier load will be on the Web server. The busier

server leads to the longer user-perceived latency, which

means a user will wait for a longer time to download a Web

page. Therefore, website operators would like to improve

user-perceived latency to keep their customers.

To reduce the user-perceived latency, the bottleneck of

accessing a Web page should be identified first. An

example of user-perceived latency measurement on

downloading the homepages of 40 important US-based

business Websites from Keynote in 2001 is given here.

Keynote Company measured website performance from its

1,700 measurement computers distributed in 50 met-

ropolitan areas worldwide [1]. The user-perceived latency,

i.e. Web page download time, is decomposed into six

components: 1) Domain Name System (DNS) lookup time,

2) Transmission Control Protocol (TCP) connection time, 3)

server delay time, 4) redirection time, 5) base page

download time, and 6) content download time. The report

of Keynote said the longest duration of the download time

is in transferring the content, and this part is mainly

determined by the congestion statuses of the network and

the server.

The network bottleneck could be resolved by

employing network Quality of Service (QoS) mechanisms

[2][3], whereas the server bottleneck could be resolved by

clustering servers, caching Web pages, and so on. However,

network QoS is hard to be deployed in nowadays Internet

infrastructure because all routers have to support and

enable network QoS protocols, e.g. Resource reSerVation

Protocol (RSVP) [4]. At the server side, the HyperText

Transfer Protocol (HTTP) traffic can be controlled at the

packet level or the application level. Several recent

research have proposed application-level QoS [5-10] to

provide service differentiation because this approach

provides more flexible policies to website operators in

traffic control. They made efforts on modifying the system

kernel [5] or the daemon program [5-10] of a Web server to

provide Web QoS. However, the shortcoming is those

mechanisms are operating system or server daemon

dependent.

This research focuses on resolving the server bottle-

neck because website operators can completely control

their servers, but cannot do much on improving the whole

network performance. The goals are to improve the server

throughput and reduce the user-perceived latency for

high-class users, that is, to provide service differentiation at

the server side, and thus allow these users to perceive the

shorter latency on downloading Web pages.

A QoS website gateway, independent of operating

systems and server daemons and transparent to clients and

servers, is presented in this paper. HTTP requests incoming

Journal of Internet Technology Volume 9 (2008) No.3

238

to the gateway will be classified and queued into different

class queues by the application-level inspection. A

variation of Deficit Round Robin (DRR) scheduling [11]

and a window control mechanism are presented to decide

the order and the releasing time of requests, respectively. In

addition, a server probing mechanism is used to seize the

characteristics of Web pages, such as Universal Resource

Locator (URL) and the response size, to help the request

scheduling.

The rest of this paper is organized as follows. Section

2 describes the architecture of a QoS website gateway and

presents the design of the request classifier, the request

scheduling algorithm, and the probing mechanism. The

implementation and evaluation of the QoS website gateway

are discussed in Section 3. Finally, the conclusion and the

future work are given in Section 4.

2 QoS Website Gateway Architecture

and Request Scheduling Algorithm

Given a Web server and several classes of clients, the

goal is to provide service differentiation by HTTP request

scheduling on the website gateway. For concentrating on

the design of the request scheduling, the server cluster is

not considered in this research. In server cluster scenarios,

the issues of the server load balancing also need to be

considered. Therefore, a single Web server is the final

scenario discussed in this research.

2.1 QoS Website Gateway Architecture

The architecture of the QoS website gateway is shown

in Figure 1. All HTTP requests originated from clients pass

through the gateway, and the gateway schedules them to

the Web server according to the QoS policies and the

service rate of the Web server. The request classifier first

classifies the incoming requests into different service

classes by inspecting the content of IP headers, HTTP

headers, and payloads. The classified requests are then

queued into the class queues. The request scheduler

decides which request should be fetched next from a class

Figure 1 Architecture of the QoS Website

queue and when the request should be released to the Web

server according to the QoS policy table and the service

rate of the Web server, respectively. For knowing the

characteristics of Web pages stored in the Web server, the

server prober probes the Web server before the on-line

operation of the gateway. In a word, request classification,

request scheduling and server probing are the three things

the website gateway does for the service differentiation.

The more details are discussed as follows.

2.2 Request Classification

A common classification paradigm is to inspect the IP

5-tuples (source IP address, destination IP address, source

port number, destination port number, and protocol type) of

a packet header. However, this type of classification is

content-blind; that is, the classifier cannot see the

information contained in the application layer protocols.

The website operator may wish to define more flexible

QoS policies based on the application layer protocols such

as HTTP for the service differentiation. Therefore, the

classifier should be content-aware, that is, it sees the

information contained in the protocol headers and

payloads.

The purpose of the request classifier is to classify the

incoming requests into proper classes based on the QoS

policy table. The rules in the policy table can be defined

according to the information contained in IP packet headers,

HTTP headers and HTTP payloads. HTTP headers

generally contain URL, User-Agent, Content-Length, etc.,

whereas HTTP payloads generally contain cookie names,

Secure Socket Layer Identification (SSL) IDs, etc. The

request classifier compares the information contained in

the incoming requests with the rules in the QoS policy

table. If a request matches a specific rule of a service class,

it will be put into the corresponding queue and wait for

being scheduled.

2.3 Request Scheduling

In this research, we present a DRR-based request

scheduling. The goal of the request scheduler is to allocate

the output throughput of responses on the Web server for

different classes of users by scheduling their requests. After

requests have been classified and queued in the

corresponding queues, the request scheduler should decide

which request should be fetched next and when the request

should be released to the Web server.

DRR is an packet scheduling algorithm with O(1)

complexity for the selection of the next packet. In DRR,

for the differentiation, each class queue is given a deficit

counter (DC) and assigned a specific quantum in bytes.

DRR selects packets from each queue in a round-robin

manner. Every time when a queue is in served, its DC

Request Scheduling for Differentiated QoS at Website Gateway

239

would be added by its quantum. Next, the head-of-line

(HOL) packet in the queue will be sent out if the DC is

larger than the length of the packet, and then the DC will

be decreased by the length of the packet. Such a packet

transmission would be repeated until the value in DC is

smaller than the length of the HOL packet. Finally, the

residual value of the DC would be accumulated for the

class to use in the next round.

Although DRR is an ideal packet scheduling, two

modifications on DRR are necessary for scheduling the

requests and allocating the throughput of responses on the

Web server. First, the value of DC should be decreased by

or compared with the length of the responses but not the

requests, because the target to be allocated is the

throughput of output responses from the Web server.

Second, unlike the packets consequently sent under DRR,

the requests cannot be sent out closely following the last

request. The releasing rate of requests should be throttled

such that the released request would not overwhelm the

processing capacity of the Web server.

For this, a window control mechanism is presented to

adjust the releasing rate, as shown in Figure 2. The window

size stands for the number of the maximum concurrent

transmissions of response between the gateway and the

Web server. When a request is released, the window value

is decremented by one. Conversely, when a resulting

response has passed through the gateway, the window

value is incremented by one. The scheduler checks the

window before releasing a request. If the window value is

large than zero, the scheduler releases the scheduled

requests to the Web server; otherwise, it stops releasing the

requests and waits until the window value is not zero. In

this way, the processing capacity of the Web server can be

utilized well without being overwhelmed. A small number

(less than ten) is suggested to be assigned to the window

size because a large window size may lead to an

over-loaded server.

2.4 Server Probing

The request scheduler needs the response sizes of Web

pages stored in the Web server when performing the scheduling.

Figure 2 Request Scheduler and Window Controller

To get the response size of the Web pages, a popular

method is running a program in the Web server to collect

the sizes of the files storing the Web pages. However, the

method has three drawbacks. First, developing multiple

versions of programs is necessary for Web servers with

different software packages and OSs. Second, Web hosts

may not prefer running additional programs in their Web

servers which may risk the stability of their servers. Third,

the response sizes of the dynamic pages are irrelevant to

the sizes of these pages and can be known only after these

pages are requested and their responses are generated.

Therefore, this work employs a server prober at the

gateway to probe the URL and the response size of each

Web page on the server before the on-line operation of the

gateway. The probed results are recorded in the Web page

table and fed to the request scheduler. For probing the URL

and the response size of each Web page on the server, the

server prober first retrieves the homepage of the website,

parses the homepage to find the embedded objects and the

other hyperlinks. The prober recursively scans the Web

pages within the same server link by link until all Web

pages have been scanned. The probed URL and the

response size of each page will be recorded in the Web

page table, and they are mainly used for the initial accesses

of the Web pages. Because the Web pages and the

embedded objects on the server are assumed to be static,

each URL and the corresponding response size is

one-to-one mapping. The Web page table will be repeat-

edly updated by the later accesses of the Web pages. By

this way, if the content of a Web page is changed in the

future, i.e. the page size is changed; the request scheduler

can update the Web page table because it knows the latest

response size when receiving this page from the Web

server.

2.5 Request Scheduling Algorithm

The pseudo code of the scheduling algorithm is shown

in Table 1. Initially, all deficit counters are set to zero.

Upon arrival of a request, the Enqueuing Module invokes

Classify() and Enqueue() to classify the request and

enqueue it to the corresponding queue, respectively. The

ActiveList is used to avoid the overhead of examining

empty queues. It maintains a list of indices of the active

queues containing at least one request. In the Dequeuing

Module, the active class queues are processed from the

head of the ActiveList, say the class i. The scheduling

algorithm fetches requests from queue Qi when there is

enough service quantum and the window w is not zero. The

service quantum DCi+Quantumi determines how many

requests can be fetched from the Qi, that is, the sum of the

response sizes of the fetched requests cannot be greater

than this service quantum. Before fetching and releasing a

Journal of Internet Technology Volume 9 (2008) No.3

240

Table 1 Request Scheduling Algorithm.

Incoming Request Part

Initialization:

For (i = 0; i < NumofClasses; i = i + 1)

 DCi = 0;

Enqueuing Module: on arrival of request req

 i = Classify(req);

 If (ExistsInActiveList(i) == FALSE) then

 /* add queue i to active list */

 InsertTailActiveList(i);

 DCi = 0;

 Enqueue(i, req); /* enqueue request req to queue i */

Dequeuing Module: once when ActiveList turns in

nonempty

do

 i = RemoveHeadActiveList();

 DCi = DCi + Quantumi;

 While ((DCi > 0) and (Qi is not empty)) do

 /* get request req from queue i */

 req = Head(Qi);

 ResponseSize = GetSize(req);

 If (ResponseSize <= DCi) then

 If (w != 0) then

 Send(Dequeue(Qi));

 DCi = DCi − ResponseSize;

 w = w − 1;

 Else /* return to the original condition */

 InsertHeadActiveList(i);

 DCi = DCi − Quantumi;

 return(); /* exit this module */

 Else

 break; /* skip the while loop */

 If (Qi is empty) then

 DCi = 0;

 Else

 InsertTailActiveList(i);

 While (ActiveList is not empty)

Outgoing Response Part

Enqueuing Module: on arrival of response rsp

 Enqueue(rsp);

Dequeuing Module:

 While (TRUE) do

 If (Q is not empty) then

 Send(Dequeue(Q));

 w = w + 1;

request, i.e. invoking Send(Dequeue(Qi)), the scheduling

algorithm checks if the w is not zero. If the w is not zero,

the scheduling algorithm releases the request and decre-

ments the w by one. Otherwise, the scheduling algorithm

will not release any requests in the Qi. After a resulting

response has passed through the gateway, the w will be

incremented by one.

3 Implementation and Evaluation

3.1 QoS Website Gateway Implementation

The request classifier and the request scheduler are

implemented as a daemon program called "WebQ" on the

NetBSD [12] system. Due to the small memory size in

most gateway devices, the WebQ does not fork any child

process when accepting a request for scalability. The single

process invokes the select() system call to handle all socket

descriptors concurrently. The WebQ runs at the user space

and listens on the port 880 of the loopback IP address, i.e.

127.0.0.1:880, as shown in Figure 3. To make the WebQ

work transparently to both clients and the Web server, the

ipnat [13] utility rewrites the destination IP address and the

port number of the incoming HTTP packets to redirect the

requests to the WebQ for service differentiation. The WebQ

performs the request classification and the request

scheduling and sends the requests to the Web server. The

HTTP responses from the Web server also pass through the

WebQ and return to the clients. The prober is implemented

as another daemon program which probes the

characteristics of Web pages from the Web server before

the on-line operation.

Figure 3 Implementation of the QoS Website

4 Performance Evaluations

The effect of the service differentiation can be

evaluated on both the throughput and user-perceived

latency. The aggregated throughput and the user-perceived

latency of each service class are measured for comparing

the effects between the activation and the deactivation of

the request scheduling. The measurement is performed

with fixed-sized and mixed-sized Web pages to

demonstrate the robustness of the request scheduling

algorithm. In addition, the effect of the window size is also

evaluated.

4.1 Evaluation Environment

The evaluation environment consists of an Apache

Request Scheduling for Differentiated QoS at Website Gateway

241

Web server [14], the WebQ gateway, and several computers

running the WebBench Web performance testing tool [15],

as shown in Figure 4. The WebBench controller emulates

multiple WebBench clients in the WebBench Hosts and

then orders these clients to issue HTTP requests to the Web

server and gathers the resulting data from the WebBench

clients. The WebBench client issues a new request after it

has completely received a response from the server. This

means the sending rate of clients depends on the processing

rate of the server. In this evaluation, the WebBench clients

are divided into three service classes, whose ratio of the

quanta is set to 6:3:1.

Figure 4 Evaluation Environment

4.2 Evaluation with Fixed-Size Web Pages

The evaluation with fixed-size Web pages is to

observe the effects of the page size, which is changed from

32 bytes to 128K bytes. The resulting throughputs are

shown in Figure 5(a) and 5(b), in which the throughput

increases with the page size. The increase of the page size

leads to the higher aggregated response size of the

requested pages, i.e. throughput. In Figure 5(a), under the

QoS-disabled case, the three service classes get the almost

same throughputs because their requests have the same

(a) QoS-disabled throughput

(b) QoS-enabled throughput

Figure 5 Throughput under Various Fixed-size Web Pages

probability of entering the server. Nevertheless, in Figure 5(b),

under the QoS-enabled case, the three service classes get

the expected throughputs. The larger weight a service class

has, the higher throughput this class gets. In addition, the

throughput of the class with the largest weight is improved

by up to 176% when the page size is 128K bytes, while

that of the class with the smallest weight is penalized by

52%. Furthermore, the average of the total throughput 14.2

Mbps under the QoS-enabled case is higher than 11.7

Mbps under the QoS-disabled case because the request

scheduling throttles the releasing request rate to avoid

overwhelming the server.

The user-perceived latencies under the two cases are

also compared, as shown in Figure 6(a) and 6(b). The

user-perceived latency increases with the page size because

the gateway has to process more packets for each response.

The three service classes get the same user-perceived

latency when the QoS is disabled, whereas they perceive

different latencies when the QoS is enabled. The larger

weight a service class has, the shorter latency this class

obtains under the QoS-enabled case. In addition, the

user-perceived latency of the class with the largest weight

is improved by up to 69% when the page size is 128K

bytes, while that of the class with the smallest weight is

penalized by 75%. Note that the average of the user-

perceived latency 351 ms under the QoS-enabled case is

(a) QoS-disabled user-perceived latency

(b) QoS-enabled user-perceived latency

Figure 6 User-perceived Latency under Various Fixed-size Web Pages

shorter than 440 ms under the QoS-disabled case. This

proves the presented scheduling algorithm eliminates the

server bottleneck and improves the total throughput.

Journal of Internet Technology Volume 9 (2008) No.3

242

4.3 Evaluation with Mixed-Size Web Pages

In order to evaluate the QoS website gateway in a

more realistic environment, the mixed-size Web pages are

employed on the server. The page sizes have a lognormal

distribution [16], whose probability density function is

shown as follows:

2 2(ln) /(2)1

()
2

x M S
P x e

S xπ
− −= ,

where S (standard deviation for the natural logarithm of the

data) and M (mean for the natural logarithm of the data) are

set to 9.357 and 1.318, respectively.

The throughput of each class is shown in Figure 7(a).

The ratio of the throughputs under the QoS-enabled case is

still as expected, close to 6:3:1, demonstrating the request

scheduling algorithm works well even in a more realistic

environment. The user-perceived latency is shown in

Figure 7(b). The observations on the evaluation with

mixed-size Web pages are similar to that with fixed-size

Web pages.

(a) Throughput

(b) User-perceived latency

Figure 7 Throughput and User-perceived Latency under Mixed-size Web

Pages

4.4 Evaluation with Various Window Sizes

To see the effect of the window size on the service

differentiation, the window size is changed from 1 to 100

during the measurement. The size of Web pages is set to

2K bytes. The total throughput under various window sizes

is shown in Figure 8, in which the total throughput

maintains the same level. This level (about 4 Mbps) is the

maximum throughput of the server under the 2K-byte Web

pages and would not be changed, regardless whatever

window sizes. It reveals that the server is not overwhelmed

when processing up to 100 concurrent connections in the

evaluation environment, and furthermore, the aggregated

request-sending rate is almost the same under these

window sizes.

Figure 8 Total Throughput under Various Window Sizes

The effect of the window size on the throughput ratio

is shown in Figure 9, in which the throughput ratio changes

from 6:3:1 (60%:30%:10%) towards 1:1:1 (33.3%: 33.3%:

33.3%). The effectiveness of the service differentiation

decreases with the increase of the window size. This is

because the larger the window size, the more requests will

be queued at the server instead of the gateway. The service

differentiation cannot be carried into full effect without

enough requests queued at the gateway. The above

conclusion can be also applied to the effect of the window

size on the latency, as shown in Figure 10.

Figure 9 Throughput Ratio under Various Window Sizes

Figure 10 User-perceived Latency under Various Window Sizes

In summary, the setting of the window size does not

matter when the server is not overwhelmed by the requests.

However, the larger window size may cause the less effect

of service differentiation under a small request-sending rate.

Therefore, a small number is suggested to be assigned to

Request Scheduling for Differentiated QoS at Website Gateway

243

the window size.

5 Conclusions

Service differentiation is a way for website operators

to provide better throughput and shorter user-perceived

latency to some specific users. This paper presents a

request scheduling algorithm deployed at a website

gateway to enable the Web QoS without any modification

to client or server software. The QoS website gateway

consists of a request classifier, a request scheduler, and a

server prober. The content-aware request classifier

classifies and queues incoming HTTP requests into

corresponding class queues according to the pre-defined

QoS policies. The request scheduler and the window

control mechanism decide which request should be fetched

next and when the request should be released to the Web

server. The server prober scans URLs, gets the corre-

sponding response size of the Web pages on the server, and

feeds the probed results to the request scheduler for helping

the scheduling.

The QoS website gateway is evaluated in the

scenarios of fixed-size Web pages and mixed-size Web

pages to demonstrate the robustness of the request

scheduling algorithm. The results show the throughput and

the user-perceived latency of the class with the largest

weight can be improved by up to 176% and 69% of the

QoS-disabled values, respectively. The total server

throughput is also improved.

The future work is to enable service differentiation at

the QoS website gateway for a server cluster. In this case,

the QoS website gateway has to schedule the requests for

the service differentiation and balance the server load

simultaneously.

Acknowledgment

This work is supported in part by National Science

Council Program, Cisco, Intel, and Chung-Hua Telecom.

References
[1] P. Mills and C. Loosley, A performance Analysis of 40

e-Business Web Sites, CMG Jour. Computer Resource

Management, Issue 102, Spring 2001.

[2] R. Braden, D. Clark, and S. Shenker, Integrated

Services in the Internet Architecture: an Overview,

IETF RFC 1633, Jun. 1994.

[3] S. Blake, D. Black, et al., An Architecture for

Differentiated Services, IETF RFC 2475, Dec. 1998.

[4] R. Braden, Ed., L. Zhang, et al., Resource ReSerVa-

tion Protocol (RSVP) - Version 1 Functional Speci-

fication, IETF RFC 2205, Sep. 1997.

[5] J. Almeida, M. Dabu, A. Manikutty, and P. Cao,

Providing Differentiated Levels of Service in Web

Content Hosting, Proc. 1998 Workshop on Internet

Server Performance, Jun. 1998.

[6] R. Pandey, J. F. Barnes, and R. Olsson, Supporting

Quality of Service in HTTP Servers, Proc. 17th

Annual ACM Symp. Principles of Distributed

Computing, Jun. 1998, pp. 247-256.

[7] L. Eggert and J. Heidemann, Application-Level

Differentiated Services for Web Servers, World Wide

Web Jour., vol. 2, no. 3, Aug. 1999, pp. 133-142.

[8] N. Bhatti and R. Friedrich, Web Server Support for

Tiered Services, IEEE Network Mag., vol. 13, issue 5,

Sep.-Oct. 1999, pp. 64-71.

[9] N. Vasiliou and H. Lutfiyya, Providing a Differenti-

ated Quality of Service in a World Wide Web Server,

ACM SIGMETRICS Performance Evaluation Review,

vol. 28, issue 2, Sep. 2000, pp. 22-28.

[10] X. Chen and P. Mohapatra, Performance Evaluation

of Service Differentiating Internet Servers, IEEE

Trans. Computers, vol. 51, issue 11, Nov. 2002, pp.

1368-1375.

[11] M. Shreedhar and G. Varghese, Efficient Fair Queuing

Using Deficit Round-Robin, IEEE/ACM Trans.

Networking, vol. 4, issue 3, Jun. 1996, pp. 375-385.

[12] The NetBSD Project, http://www.netbsd.org/.

[13] IP Filter, http://coombs.anu.edu.au/~avalon/.

[14] The Apache HTTP Server Project, http://httpd.apache.

org/.

[15] WebBench,http://www.veritest.com/benchmarks/web

bench/.

[16] P. Barford and M. Crovella, Generating Representa-

tive Web Workloads for Network and Server Perform-

ance Evaluation, ACM SIGMETRICS Performance

Evaluation Review, vol. 26, issue 1, Jun. 1998, pp.

151-160.

Biographies

Ying-Dar Lin is a professor of

Computer Science at National Chiao

Tung University, where he is also the

director of Computer and Network

Center and Network Benchmarking

Lab (NBL). His research interests

include quality of services, deep

packet inspection, and hardware software co-design. He is

spending his sabbatical year, from July 2007, at Cisco, San

Jose. Dr. Lin graduated from National Taiwan University

(B.S. 1988) and UCLA (Ph.D. 1993).

Journal of Internet Technology Volume 9 (2008) No.3

244

Ching-Ming Tien was born in Hsinchu,

Taiwan, in 1975. He received the B.S.

and M.S. degrees in Industrial Education

from National Taiwan Normal University,

in 1998 and 2000, respectively. His

research interests include Web quality of

service, content delivery networks,

bridging and routing protocols. He can be reached at

cmtien@cis.nctu.edu.tw.

Shih-Chiang Tsao was born in

Hsinchu, Taiwan in 1975. He received

the B.S. and M.S. in Computer Science

from National Chiao Tung University

in 1997 and 1999, respectively. From

1999 to 2003, he worked as an

associate researcher in Chung-Hwa

Telecom. He received the Ph.D. degree

in Computer Science from National Chiao Tung University

in 2007 and is doing a post-doc in Lawrence Berkeley

National Laboratory since May 2008. His research interests

include TCP-friendly congestion control algorithms,

fair-queuing algorithms, and Web QoS. He can be reached

at weafon@cs.nctu.edu.tw.

Shuo-Yen Wen was born in Taipei,

Taiwan in 1980. He received the B.S

degree in Computer Science from

National Chengchi University in 2002,

and the M.S degree in Computer

Science from National Chiao Tung

University in 2004. His research

interests include Web quality of service, and technology

and innovation management. He can be reached at

sywen@cis.nctu.edu.tw.

Yuan-Cheng Lai received the Ph.D.

degree in Computer Science from

National Chiao Tung University in 1997.

He joined the faculty of the Department

of Information Management at National

Taiwan University of Science and

Technology in 2001 and has been an

associate professor since 2003. His research interests

include wireless networks, network performance

evaluation, network security, and content networking.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

