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Abstract—Intrusion Detection Systems (IDS) play an impor-
tant role in detecting network intrusions. Because intrusions
have many variants and zero-day attacks, traditional signature-
and anomaly-based IDS often fail to detect them. On the other
hand, solutions based on Machine Learning (ML), have better
capabilities for detecting variants. In this work, we adopt an ML-
based IDS which uses three in-sequence tasks, pre-processing,
binary detection, and multi-class detection, with a multi-tier
architecture with one-, two-, and three-tier architectural con-
figurations. We then mapped three in-sequence tasks into these
architectures, resulting in ten task assignments. We evaluated
these with queueing theory to determine which tasks assign-
ments were more appropriate for particular service providers.
With simulated annealing, we obtained the computation capac-
ity by allocating the total cost appropriate to each tier, based on
the fixed parameter set with the objective of minimizing overall
delay. These investigations showed that using only the edge and
allocating all tasks to it gave the best performance. Furthermore,
a two-tier architecture with edge and cloud components was also
sufficient for IDS as a Service with the delay that was three
times better than for other task assignments. Our results also
indicate that more than 85% of the total capacity was allocated
and spread across nodes in the lowest tier for pre-processing to
reduce delays.

Index Terms—ML-based IDS, multi-tier architecture, multi-
stage machine learning, IDS as a service.

I. INTRODUCTION

URRENT intrusion detection systems (IDS) are com-
monly used to protect network devices by detecting
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specific attacks and raising alerts for network operators [1].
IDS can generally be classified as signature-based or anomaly-
based. Signature-based IDSs often fail to detect unknown
attacks while anomaly-based IDS result in high false positive
(FP) rates. To address such problems, researchers have begun
to use machine learning in IDS that has the ability to detect
more attack variants and novel attacks [2].

The use of IDS in a network is essential to ensure security.
Before now enterprises were responsible for managing their
security system by purchasing an IDS hardware box from a
vendor. However, retaining an IT team to manage and monitor
these systems 24/7 is time-consuming and costly. As a result,
many enterprises are outsourcing IDS management to ser-
vice providers in order to reduce staff, obtain better services,
and minimize operational costs. This trend shifts the intrusion
detection paradigm from a hardware unit to a service, allowing
for the possibility of intrusion detection as a service (IDaS).

From the perspective of service providers, who would oper-
ate such a service, the architecture and algorithm of IDS are
the factors to consider. Previously, IDS was typically based
on centralized cloud computing solutions. However, such an
architecture is hard to scale due to significant latency and cost
associated with transferring traffic to a centralized IDS. The
use of a distributed architecture can be a solution to such prob-
lems in a centralized system, which is capable of distributing
computing in parallel and closer to users. It can employ a
number of nodes in a multi-tier system and then distribute
the tasks to various components. Recently cloud, edge, and
fog computing have become the prospective paradigms that
can be employed as components of a multi-tier architecture
system.

Cloud computing is one of the most widely-used com-
puter concepts, and has also been leveraged by the European
Telecommunication Standards Institute (ETSI) to develop edge
computing. This has enabled mobile network operators to
virtualize cloud computing capabilities and is known as Multi-
access Edge Computing (MEC). Fog computing is similar to
edge computing, but it is much closer to a user and is owned by
subscribers. While cloud computing provides rapid availabil-
ity, good reliability, and nearly limitless capacity, fog and edge
computing contribute mobility and performance enhancement.
By combining these three systems and establishing a multi-tier
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architecture based on a cloud-edge-fog hierarchy as defined
in [3], enables the effective handling of a variety of services
with different characteristics while preserving availability and
reliability [4].

Furthermore, machine learning-based IDS can carry out sev-
eral tasks, from pre-processing raw data to detecting attacks.
There are two forms of attack detection in machine learning-
based IDS, binary and multi-class. Many earlier studies only
addressed a single-stage binary or multi-class model. A single-
stage binary can suffer from overfitting and is a strongly
biased model [5], and such existing multi-class detection is
also not accurate enough [6]. Combining these attack detection
approaches can help to reduce model instabilities [5].

Starting with pre-processing, we used three tasks to carry
out ML-based IDS with binary and multi-class detection. Pre-
processing involves transforming raw data into a tabular format
and removing irrelevant data to improve classifier algorithm
efficiency. Binary detection classifies traffic as benign or mali-
cious and focuses on preventing overfitting and reducing bias
towards normal traffic. Malicious traffic only will then be
transferred to classify the attack class in a multi-class detection
system. This combination has been shown to improve accu-
racy [5], reduce false-positive rates [7], and save bandwidth
by not transferring all traffic.

In this study, we broke these three tasks down and mapped
them to the architecture, resulting in several different con-
figurations. The results of this mapping process were then
referred to as task assignments. We then mapped those tasks
onto proper architectures and analyzed which task assignments
provided the best performance in terms of end-to-end delay.
These task assignments are important for service providers.
By analyzing such task assignments, service providers may
determine which task assignments for intrusion detection as a
service they could offer to their customers.

When we mapped the tasks to the architectures, we also had
to properly allocate capacity by optimizing capacity alloca-
tion for each tier, based on overall computation cost. Certain
service providers may be concerned with computation cost,
since the cost for each tier may be different in order to obtain
the desired capacity. We then modeled those task assignments
with the objective of determining the minimum delay between
task assignments. We used the simulated annealing algorithm
to optimize and determine the cost of allocating the capacity
for each architecture, based on arrival traffic rates and overall
cost. Then, to analyze and classify the traffic, we employed
a flow-based approach. This is an aggregation of transmit-
ted network packets which share some properties. Flows are
mostly employed in machine learning-based IDS and improve
real-time traffic classification performance [8]. We also mea-
sured the computational load of machine learning-based IDS
and used it in the simulation exercise. Such real-world data
aids in bringing a model’s behavior closer to a real-life
situation.

To broaden our knowledge, we also investigated (1) one-
vs. two- vs. three-tier architecture, to determine which archi-
tecture provided the best performance based on allocated
capacity, (2) joint vs. separated task assignment, to evalu-
ate the performance of task assignment when three tasks are

combined in one place, against when three tasks are separated
into different tiers, and (3) fog vs. edge vs. cloud capacity
allocation, to identify how the algorithm allocates capacity
between the tiers. We also investigated the effects of differ-
ent parameters in task assignments performance: the effect
of malicious traffic, which impacts the performance of task
assignments when faced with a rising volume of such traffic
that needs to be processed, the effect of flow workload, which
influences the performance of task assignments when different
machine learning models for binary and multi-class detection
were employed, and the effect of computation cost, how a
particular overall computation cost may affect the capacity
and performance of task assignments. For example, which task
assignments are better in a low-cost or high-cost scenario?

Some studies have discussed distributed ML-based IDS [6],
(71, [91, [101, [11], [12], [13], [14], [15], [16], [17], [18], [19]
with no consideration of potential architecture problems. The
primary objective of this work is to improve the accuracy of
machine learning models while also evaluating the response
time of such models when used in a particular architecture.
With reference to related work, the contributions of this paper
address three particular issues: (1) it is, to the best of our
knowledge, the first study which considers a mapping process
for tasks to architecture in an intrusion detection as a service
and formally models its architecture, (2) the use of a simulated
annealing method to determine how much capacity a particular
architecture needs for task assignments, as well as the effect
of computing cost and several parameters on task assignments
performance, and (3) the analysis of those task assignments to
provide appropriate recommendations to service providers.

Furthermore, compared with the previous conference ver-
sion [20], this extension mainly has four improvements:
(1) The related works are comprehensively surveyed and
structured according to the IDS type. Also, their limitations
and drawbacks are emphasized with respect to the paper.
(2) The cost of computation on doing optimization is con-
sidered because the cost associated with each tier may be
different. For example, the computation cost of a fog may be
higher than that in the cloud. (3) In the solution, we simplify
the calculation of the total delay by separating the transmis-
sion delay with the propagation delay. The algorithm is also
changed to allocate the appropriate cost and the corresponding
capacity to each tier. (4) We explore more issues, including
the effect of malicious traffic, the effect of flow length, and
the effect of communication cost, to obtain some insightful
observations on these parameters.

The remainder of this paper is organized as follows.
Section II reviews previous works in the distributed of IDS.
Section III defines the system architectures and problem for-
mulation. The solution algorithm, is described in Section IV;
Section V covers the simulation and results, and Section VI
concludes the work.

II. RELATED WORK

Table I summarizes some previous works that have dealt
with distributed IDS from signature-based to machine
learning-based systems. The comparisons are based on the IDS
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TABLE I
SUMMARY OF THE RESEARCH ON DISTRIBUTED IDS

Paper IDS Type Architecture Jobs in IDS Purpose Method A/S/NT

[10] Flat network Detection/Correlation Accuracy Cloud theory I (HTTP-flood attacks)

[11] Signature-based Mobile Agent-Cloud | Detection/Correlation i\iztllvg?ir;(nload Suricata 1 (Pytbull)

[12] Fog-Cloud Full Accuracy Federated LSTM I (ISCX intrusion dataset)

RNN, LSTM, Bi-LSTM, .

[13] Fog Full Accuracy GRU, CNN, CNN-LSTM I (five datasets)

[14] Fog Full Accuracy vAE with MLP I (IoT-23 dataset)

[15] . . R Fog Full Accuracy Online Adaptive ML I (Self-collected)

[16] Single-stage ML-based Dew-Cloud Pre-processing/Binary Accuracy Deep belief network T (UNSW-NBI15 dataset)

[17] ToT-Cloud Full Accuracy FL I (NSL-KDD dataset)

[18] Two-level servers Full Accuracy FL aided LSTM I (AT&T SEA dataset)

[19] Edge-Cloud Full Accuracy FL with RL I (UNSW-NBI15 dataset)
Binary Classification/ Multi-modal DAE,

(8] IoT-Edge Multi-classification Accuracy Soft output classifier I (Bot-IoT Dataset)

. . e I (NSL-KDD &

[7] ﬁilté»stage Fog 2 Binary Classifications | Accuracy DNN-KNN CIC-IDS2017 dataset)

[20] ~base Fog 2 Binary Classifications | Accuracy RNN I (NSL-KDD dataset)
Pre-processing/ .. . .

Ours Multi-tier Binary Classification/ glgl;n;nzadzlsi @ftcl? ltiit::;fnseiﬁzgfn A
Multi-classification P pacity q & y

A/S/T: Analysis/Simulation/Implementation, FL: Federated Learning

type, architecture used, the IDS tasks considered, the purpose
and method used.

There are three IDS types: signature-based, single-stage
ML-based, and multi-stage ML-based approaches. Signature-
based approaches rely on a database containing the pat-
terns or signatures of known attacks. Single-stage ML-based
approaches rely on a single machine learning model for either
detection or classification. On the other hand, multi-stage
ML-based approaches adopt a cascade of detection and clas-
sification methods using multiple machine learning models on
the same input data to get a higher classification accuracy.

A distributed IDS using a signature-based system is consid-
ered in [9] and [10]. Their primary objective was to create a
signature-based IDS algorithm and applied it to a host-based
system. However, the utilization of host-based IDS systems is
not suitable to large-scale environments and a signature-based
system frequently fails to detect unknown attacks. In spite of
the fact that the goal in [10] was to reduce network traffic, it
only used mobile agents and cloud nodes, so it did not pro-
vide a wider perspective on which architecture is best for the
intrusion detection as a service.

The single-stage ML-based approach with a distributed
architecture is adopted in [11], [12], [13], [14], [15], [16],
[17], [18]. Reference [11] investigated an Long Short-Term
Memory (LSTM) model in a distributed environment. It dis-
tributed the training data over fog nodes and coordinated these
nodes using parameter exchanges through a centralized node.
All of these efforts were done to improve the detection accu-
racy and scalability. Reference [12] assessed six deep learning
models and found that LSTM had the best performance among
these models. Then, it deployed the proposed model into a
distributed architecture, which owns two fog nodes and a
cloud node. The ML model was placed in fog, and when
the fog detects an attack, the detection result will be sent to
the cloud. Reference [13] combined variational AutoEncoder
with Multi-layer Perceptron and used it in a fog environment
to increase the efficiency and accuracy of intrusion detection.
It implemented the proposed model into the fog nodes and

evaluated the overhead of the model. Similarly, [14] used an
online adaptive machine learning model to improve the qual-
ity of ML-based IDS and reduce the workload. The proposed
approach was then successfully applied to fog nodes, resulting
in a faster response time. References [16], [17], [18] evaluated
distributed IDS for federated learning and achieved compa-
rable accuracy with the centralized solution that has global
knowledge of the whole system. Federated learning not only
gets the benefit from distributed architecture, but also meets
user privacy requirements.

Several works utilized a two-stage machine learning detec-
tion method and used fog as the computation nodes for a
distributed IDS [6], [7], [19]. A two-stage binary classifica-
tion is used in [6] to reduce model instability and obtain
good results for accuracy and precision. Similarly, [19] also
used a two-stage binary classification with a Recurrent Neural
Network (RNN) and achieved a high level of sensitivity to
certain attacks. Both studies then applied their models to fog
nodes. However, they only tested the model’s overhead in a fog
environment. Deploying IDS on fog nodes in one-tier archi-
tecture reduces response time by bringing the processing node
closer to the user. However, fog has acceptable latency but
typically insufficient processing power to deal with large com-
puting processes. Furthermore, [7] proposed a two-stage IDS,
which includes binary classification and multi-classification.
However, the authors only mentioned that their solution could
be deployed in the IoT-Edge architecture, but did not conduct
any further architecture-related experiments.

The main differences between this paper and the previous
research are as follows: (1) The previous research mainly
focused on improving the detection accuracy, but our paper
focuses on minimizing the detection delay. (2) The previous
research tried to improve the quality of ML models/signature
patterns, but our paper wants to investigate the issues of task
assignment, capacity allocation, and architecture selection, of
ML-based IDS in a multi-tier architecture. (3) The previous
research only used at most two stages, but our paper uses
three stages: pre-processing, binary detection, and multi-class
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TABLE 11
MODEL NOTATIONS

Notation Meaning
N The number of edge nodes
K The number of fog nodes per edge node
i=1.2.3 IDS tasks in attack detection process
’ (1: pre-processing, 2: Binary, 3: Multi-class)
1/uY Flow workload of i-th task
1/l Flow length of i-th task
cc Capacity of cloud
CcE Capacity of edge
cF Capacity of fog
cUF Link bandwidth from UE to fog
cFE Link bandwidth from fog to edge
CEC Link bandwidth from edge to cloud
S Total computation cost
s¢ Cost per unit of capacity at cloud
SE Cost per unit of capacity at edge
sF Cost per unit of capacity at fog
Uc Allocated cost to cloud
Uk Allocated cost to edge
uf Allocated cost to fog
A Arrival traffic rate from UE
zUr Propagation delay between UE and fog
zFE Propagation delay between fog and edge
zZEC Propagation delay between edge and cloud
D Total delay
pA Probability of malicious flows
t Temperature for Simulated Annealing Algorithm
tini Initial Temperature
tirm Termination Temperature

classification. Using three stages can speed up the detection
because most traffic judged as the normal traffic in the binary
detection stage do not need to be further handled. However,
the three-stage task assignment in a multi-tier architecture
becomes more complex. (4) In order to minimize the detec-
tion delay, we deduce the load and capacity in each network
node and link to calculate the delay using queueing theory.
However, the previous research did not consider this.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes task assignments, multi-tier archi-
tectures, problem descriptions, and a delay model, with the
variables and notations used given in Table II.

A. System Architectures

The system architecture is shown in Figure 1 where the
multi-tier architecture is composed of a cloud, N number of
edge nodes E, and K number of fog nodes F beneath the edge.
We then map the IDS tasks as i into architectures. 1/u is
workload of the traffic. There are two types of workloads:
computation and communication. The former is the workload
of computation tasks (pre-processing, binary, or multi-class)
for processing traffic in the unit of the number of instruc-
tions and represented as 1/ ugv. The latter is the communication
length or the flow traffic size for each task when transferring
the data across the network in the unit of Kilobit, and it is
denoted as 1/ ué. The reason of using the denominator for p
is that when the capacity is C, we can get a service rate C'p,
which is a commonly used notation.

7} modeling target

link

——ptraffic

N\

/
. "/
R

\ ;‘/
\,\ /
¢
LK N.1
11 A

Fig. 1. Parameters employed in the architecture model.
TABLE III
POSSIBLE ASSIGNMENTS OF PREPROCESSING, BINARY AND
MULTI-CLASS DETECTION TASKS OVER TIERS
# of .
tiers Architecture Fog Edge Cloud ID Abbr.
1 Fog p, b, m 1 pbm/-/-
Edge p, b, m 2 -/pbm/-
Cloud p. b, m 3 -/-/pbm
2 Fog-Edge p, b m 4 pb/m/-
Fog-Cloud p, b m 5 pb/-/m
Edge-Cloud p, b m 6 -/pb/m
Fog-Edge p b, m 7 p/bm/-
Fog-Cloud p b, m 8 p/-/bm
Edge-Cloud p b, m 9 -/p/bm
Fog-Edge-
3 Cloud p b m 10 p/b/m

The lowest tier for pre-processing could be the fog, edge,
or cloud. When traffic flows from user equipment (UE) arrive
at the lowest-tier node with a length of 1/ /1,[1‘, it is immedi-
ately processed in the pre-processing stage with a workload
1/ MXV- This stage is used to extract features and clean the data
before performing machine learning detection, and reduces the
flow length into 1/ ulj. The data is then sent through binary
detection to detect benign and malicious traffic with a work-
load 1/ ,ugv . Only malicious traffic with a probability of p*
and flow length 1/ ué will then be passed to the multi-class
detection system with a workload 1/ ng for the attack types
to be classified.

Each of the task assignments utilized the same total cost S.
Then, depending on the task assignment chosen, S can be dis-
tributed to each tier based on S C, SE , S F to obtain C C, cE,
and CT' with bandwidth capacities of C V¥, CFE and CEC.
The traffic then passes through the fog at a rate of \.

B. Task Assignment

In this work, we used a multi-tier architecture that can
be utilized in seven different configurations, and can utilize
one-, two-, or three-tier architecture. In one-tier, we can use
only fog, edge, cloud. Two-tier can have several configura-
tions such as fog-edge, fog-cloud, or edge-cloud, and three-tier
architecture is a combination of fog-edge-cloud.

The three tasks can be broken down and mapped to
each of the seven architectures, resulting in 10 possible task
assignments, as illustrated in Table III. We used IDs and
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TABLE IV
TASK SI1ZE IN r-TH RESOURCE FOR THE j-TH TASK ASSIGNMENT, V[j, r]

Vij.rl Transmission Computation (workload)

r=1 r=2 r=3 r=4 r=5 r==6
vViLr] | 1/uk ¢ ¢ | Ypl +1/py + (1/uy . pt) ¢ P
VI2.r] | Ynpf | Ypl | ¢ ¢ Ul +1/py + (1 . p) ¢
V[3.r] | Yul | Ypf | 1uf ¢ P ) + 1/ + (1/uy - pA)
Vidrl | Ynuf | Vpf | ¢ Vpy +1/wy 1y - pt ¢
VIS, r] | Ypl | 1/ud | 1pk Uy + 1/ ¢ Uy - pt
VIs.rl | Up | Un | Yns ¢ Uy + 1y 1wy - pt
VIT.r]l | Vpp | Vpy | & 1 1y + (1 .p?) ¢
VI8, rl | 1/uk | 1k | 1/uk 1y P Uy + (/) - p?)
VI9,r] | Yul | Uul | 1/uk ¢ 1/u} 1y + 1/ - pt)
VI10,r] | L/ul | 1/uk | 1/uk 1y YN 1uy - pA

Task Assignment 10 @ Preprocessing

° @ binaryclassification
‘ Server
—

@ multi-class classification

link
~——— Traffic

Task Assignment 7

Server l
/\

Fig. 2. Task Assignment Illustration.

abbreviations to make it easier to recognize the task assign-
ments. The abbreviation (xxx/xxx/xxx), which has three parts
separated by slashes, illustrates where tasks are assigned. The
left, middle, and right parts represent fog, edge and cloud,
respectively. Then symbols p, b, and m, which indicate pre-
processing, binary detection, and multi-class classification,
respectively, are filled in these parts to exhibit task assign-
ments. If no task is placed in a part, a symbol ‘-’ will be filled.
For example, task assignment 10 with abbreviation p/b/m
means pre-processing, binary, and multi-class, are placed in the
fog, edge, and cloud, respectively. Another example is the task
assignment 7 with abbreviation p/bm/-, which indicates that we
only adopt a two-tier architecture and place pre-processing in
the fog, followed by binary and multi-class classification in

the edge. The illustration of these task assignments are shown
in Figure 2.

C. Problem Statement

A cloud, edge nodes, fog nodes, a flow arrival rate, flow
lengths and flow workloads, the probability of malicious flows,
a link bandwidth, propagation delay between links, and cost
per unit capacity for cloud, edge, and fog are the inputs for the
objective of minimizing total delay and determining the best
of the ten possible task assignments with the constraints of
overall computation costs. To achieve this, capacity has to be
appropriately allocated to each tier based on computation cost.
The problem statement for the main problem is then formally
defined as:

Input: A topology composed of N edge nodes, K fog nodes
per edge node, a flow arrival rate in each UE of (\), flow
length of (1/4L), flow workload of (1/4Y), the probability of
malicious flows of (pA), a link bandwidth (C UF OFE and
CEC), propagation between tiers (Z UF 7FE and Z EC),
and cost per unit capacity (S, S¥, §7).

Output: The allocated capacity to each tier [CF, CE, €]
and its corresponding task assignment based on the given cost.

Objective: Minimize the total delay D.

Constraint: The overall cost of each tier must equal the
overall cost CF'SF + CESE 4 cC5C = g,

D. Delay Model

In this model, the total delay in each component is com-
posed transmission delay, computation delay and propagation
delay. To calculate computation and transmission delays, we
considered using a queuing model in each resource. In order
to compute the delay while using the r-th source, we had to
know the arrival rate, service capacity, and task size, since
different task assignments assign these tasks (p, b, m) into
different nodes.

For clearer a picture, we constructed three tables which
are respectively represent the task size (Table IV), arrival rate
(Table V), and service capacity (Table VI) of different task
assignments in the r-th source. » = 1, 2, 3 denotes the com-
munication resource - the link from UE to fog, fog to edge,
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TABLE V
ARRIVAL RATE IN THE r-TH RESOURCE, H|[j, 7]

. Transmission Computation
Hlj.r] r=1 r=2 r=3 r=4 rp=5 r==6
HI1,r 1 & @ 1 & &
HI[2,r 1 AK & @ AK &
HI[3,r 1 K AKN @ & AKN
H[4,r] Bl AK (p™) ) B AK
H[5,r] Bl AK (p™) | AKN (ph) K @ AKN
HI[6,7] Bl AK AKN (p?) ) AK | AKN
HI[7,7] 1 K @ 1 AK I3
HIS, 7] 1 AK AKN 1 & AKN
HI9, 7] 1 K AKN @ 1K | AKN
H[10,r] Bl AK AKN (p?) A AK AKN

TABLE VI

CAPACITY IN THE r-TH RESOURCE, Y[r]

r=2
CFE

r=3 r=4 | r=>5 r==6
CEC CF CE CC

r=1
CUF

and edge to cloud, respectively, while r = 4, 5, 6 represents
the computing resource of fog, edge, and cloud, respectively.
Task assignments then utilized different combinations of those
parameters to calculate delays.

For example, task assignment 1 which utilizes only fog to
process three tasks, traffic is transmitted from UE to a fog
link with flow length 1/ ulL, arrival rate A\ in H[1, 1], and
CUF capacity in Y[1]. Traffic is then handled at fog node to
process those tasks with V[1, 4] flow workload, H[1, 4] arrival
rate, and Y[4] fog node capacity. Finally, we can determine
the delay associated with task assignment 1 by adding the
communication delay from UE to fog and the computation
delay at that fog node.

The total delay for each task assignment j may then be
determined by adding up all delay components, which can be
expressed as:

6
Dj=> b(j,r) ()
r=1
where
1
r 7if V[j?r]¢¢7
b, 1) = § Py — Hivrl @)
0,if V[j,r] = ¢.

The delay for communication links and computation nodes
is calculated using equation 2 by looking up the values in
Tables IV, V, and VI. Furthermore, when it comes to commu-
nication delay, it is not only the transmission delay, but also
the propagation delay, that must be taken into account. We
thus need to add propagation delay, which can be expressed
as ZUE x f(V[j, 1)+ 258 x f(V]j, 2]) + ZPC x f(V]],3]),
where f(x) = 1, if z # ¢, or f(x) = 0, if x = ¢.

IV. SOLUTION APPROACH: SIMULATED ANNEALING FOR
OPTIMIZING CAPACITY BASED ON COST ALLOCATION

The problem set out above is solved by implementing the
SA for optimizing capacity based on a cost allocation algo-
rithm. First, we have to allocate the cost to each tier based on
the total cost, then convert the allocated cost to computation

Algorithm 1: SA for Optimizing Capacity Based on Cost
Allocation

initialize C¥, CE CC  t;p,

b= ting;

calculate Dj;

while t > 4, do

generate new solutions for cr , C E , C c¢ by;

UF/: r?]n;l[Un};in, U,ﬁm];
Fo_ .

OE L

U = ranéi[Umm, Uniazls

cE = gT;

vl =s—-uF —uE,

c¢ = U7

=t
calculate D’;

AD; = Dj - Dj;

if D]’. < D; then

accept new cF = CF’, ck = CE/, cC = CC/,

— Dl
Dj = Dj,
else
/ ! /
accept new cF=clF, ck= ?E ,0C =%,
. — D! 1 HH .
D; = Dj, with probability czp(AD; /D)
end

decrease the temperature: ¢t = o X t;
end

capacity depending on the cost per computation in each tier
and calculate the average delay using queueing theory. The
algorithm then determines the best cost allocation to obtain the
capacity for all task assignments based on the overall cost S,
and adjusts it until the system exhibits a minimum delay.
Algorithm 1 describes a simulated annealing technique
which finds an approximate globally-optimum solution for
the least delay using a probabilistic technique, based on ran-
dom movements of a new cost allocation. This technique was
selected because it avoids being stranded at a local minimum
by accepting worse variants as new solutions with a probabil-
ity. Using this algorithm, a control parameter #, (often known
as the ‘temperature’) is used to control the randomness of
the search process. With every iteration, the algorithm then
decreases temperature ¢ according to «. The algorithm stops
the iteration when temperature ¢ reaches the value of ty,.
We then generate a new capacity for ¥, CZ, and C'¢ each
iteration, based on the allocated cost, by applying random-
ization with specified constraints to minimum and maximum
values. When generating a new solution for C¥', it first ran-
domizes the cost for U¥ , with a minimum number of Uf;:m to
prevent running out of capacity, which might result in a nega-
tive delay. UF. is calculated as (H[j, 4] x V[j, 4] x ST).
The maximum number is UJL,. and can be calculated as
S— (U Em +U Cm), which provides sufficient space capacity
for C* and C'*. Once the allocated cost is determined, we
divide U by S¥ to get the capacity for C¥. Further, when
generating capacity for C B we must assign the cost for U B
using randomization, with the minimum value of U n%m calcu-
lated as (H[j,5] x V[j,5] x S¥) and the maximum value of
UE .. calculated as (UL, + Ugln) The capacity for CF is

then determined by dividing the allocated cost UF by SF.
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Thus, the residual number is the value of U C that will be
divided by S in order to obtain the capacity for CC.

For illustrative purposes, we use the task assignment 4 to
illustrate how to obtain the computation capacity with the
shortest delay. The task assignment 4, pb/m/-, employs a two-
tier architecture. Thus, the algorithm must assign capacity to
fog and edge. Using Algorithm 1, we begin the optimization
with given overall computation cost S as an input. The capac-
ity for fog, C Fis then produced by randomly selecting cost
for UF between the minimal and maximum values, U,
and UL,.. The U is then divided by SF to get Cﬁn
Therefore, the residual is the value of U E that will be divided
by S¥ to obtain the capacity, C¥. Then, we will use the
obtained C¥ and CF values to compute the total delay uti-
lizing equation (1) and (2) with the assistance of Tables IV,
V, and VI. After calculating the overall delay, the result is
compared to the current solution. If the new delay is less than
the previous delay, the new capacity allocation will replace the
current one. The algorithm will continuously iterate and gener-
ate new capacity allocation until the temperature reaches ¢y, .
Then we will obtain the optimal capacity allocation, which has
the smallest delay, for the task assignment 4.

V. SIMULATION AND RESULTS

This section contains the numerical results of the simula-
tion tests conducted to evaluate the performance of our task
assignments.

A. Measurements on Binary and Multi-Class Algorithms

To run the simulation, certain parameters from a real system
had to be collected. The workloads used in this study come
from a real IDS system. We built a machine learning-based
intrusion detection pipeline that consisted of the three tasks.
Once the flow is sent, we kept track of how many instructions
were needed. We used PERF on Linux to monitor instruction
numbers, and the tests were run using an Intel Xeon E5-2609
2.4GHz CPU.

For binary detection, we had to identify malicious traffic
quickly while maintaining performance. A decision tree is suit-
able for this criterion because it is fast and accurate [21]. For
multi-class detection, we used deep learning as it is more capa-
ble of distinguishing an intrusion and also more effective for
detecting unforeseen intrusions [22].

We constructed Decision Trees with default hyperparame-
ters and utilized Deep Neural Networks from [22]. We trained
the models by using CICIDS-2017 as dataset. In training DNN
as the multi-class detection, we only used the malicious data.

Pre-processing involved extracting features from raw traffic
using CICFlowMeter [23], cleaning the data, and parsing it
correctly. The data were also rescaled using Min-Max Scaler
with the help from Scikit library.

In addition to investigate the effect of flow workload,
we tested several machine learning models, Random Forest,
Gradient Boosting, and Multilayer Perceptron. All of these
machine learning models were trained on CICIDS-2017 and
used for binary and multi-class detection. Table VII lists the
average of flow workload measurements for 10 tests. We also

TABLE VII
FLOW WORKLOAD

Flow Workload

Stage (Instructions)

Preprocessing 1,137,406
Decision Tree 114,549
Random Forest 153,288

Binary Gradient Boosting 121,488
MLP 304,367
DNN 908,214
Decision Tree 114,849
Random Forest 167,493

Multi-class | Gradient Boosting 197,266
MLP 312,614
DNN 915,083

TABLE VIII

PARAMETER SETTINGS

Notations Value Unit

N 400 Nodes

K 20 Nodes

a 100 Flows/second

pA 0.2

1/ ,uW 1,137,406 Instructions per flow
1/#‘)V 114,549 Instructions per flow

1/ ,u?v 915,083 Instructions per flow
1/ul 124.99 Kilobit

1/ ,uk 6.62 Kilobit

1/ /.tz“ 6.62 Kilobit

zUF 3.335x 107  Seconds. Distance: 1Km
zZFE 3.335x 1075 Seconds. Distance: 10Km
zZEC 3.335%x 107 Seconds. Distance: 1000Km
cUF 1 Gbps

cFE 100 Gbps

CcEC 100 Gbps

S 50 x 1012 Money units

s¢ 10 Money units/instruction
SE 15 Money units/instruction
N 20 Money units/instruction
tini 10000

a 0.085

observed that after pre-processing, flow length decreased from
100% to 5.3%.

B. Parameters Settings

Table VIII lists the parameters used in the simulations, com-
prising a cloud node, 400 edge nodes, and 8000 fog nodes.
Each edge node covered 20 fog nodes and link bandwidth was
considered as a 5G network. The distance between each tier
was taken from [4].

Furthermore, to investigate the effect of computing cost, we
set up the costs of computation capacity at the lower tiers to
be more expensive than the higher tiers because the lowest
tier has greater relative costs for real estate, cooling, main-
tenance employees, and other applications. It is possible to
obtain significantly lower prices for server hardware and soft-
ware licensing by making use of the economies of scale that
result from using huge hyper-scale data centers rather than by
distributing the data over several data centers [24]. We then
set the costs SC, SE SF 1o [10, 15, 20] in money units.

The results of the experiments could be generalized to real
scenarios. To make the experiment more realistic, we did a lot
of efforts, including (1) Traffic parameters have been referred
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Fig. 3. One- vs. two- vs. three-tier architecture.

from a real system. For example, to obtain the parameter of
flow workload, we did the measurements by developing a
machine learning-based intrusion detection pipeline that con-
sists of the three tasks. For the flow length, we took the number
from the previous paper that practically measures the aver-
age flow size in a network [25]. (2) Based on literature, our
simulation constructs a realistic network architecture. In this
architecture, the fog is the closest thing to UEs, it has lower
computation capacity than edge and cloud, and it has a higher
computation cost.

C. Results

1) One- vs. Two- vs. Three-Tier Architecture: Figure 3
shows the comparative results of the ten task assignments with
the total delay for processing a flow. These result shows that
utilizing only the edge as in task assignment 2 had the short-
est delay in processing the traffic, which is ideal in terms of
computing capacity and distance between the UE and the com-
puting node. When we moved the computing node closer to
the UE by utilizing only the fog as in task assignment 1, the
coverage area was too small and we then had to scatter more
resources to cover the area. Scattering too many resources in
queueing systems results in poor performance which increases
computation time. On the other hand, using just cloud node
maximizes computing capacity, speeds up computing time, and
simplifies management. However, because a large amount of
raw traffic from all UEs must be delivered to the farthest node,
it results in a transmission bottleneck.

To reduce the delay in the utilizing cloud, it should be com-
bined with other tiers and form a two- or three-tier system.
Utilizing cloud with edge, might reduce total delay by more
than 14 times. Pre-processing data in a lower-tier would reduce
a large transmission delay and, as a result, we save a lot of
bandwidth and enhance processing capability.

Utilizing cloud with fog, as in task assignments 5 and 8§,
could also be a solution. Although these task assignments
resulted in three times the total latency compared to cloud
with edge, they provided greater privacy. Sending raw traffic
to a higher tier implies aggregating traffic with other tenants.
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Furthermore, utilizing fog with edge, as in task assignments
4 and 7, also could handle privacy issues with shorter delays.
This combination also saves bandwidth because traffic only
needs to travel a short distance. However, maintaining a high
number of nodes will be stressful for providers. Last, forming
a three-tier architecture by combining all tiers appears less
suitable because it results in greater latency and because too
many federations are difficult to manage and control.

Current research on intrusion detection as a service archi-
tecture is still in its infancy. However, a comparison with
relevant studies is already possible. References [6] and [19],
which used fog as the architecture for their multi-stage ML-
based IDS, were able to finish processing 12597 events in
28.57 and 66 microseconds, respectively, on an NSL-KDD
dataset. Our task assignment 1 resembles configurations in [6]
and [19], but the capacity of those architectures is unclear
because they only implemented the system on a personal com-
puter and referred to it as fog computing. They also did not
consider a pre-processing stage, which is required to extract
features from raw data.

We conclude that a two-tier architecture with edge and
cloud is sufficient for Intrusion Detection as a Service, and
assigning all tasks to the edge is the most efficient task
assignment.

2) Joint vs. Separated Task Assignment: This investigation
evaluates the effects of task assignments, whether the three
tasks are combined in a single tier or separated into different
tiers. Figure 3 shows that the performance of a joint configura-
tion was better than separated task assignment in terms of total
delay. Using task assignment 2 that used joint configuration as
an example, performance was six times faster than the sepa-
rated configuration that was used in task assignments 6 and 9.
In a separated configuration, it is necessary to transmit traffic
to the following tiers for further processing, which increases
the total delay as a result of transmission and propagation
delays.

Furthermore, because it does not need to transmit any traffic
to the next tiers, a joint configuration may be able to save more
bandwidth. For example, in task assignment 2, we just had to
send traffic to edge. However, a separated configuration in task
assignments 6 and 9 would require an additional 1.05 gigabits
per second and 5.29 gigabits per second of traffic, respectively,
to be sent to cloud.

We thus conclude that a joint configuration is prefer-
able to separated configurations because it provides better
performance while also utilizing less bandwidth.

3) Capacity Allocation: Upper vs. Lower: Figure 4 shows
the allocation of capacity based on the given total cost for
each tier in all task assignments. The allocated capacity in fog
and edge was then scattered between 8000 and 400 nodes,
respectively. For example, in task assignment 1, the allocated
capacity was scattered across 8000 nodes, which resulted in
each fog node getting 312.5 MIPS.

Furthermore, in two and three-tiers, total capacity had to be
allocated between the tiers. The results show that the algorithm
tends to assign nodes more than 85% of the total capacity to
the lowest-tier. When utilizing cloud as the highest-tier, the
algorithm allocated 5% more capacity to its lowest tier nodes.
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As we know from queueing systems, even though a higher-
tier computation node that is more centralized may result in
longer communication delays, it requires less capacity than a
distributed node in the lowest-tier.

The most important observation in this investigation is that
more than 85% of the capacity is thus assigned to the lowest
tier for pre-processing in order to reduce delays.

4) Effect of Malicious Traffic: This part of the investigation
examines the effect of malicious traffic on the performance
of task assignments when we increased malicious flows from
10% to 70%. As seen in Figure 5a, increasing the probability
of malicious traffic had a direct impact on multi-class detection
for several task assignments. Using only fog, or a fog-edge
combination, had such a significant impact that the latency
rose by 40-50%. On the other hand, combining fog with cloud
had a lower impact than the previous combination.

Furthermore, employing cloud, or a combination of cloud
and edge, had the least impact on their total delay. Cloud
is more capable than fog and edge for maintaining consis-
tent performance while dealing with an increasing volumes of
malicious traffic.

Figure 5b shows how much of the capacity of highest-tier
was allocated to each task assignment, which is responsible
for multi-class detection. Based on that figure, cloud requires
5% less capacity than the other tiers. As a result, by allocating
additional capacity to a lower tier, the overall delay could be
reduced. Despite the fact that the cloud is far away, processing
multi-class traffic on the cloud helps to minimize delay better
in situations where there is a very large volume of malicious
traffic.

We conclude that processing multi-class traffic on the cloud
reduces delay and keeps performance stable in cases where
malicious traffic is high.

5) Effect of Flow Workload: The purpose of this part of
the investigation was to examine the effects of flow workload
on task assignment performance by utilizing a different sets
of a machine learning algorithm for binary and multi-class
detection. As seen in Figure 6, we noticed the effect on some
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task assignments only when we utilized DNN as the machine
learning model for binary and multi-class detection.

Task assignments that utilize pre-processing and binary
detection in fog (task assignments 1, 4, 5) had a greater impact
than others. On the other hand, it was relatively stable for task
assignments that used edge, cloud, and edge-cloud combina-
tions (task assignments 2, 3, 6, and 9). Binary and multi-class
detection also performed 40%-70% better on edge or cloud
than in fog. It is reasonable because edge and cloud nodes have
a greater capacity than fog nodes. As a result, it is preferable
to handle binary and multi-class detection in an upper-tier,
such edge or cloud when using machine learning models that
need much computation.

The most important finding in this investigation is, when
using computationally intensive machine learning models, it
is preferable to handle binary and multi-class detection at the
higher-tier.

6) Effect of Computation Cost: The investigation exam-
ined the effect of computation cost on the performance of
task assignments. We used different amounts of total cost
to determine its effects performance. Figure 7a shows the
direct impact of computation cost on some task assignments.
In the low-cost scenario, task assignments that use the edge
or the edge-cloud combination, resulted in minimum delay.
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Task assignments that only use fog, resulted in a much higher
delay - 5 times more than the task assignment that use edge-
cloud combination. The reason for this is, as the computing
costs decreases, the resource utilization increases. According
to queuing theory, increased resource utilization extends the
time spent in queues. Thus, offloading the task to a higher tier,
such as an edge-cloud combination, is more effective in mini-
mizing queuing time and speeding up computation. Figure 7b,
which shows the allocation of capacity to each tier based on
overall cost, illustrates that the task assignments that use edge
and cloud, have at least 30% more capacity than the task
assignments that use fog. Utilizing the task assignments that
use the edge or the edge-cloud combination, thus guarantee
better performance in a low-cost scenario.

Furthermore, a fog, or fog-edge combination, can achieve
comparable performance to an edge-cloud combination at
highest computation costs. This is possible because higher
computation costs result in increased capacity while decreas-
ing resource utilization. As a result, no traffic will be queued
in the system. Thus, the lowest tier is capable to handle the
workloads.

The results of this investigation thus show that using edge
or edge-cloud combination are the best task assignment that
have the consistent performance in all cases.

VI. CONCLUSION

We considered ten task assignments for distributed machine
learning based IDS as a service. We used queueing theory to
calculate the total delay, and a simulated annealing approach
to allocate the optimum capacity to each tier. The results sug-
gest that a service provider’s concerns can influence the task
assignments adopted. Each task assignment has its own advan-
tages and disadvantages. The best task assignment with lower
delay and stable performance under any conditions is achieved
by utilizing only edge or edge with cloud. However, utiliz-
ing fog with edge may be considered by service providers
concerned about tenant data privacy. Utilizing fog with cloud
could potentially also be considered as they are easier to man-
age than fog with edge. Moreover, a joint configuration could
have a better delay and save more bandwidth than separate
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Fig. 7. Effect of Computation Cost.

task assignment. In order to reduce delays, our results show
that 85% of total capacity is provided to the lowest-tier for
pre-processing.

Furthermore, when there is more than 50% malicious traf-
fic, processing multi-class traffic in the cloud can effectively
reduce latency and maintain a fairly stable performance. Next,
when utilizing machine learning models, such as DNN, that
need a large amount of computation, by handling binary and
multi-class detection in the upper-tier can result in 40%-70%
better performance. Finally, when computing costs are mini-
mal, offloading the task to a higher tier, such as an edge-cloud
combination, is more beneficial in terms of reducing queue-
ing time and maximizing computing performance. Fog or
fog-edge combinations, on the other hand, can achieve an
equivalent performance to the prior combination by doubling
the computation cost.

Work that needs to be considered in the future includes the
following: First, the use of a three-tier network with slicing the
nodes and offloading the traffic in ten directions based on ten
task assignments, followed by the optimization of traffic split
offloading ratios, should be investigated. Second, it is possible
to do further research into the optimization of cost allocation
with the goal of reducing the overall computation cost, subject
to the delay threshold.

Moreover, the real implementation of task assignment and
capacity allocation for IDS is complicated and out of scope
of this paper. In the future, we will consider developing a
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service framework on top of the Kubernetes platform, which
will include intrusion detection as a service as application
scenario.
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