

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

in Equation (12) shows the function f of service chain sc is427

placed on node u. The Equation (13) inequality ensures that428

the demand of function f of service chain sc at node u must429

be less than or equal to the available capacity of node u.430

The next inequality in Equation (14) presents the demand of431

function f of service chain sc at node u less than or equal to432

the capacity of the VM instance i of the node u.433

∑

i∈vM(u)

CV
i (u) ≤ CN(u) − CI(u), ∀u ∈ N, (11)434

Ysc
f (u) = 1, ∀u ∈ N, f ∈ vF, sc ∈ sC, (12)435

∑

sc∈sC

dsc
f (u) ≤ CN(u) −

∑

i∈vM(u)

CV
i (u)−CI(u),436

∀u ∈ N, f ∈ vF, sc ∈ sC, (13)437

dsc
f (u) ≤ CV

i (u), ∀u ∈ N, f ∈ vF, sc ∈ sC. (14)438

3) Placement Constraints: The binary variable in439

Equation (15) shows the function f placed on the ith VM440

instance of node u. The inequality in Equation (16) shows the441

queuing delay of function f of service chain sc must be less442

than or equal to the maximum delay at node u. Equation (17)443

ensures that the delay faced by a flow along its path must444

be less than or equal to the maximum delay the flow can445

tolerate. Equation (18) checks the status of the node for the446

placement of the function. It consists of three parts. The first447

inequality checks whether the node is ACTIVE or not, and448

the second part checks the node is IDLE or not. The last part449

checks if the node is OFF or not, and whether the demand450

on the node exceeds the threshold value.451

Xf
i (u) = 1, ∀u ∈ N, (15)452

qdsc
f (u) ≤ dMAX(u), ∀u ∈ N, f ∈ vF, sc ∈ sC, (16)453

∑

(u,v)∈Pk

dFk(u, v) ≤ Dk, ∀k, Fk ∈ K, (17)454

[[
Ysc

f (u) ≤
∑

Xf
i (u)

]∥∥
∥
∥

[[

EN(u) = CI(u) ∗ eN(u)

CN(u)

]∥
∥
∥
∥455

[
(
EN(u) = 0

)
&

(
∑

sc∈sC

dsc
i (u) ≥ thresold

)]]]

= 1,456

∀u ∈ N, ∀f ∈ vF, sc ∈ sC, thresold is a constant.457

(18)458

C. Problem Analysis459

The optimization problem we formulated in this paper can460

be shown to be NP-hard, by reducing the standard Virtual461

Network Embedding (VNE) problem [43], which is known to462

be NP-hard, to our problem in polynomial time.463

In the first step, we describe the mapping of virtual networks464

to a physical network with an example, and then we state the465

VNE problem, which is an existing NP-hard problem. In the466

second step, we redefine our optimization problem to a deci-467

sion problem and later demonstrate that the VNE problem468

could be reduced to our problem. Figure 4 depicts a scenario469

of virtual and physical network mapping. It consists of two470

virtual networks and one physical network. The capacity of471

each node and links (both physical and virtual) are given in472

Figure 4. Two virtual networks are mapped to the physical473

Fig. 4. Two virtual networks mapped onto one physical network [43].

network in such a way that the sum of the capacities of the 474

virtual nodes/links on a physical node/links must be less than 475

or equal to the capacity of that physical node/links. 476

1) Virtual Network Embedding (VNE) Problem: Given an 477

undirected graph GP = (UP, EP), where UP is the set of 478

vertices and EP is the set of edges. Each vertex ui ∈ UP 479

is assigned a capacity CP(ui) and each edge (ui, uj) ∈ EP, 480

ui, uj ∈ UP has a bandwidth bP(ui, uj). Given another undi- 481

rected graph GV = (WV , EV), where WV is the set of vertices 482

and EV is the set of edges. Each vertex wk ∈ WV is assigned 483

a capacity CV(wk) and each edge (wk, wl) ∈ EV , wk, wl ∈ WV 484

has a bandwidth bV(wk, wl). 485

The problem is to determine whether or not we can find 486

a set of valid mapping from EV to EP. In each mapping from 487

edge (wk, wl) ∈ EV to (ui, uj) ∈ EP, two conditions are 488

required to be satisfied: 489

1. CP(ui) ≥ CV(wk), and CP(uj) ≥ CV(wj), 490

2. bP(ui, uj) ≥ bV(wk, wl). 491

Theorem 4: Our optimization problem is NP-hard. 492

Proof: Please refer to Appendix G. 493

V. SOLUTION APPROACH 494

In this section, we will propose the dynamic placement of 495

the VNF chains heuristic algorithm. This placement method 496

reduces the number of active1 nodes in the network. We use 497

a restricted spanning tree mechanism for the placement of the 498

VNF. To reduce the energy cost, we select the path for the flow, 499

which has more active nodes, and fewer hop counts from the 500

source to destination. For example, in the network (Figure 1), 501

we have a new flow (say SC5) from source 1 to destination 502

6, with a service chain demand (B-D-A). After placement of 503

the first two functions, B and D on node 2, and 4 respec- 504

tively, we have two options for the placement of A. If we 505

place A on node 3, we have to turn it ACTIVE, which will 506

increase energy consumption. We can minimize energy con- 507

sumption by placing A on node 7, which is in the ACTIVE 508

state, and redirect the flow to the destination via node 9. This 509

algorithm consists of three stages. The first stage is the DPVC 510

algorithm presented in Algorithm 1. It takes the input in each 511

iteration of the loop and calls the Placement function (given in 512

1Node is either in the ACTIVE or IDLE state.

IEE
E P

ro
of

KAR et al.: ENERGY COST OPTIMIZATION IN DPVC 7

Algorithm 1 DPVC Algorithm
1 Input: A, B, ST, VMcap, Totalcost, Idlmax, Umax, Uidl,

vNF, pt, Idltime, mincap, Ec, NumFlow, boot.
Algorithm:

2 VM = struct(VMflg, VMfun, VMexp, VMwait, VMflow)
3 ServiceChain =

struct(source, chain, destination, FLOWlen, FLOWnum)
4 ChainTime = struct(startTime, pTime,

preSource, chainDest, hop, endTime)
5 CurrInp = struct(chainNum, currSource, currVNF,

currDest, currFLOWlen, FLOWno, ETime)
6 for each iteration t
7 ServiceChain = ServiceChainIP(ServiceChain, t)
8 ChainTime = setChainTime(CurrInp,

ServiceChain, ChainTime, t)
9 CurrInp = CurrVNFinput(CurrInp,

ServiceChain, ChainTime, t)
10 Placement(CurrInp, ChainTime, nodes, A, B ,

ST, VM, t)
11 for each node i in ST
12 for each VM j in node i
13 if t > VMexp(i, j)
14 Release(VM, i, j)
15 end
16 end
17 if (i ∈ ST) & (Uass(i) == 0)
18 Idltime(i) = Idltime(i) + 1;
19 if Idltime(i) ≥ Idlmax
20 Delete(ST, i)
21 end
22 end
23 end for
24 VM = updateVM(VM)

25 cost = ∑N
i=1,i∈ST Ec(i) ∗ Uidl(i)+∑VMcap(i,j)∗VMflg(i,j)

Umax(i)
26 end for
27 Output: Totalcost=

∑
cost

Algorithm 2 Placement Algorithm
1 Placement(CurrInp, ChainTime, nodes, A, B, ST,

VM, t)
2 for i = 1 → |CurrInp| do
3 s = CurrInp(i).currSource;

d = CurrInp(i).destination;
4 nf = CurrInp(i).currVNF;
5 RDFST(nodes, A, B, ST, VMflg, VMexp, s, d, nf , t)
6 ChainTime = updateChainTime(ChainTime,

CurrInp, newNode)
7 end for
8 Return: ST, VM, ChainTime

Algorithm 2). The Placement function will take a set of VNFs513

as input and call the Restricted Depth First Spanning Tree514

(RDFST) function (given in Algorithm 3) for each individual515

VNF, and find the appropriate location for placement.516

We randomly generated a connected graph (matrix A) con-517

sisting of a set of nodes and links, of equal weight. We assign518

different types of VNFs to each node randomly presented by519

matrix B, i.e., the rows of the matrix present the nodes and520

columns existing in the network functions. B(i, j) = 1, if the521

ith node of the network has the jth function, else 0. ST is522

the spanning tree. Umax and Uidl are the arrays presented as523

the maximum capacity and default capacity of each node in the524

graph, respectively. vNF is the set of functions, and pt is the525

Algorithm 3 RDFST Algorithm
1 RDFST(nodes, A, B, ST, VM, s, d, fun, t)

Index = nodeWithfun(B, fun)
2 nodes = struct(num, CapAct, sNode, spd)
3 nodes = assignPrioritytoNodes(nodes, VM, s, d)

x = totalVMInstances(VM)
y = x − 1;

4 While y < x do
5 nodessorted = nestedSortStructure(nodes, {

CapAct, sNode, spd})
6 for i = 1 → |Index| do
7 if nodessorted(i).num ≤ 0 then
8 Display (‘Error!’);
9 else
10 nN = nodessorted(i).num;
11 Assign(ST, nN, VM, fun, NumFlow, boot)
12 if nN ∈ ST
13 exit; ;
14 else if Uass(nN) ≥ mincap
15 Add(ST, nN)
16 exit; ;
17 else if max(VMwait(nN, 1),

VMwait(nN, 2), . . .) ≥ offtime
18 Add(ST, nN)
19 exit;
20 else
21 Display(‘Wait!’);
22 exit;
23 end
24 end
25 end
26 end if
27 end for
28 y = totalVMInstances(VM)
29 end while
30 Return: ST, VM, nN

processing time of each function. Idltime is the amount of time 526

the node can stay IDLE. If it does not receive any function, 527

during this time limit it will turn OFF. offtime is the maximum 528

amount of time a VNF can wait in an OFF PM. If the amount 529

of time is exceeded the limit, the PM will turn ON. VMcap 530

is the capacity of each VM instance. We are using the span- 531

ning tree concept in our algorithm. Here, if a machine turns 532

ACTIVE, we will add it to the spanning tree, and if an active 533

machine turns OFF, we will remove it from the spanning tree. 534

We are using two sets of operations (Add and Delete) in our 535

algorithm to handle this. When a machine turns ACTIVE, we 536

use the Add operation to add that machine to the spanning 537

tree, and when a machine turns OFF, we use the Delete oper- 538

ation to remove it from the spanning tree. We are using two 539

more operations such as Assign and Release for the placement 540

of a VNF. When a new VNF is placed on the machine, by the 541

Assign operation, we provide resources to that VM instance. 542

If a running VNF terminates by the Release operation, we 543

release the assigned resources of that VM instance, which can 544

be assigned to a new VNF. The definitions of these operations 545

are as follows. 546

Definition 1: [Add] if ST is an arbitrary set, u /∈ ST is an 547

arbitrary element, where ST = {ui : i ∈ I}, I is an Index set, 548

then we define Add(ST, u) = ST ∪ {u}. 549

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Definition 2: [Delete] if ST is an arbitrary set, u ∈ ST is an550

arbitrary element, where ST = {ui : i ∈ I}, I is an Index set,551

then we define Delete(ST, u) = ST − {u}.552

Definition 3: [Assign] if ui is an arbitrary set and i is the553

number of elements in u, and j /∈ u is an arbitrary element,554

then we define Assign(ui, j) = ui+1.555

Definition 4: [Release] if ui is an arbitrary set and i is the556

number of elements in u, and j ∈ u is an arbitrary element,557

then we define Release(ui, j) = ui−1.558

The DPVC algorithm works as follows: First, we generate559

four structures named, ServiceChain, ChainTime, and CurrInp.560

The structure VM consists of five fields. VMflg shows whether561

the VM is ON or OFF, VMexp presents the termination time562

of the VM, and VMfun presents the network function run-563

ning in the VM. VMwait shows the waiting time, and VMflow564

shows a number of flows are sharing that VNF. The structure565

ServiceChain consists of five fields, i.e., the chain presents the566

service chain. The source, destination, Flowlen, and Flownum567

represent the source, destination, length, and number of the568

flows, respectively. The structure ChainTime consists of six569

fields. The first field startTime holds the start time of each570

VNF of the service chain and the second field pTime shows571

the processing time of each VNF of the service chain, and the572

third one is the preSource, i.e., the node where the previous573

VNF of the service chain was placed. Initially, preSource is574

the chain source. chainDest shows the destination of the flow.575

hop and endTime present the end-to-end number of hop and576

termination time of the flow, respectively. CurrInp is the struc-577

ture, which holds a set of VNFs for the current iteration for578

placement. After placement, the structure will discard all val-579

ues of the structure. This structure consists of seven fields, i.e.,580

currVNF shows the VNF name, currSource shows its source,581

currDest shows its destination, chainNum shows which ser-582

vice chain the VNF belongs to, currFLOWlen shows the flow583

length, Flowno shows the flow number, and ETime shows the584

termination time of the flow. After creation of the structure for585

each iteration, we do the following: We take as a maximum586

one flow and its service chain as an input and set its service587

time by setChainTime function. By CurrVNFinput(), we select588

the VNFs from different existing service chains for placement.589

Then, we call the placement function for the Placement of590

the selected VNFs. We check the termination time of all the591

VM instances of each active node. If any VNF terminates, we592

Release them. We also check the idle-time of each IDLE node,593

if the idle-time exceeds the maximum idle-time, we turn that594

node OFF. We calculate the energy consumption cost of the595

system for each iteration by considering the status (ACTIVE,596

IDLE, OFF) of each node and the number of VNFs on them.597

After each loop iteration, we update the structure VM.598

In the Placement algorithm, we retrieve each VNF (nf) and599

their current source node (s), i.e., where the previous function600

of that service chain has been placed and their destination node601

(d). Then, we call the RDFST function for the placement of602

each VNF. After placement of the VNF, the chain time of the603

service chain gets updated. After placement of all VNFs, the604

Placement function returns the values to the DPVC algorithm.605

The RDFST algorithm works as follow. First, we retrieve606

the nodes that contain the required service function (fun)607

using nodeWithfun(). We assign priority to these nodes by608

TABLE IV
EXPERIMENT PARAMETERS

the function, assignPrioritytoNodes. Here, if the same node 609

has availability for the new function, then it will be given 610

the highest priority. Second priority will be given to the other 611

active nodes with availability. Third priority will be given to 612

the non-empty OFF nodes, and fourth priority will be allocated 613

to empty OFF nodes. If two nodes have the same priority, then 614

preference will be given to the node with the minimum short- 615

est path distance (spd). Here spd is calculated by adding the 616

shortest path from the current source (s) to the node and from 617

the node to the destination (d). By using structural sorting, we 618

sort the nodes based on their priority, retrieve the most suit- 619

able node (nN) for the placement of the VNF from the sorted 620

structure (nodessorted), and Assign the VNF (fun) to that node 621

and add the boot time if the VM is OFF. If the node is not 622

ACTIVE, we check to see if the assigned capacity of that 623

node exceeds the minimum capacity (mincap) or not. If the 624

minimum capacity has been exceeded, then we turn that node 625

ACTIVE. Then, by the Add operation, we add the node to the 626

spanning tree (ST). Otherwise, we check the waiting time of 627

all the VMs. If the waiting time of any VM exceeds the maxi- 628

mum waiting time (offtime), we turn that node ACTIVE. After 629

successful placement of a VNF, the RDFST function returns 630

the value to the Placement algorithm. 631

VI. PERFORMANCE EVALUATION 632

In this section, we will discuss the experimental setup, 633

which is used in this paper to evaluate our proposed algo- 634

rithms. In this experiment, we considered multiple par- 635

tially meshed networks where the network does not have 636

a predefined structure for service chain placement. Through 637

this experiment, we demonstrate the performance of our algo- 638

rithm. As our design and objective are different from the exist- 639

ing VNF placement papers, we compare our DPVC algorithm 640

with random [19] and first-fit [21] placement algorithms. In 641

the random placement algorithm (RND), we randomly select 642

a node with sufficient capacity for the placement of the func- 643

tion. In the first-fit placement algorithm (FF), we select the first 644

node with available capacity for the placement of the function. 645

A. Experiment Setup 646

We used MATLAB to compare the performance of the 647

algorithms, Table IV shows the details of the experimental 648

parameter used in the simulated scenario for this work. For this 649

IEE
E P

ro
of

KAR et al.: ENERGY COST OPTIMIZATION IN DPVC 9

simulation, we considered the randomly generated partially650

meshed networks. Randomly generated flows2 are given as651

the input from a set of source nodes to a set of destination652

nodes, where for each flow, the source and destination nodes653

are not equal. The length of the flows is 10–100 packets, and654

all packets are of equal size. For each flow, the service chains655

are randomly generated of lengths consisting of 5 to 14 VNFs.656

We considered 10 different types of network functions out of657

which 9 are the general functions (VNF remains active until658

all packets of the flow get processed) and one is a special659

function (VNF remains active until flow reaches the destina-660

tion node). Different general VNFs have different processing661

times and can appear one or more times in a single service662

chain. If a VNF has a processing time of 20 packets/sec, then663

it will take 4 sec to process a flow of 80 packets. The special664

VNF can appear a maximum of one time in a service chain665

and remain active until the flow reaches the destination node.666

Each service chain contains a minimum of 3 different types667

of functions. Placement of a service chain’s VNFs is sequen-668

tial, i.e., (i + 1)th VNF of the service chain can be placed669

only after completion of the ith VNF of that service chain.670

If the ith VNF is a special one, then the VM will remain671

active until the flow reaches the destination. The (i + 1)th672

VNF of the service chain can be placed immediately after673

the VM is available and packets are ready for processing.674

After the placement of a special VNF of a service chain, the675

next VNFs of that chain can be placed on the same node676

along with the special VNF, if that function is available on677

that node and the node has available capacity for placement.678

For example, in Figure 1, we consider ‘C’ as a special func-679

tion, and we have a flow from node 5 to 6 with service chain680

demand C-B-A. The first VNF ‘C’ will be placed on node 9681

and will remain active until the flow reaches the destination682

node 6. The second VNF ‘B’ can be placed on node 9 if683

the node has available capacity. This is a case where multiple684

VNFs of the same chain run on the same node. However, ‘B’685

will remain active until all packets of the flow get processed.686

Without loss of generality, we assume a service chain demand687

of a flow at the system will terminate only after all the packets688

of the flow get processed by the respective VNFs, and the flow689

reaches the destination nodes, whereby all flows are not able690

to split. All nodes are of equal capacity. After releasing all the691

VNF instances, the nodes can stay IDLE for duration of max-692

imum idle-time, within this period, if new VNF instances are693

assigned to the IDLE machine, it will turn ACTIVE or else it694

will turn OFF. Because energy consumption in the IDLE state695

is a big issue, in our evaluation, we have considered three696

different cases, i.e., the IDLE node consumes 30%, 40%, or697

50% of the energy of the maximum energy consumption of698

the node during full utilization. When new VNFs are placed699

on an OFF PM and within off-time duration after placement700

of the first VNF, if the PM is unable to get the minCap value,701

it will turn ACTIVE, which will minimize the waiting time of702

the VNFs already in the queue.703

2In this paper, we assume short flows (generated by user tasks that have
a short duration [49]).

B. Results Analysis 704

In this section, we will demonstrate the performance of the 705

algorithms under multiple topologies. In this evaluation, we 706

have considered all three cases of energy consumption of the 707

nodes in the IDLE state. 708

1) Energy Consumption Cost Analysis: Figure 5(a) presents 709

the total energy consumption cost of the networks. Total 710

energy consumption cost is nothing but the sum of the energy 711

consumption cost of the network after each iteration. We 712

check the status of the nodes and amount of VM instances 713

on them after each iteration. As the result, in Figure 5(a), 714

shows, our DPVC saves nearly 45% and 65% more on 715

costs than the FF and RND, respectively. As the input of 716

the number of flows increases, the total energy consumption 717

cost difference between the algorithms, continue to increase. 718

Figure 5(b) shows the variation of energy consumption cost 719

in each iteration. The result shows the DVCP consumes less 720

energy compared to other algorithms, because it always gives 721

priority to select active PMs for the placement of VMs instead 722

of OFF PMs. 723

Figure 5(c) shows the average energy consumption cost by 724

the network per flow. The result in Figure 5(c) clearly shows 725

that the average energy consumption cost in the DPVC is rel- 726

atively less than in other algorithms due to its node selection 727

process, which gives priority to select the active nodes for the 728

placement of the VNF. This process minimizes the number 729

of active nodes in the network, increases the utilization, and, 730

as a result, the cost decreases. Figure 5(d) shows the average 731

number of end-to-end hops per flow. The number of hops in 732

the FF is less than the number in the DVCP algorithm, as it 733

selects the shortest available node for the placement of func- 734

tion. However, its energy consumption is very high compared 735

to the DVCP, as shown in Figure 5(c). In the DVCP algo- 736

rithm we select the path which contains a greater number of 737

active nodes for the placement of VNFs, instead of the shortest 738

path. Hence, in the DVCP, the hop count is more, but energy 739

consumption is less. 740

2) Utilization of Active Nodes: Figure 6(a) shows the aver- 741

age utilization of active PMs, that are not in the OFF state, 742

i.e., we assume the IDLE machines are also active here, as 743

they consume default amount of energy. Average utilization 744

refers to the mean utilization of all nodes in the ACTIVE or 745

IDLE state. For example, a network consists of five nodes, if 746

three nodes are in the ACTIVE state with a utilization of 40%, 747

60%, and 80%, one node is in the OFF state and consumes no 748

energy, and one node is in the IDLE state with 0% utilization 749

of energy. Then the average utilization of the active nodes of 750

the network can be (40% + 60% + 80% + 0%)/4 = 45%. 751

As the result shows, in Figure 6(a), the utilization of the 752

active nodes is relatively 45% more than other algorithms. 753

This is because, in the DPVC, the percentage of active nodes 754

in the network is relatively less, as presented in Figure 6(b). 755

The percentage of active nodes of a network means that in 756

a network with 50 nodes, if 15 nodes are either in the ACTIVE 757

or IDLE state at the time t1, then we consider the percent- 758

age of active nodes to be 30% at t1. The percentage of the 759

active nodes in the DVCP is less because by the RDFST 760

method, it primarily selects the ACTIVE or IDLE nodes for 761

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Fig. 5. (a) Total energy consumption cost of the network per number of flows.
The DPVC algorithm saves more on cost than other algorithms. (b) Energy
consumption cost variation per flows. (c) Average energy consumption cost
per flows. The DPVC saves more on cost than others. (d) Percentage of the
average number of hops from the ingress node to the egress node per flows.

the placement of the VNFs rather the OFF nodes. This mini-762

mizes the number of nodes in the OFF state that turn ACTIVE,763

whereas, the RND method selects the node randomly and764

Fig. 6. (a) Average utilization of active nodes per flow. The DPVC utilizes
its nodes better than other algorithms. (b) Percentage of active nodes in the
networks per flow. The DPVC has fewer active nodes. (c) Average utilization
variation of the active nodes ‘w/’ and ‘w/o’ IDLE nodes.

the FF selects the first available node for the placement of 765

the VNF. 766

Figure 6(c) shows the difference between the maximum and 767

minimum average utilization of the active node. The network 768

experiences the highest variation when a node is in the IDLE 769

state (0% utilization) and another node is fully utilized (100%). 770

In the DVCP algorithm, the IDLE node remains IDLE for 771

a specific duration before turning OFF if no new VNF is 772

assigned. To switch an OFF PM to an ACTIVE state, the 773

DVCP requires a certain minCap value, which increases the 774

utilization. Via the RDFST method, we always try to place 775

a VNF in an active node rather than in an OFF node. Hence, 776

the DVCP experiences more utilization variation than other 777

algorithms with IDLE nodes utilization. However, the variation 778

IEE
E P

ro
of

KAR et al.: ENERGY COST OPTIMIZATION IN DPVC 11

Fig. 7. Total energy consumption cost on different default consumption in
the IDLE state. As default consumption increases, cost increases.

Fig. 8. Energy consumption cost per number of flows in the DVCP algorithm
with each VNF shared by multiple flows. As the more flows shared by the
VNF, energy consumption cost decreases.

is significantly less when we exclude the utilization of the779

network’s IDLE nodes.780

3) Performance Changes With Different Default Energy781

Consumption in the IDLE State: Energy consumption is one of782

the biggest concerns in our research. In Figure 7 we presented783

the results of the total energy consumption cost of the network784

in different percentages of default energy consumption in the785

IDLE state. As the results show, as the amount of energy786

consumption in the IDLE state increases, the total energy787

consumption also increases. The greater the number of IDLE788

nodes in the network, the more the unutilized energy consump-789

tion exists. As the default energy consumption in the IDLE790

state increases, the total energy consumption increases. At the791

same time, our DPVC algorithm saves more on cost than other792

algorithms in all three cases.793

4) Performance Changes With Different Flow Sharing794

Limit: Figure 8 shows the performance of the DVCP algo-795

rithm on different flow sharing limits (how many numbers of796

flows can share a VNF together?). For example, if maximum797

5 flows can share a VNF at a time, then flow sharing limit is 5.798

In all the previous results, we considered the maximum shar-799

ing limit 1. However, a VNF can be shared among different800

flows together. The results in Figure 8 show that by increasing801

the sharing limit of the VNFs, the energy consumption of the802

network reduces significantly. By increasing the VNF’s flow803

sharing limit from 1 flow to 5 flows, the energy consumption804

decreases nearly 30%–35%.805

Fig. 9. The DPVC algorithm with different minimum capacity (minCap)
required to turn ACTIVE, the OFF nodes. With increase in minCap (a) total
energy consumption cost decreases, (b) utilization increases, and (c) mean
delay per service chain increases.

5) Performance Changes With Different minCap Value: 806

Figure 9 shows the performance of the DPVC algorithm on 807

different minCap values. The minCap value is the minimum 808

capacity required to turn the node in on OFF state to an 809

ACTIVE state. As we have considered the capacity of the 810

VM instances to be equal, so we considered the minimum 811

number of VM instances required to turn a machine in an 812

OFF state to an ACTIVE state. This value significantly affects 813

the performance of the network. It minimizes the number of 814

active nodes and significantly increases the utilization of the 815

network. Figure 9(a) and 9(b) show the total energy consump- 816

tion cost and average utilization of the network on a different 817

minCap value, respectively. By increasing the minCap value 818

from 1 to 4, the energy consumption cost decreases by 819

nearly 50 percent, and average utilization increases by nearly 820

IEE
E P

ro
of

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Fig. 10. Energy consumption of network increases/decreases with
increase/decrease of the average utilization of the active nodes.

40 percent. Figure 9(c) shows the mean queuing delay of821

VNFs per service chain. With the increase in minCap, the822

delay increases. However, compared to the good energy saving823

performance, this delay can be negligible.824

6) Intermediate Results Analysis: Figure 10 shows the825

intermediate results of VNF placement algorithms. We826

described these results as intermediate results because they are827

based on a single network; whereas other previous results are828

on multiple networks of the DPVC algorithm. Here we retrieve829

the status of the system for ten-iterations when the percentage830

of active nodes in the network remains unchanged. However,831

the energy consumption cost changes with the change of uti-832

lization of the active nodes. As shown in Figure 10, the833

energy consumption cost of the network increases/decreases834

with increase/decrease the utilization of the active nodes.835

VII. CONCLUSION836

In this paper, we analyzed the energy consumption issue837

in the network function virtualization network. We proposed838

an energy-saving model using an M/M/c queuing network.839

We formulated an optimization problem to minimize the total840

energy consumption cost of the network, which proved to be841

NP-hard. Our proposed algorithm can be used to determine842

the most suitable PMs for the placement of VNFs to mini-843

mize the energy consumption of the network. By normalized844

PM and VM cost estimation, we found that the energy con-845

sumption cost of the network depends on the utilization of the846

active nodes. We reduced the unutilized nodes of the network847

by using the minimum capacity policy. Via MATLAB experi-848

mentation, we found that our algorithm saves nearly 40% more849

total energy consumption cost while processing 500 flows. It850

also minimizes the number of active nodes in the network and851

maximizes the utilization of the active nodes by 40%–50%.852

In this paper, the VNF chains placement is limited to853

only short flows and single source and single destination854

pairs. However, we can handle the long flows (generated by855

applications with long duration [49]), by avoiding sequential856

processing of flows in general VNFs, as a result, the process-857

ing time will not become an issue to process the long flows858

and a single flow can be processed simultaneously by multiple859

VNFs. In our future research work, the long flows and flow860

splitting scenario will be discussed.861

APPENDIX 862

A. Lemma 1 863

∞∑

n=c

P1,n = θ1

θ2
· P00. 864

Proof: From Equation (6), we have, 865

(θ2 + λ) · P1,n = λ · P1, n−1, where n = c, c + 1, . . . , ∞. 866

Hence, 867

P1,n = λ

λ + θ2
· P1,n−1 = (

λ

λ + θ2
)
n−c+1

· P1, 0 868

=
(

λ

λ + θ2

)n−c+1

· θ1

λ
· P0, 0 869

= θ1

λ + θ2
·
(

λ

λ + θ2

)n−c

· P0, 0 870

So, 871

∞∑

n=c

P1,n =
∞∑

n=c

θ1

λ + θ2
·
(

λ

λ + θ2

)n−c

· P0,0 872

= θ1

λ + θ2
· P0, 0 ·

∞∑

n=c

(
λ

λ + θ2

)n−c

873

= θ1

λ + θ2
· P0, 0 ·

[

1 + λ

λ + θ2
+
(

λ

λ + θ2

)2

874

+
(

λ

λ + θ2

)3

+ . . . + ∞
]

875

= θ1

λ + θ2
· P0, 0 · 1

1 − λ
λ+θ2

876

∞∑

n=c

P1,n = θ1

θ2
· P0, 0. 877

B. Proof of Theorem 1 878

From the derived equations (Equation (4) and Equation (5)), 879

we have, 880

P1, 0 = θ1

λ
· P0,0 881

P1, 0 = P1, 1 = P1, 2 = . . . = P1, c−1 882

So 883

c−1∑

n=0

P1,n = c · θ1

λ
· P0, 0. (19) 884

∞∑

n=0

P1, n =
c−1∑

n=0

P1,n +
∞∑

n=c

P1,n (20) 885

Putting the values from Equation (19) and Lemma 1 in 886

Equation (20), we have, 887

∞∑

n=0

P1, n = c · θ1

λ
· P0,0 + θ1

θ2
· P0,0 888

=
[

c · θ1

λ
+ θ1

θ2

]

· P0,0. 889

IEE
E P

ro
of

KAR et al.: ENERGY COST OPTIMIZATION IN DPVC 13

C. Lemma 2890

∞∑

n=1

P0,n+c = P0,0

cμ
· [α − λ].891

Proof: From the Equation (2), we have,892

cμ · P0, n+c = (λ + cμ) · P0,n − λ · P0,n−1893

Putting n = 1, 2, . . . , c − 1, c, . . . K, where K ≈ ∞, we894

will have a series of equations,895

cμ · P0, c+1 = (λ + cμ) · P0,1 − λ · P0,0, n = 1896

cμ · P0, c+2 = (λ + cμ) · P0,2 − λ · P0,1, n = 2897

cμ · P0, c+3 = (λ + cμ) · P0,3 − λ · P0,0, n = 3898

...899

cμ · P0, c+c−1 = (λ + cμ) · P0,c−1 − λ · P0,c−2, n = c − 1900

cμ · P0, c+c = (λ + cμ) · P0,c − λ · P0,c−1, n = c901

...902

cμ · P0, c+K = (λ + cμ) · P0,K − λ · P0,K−1, n = K903

Adding these K number of equations we have,904

cμ ·
K∑

n=1

P0,n+c905

= cμ
[
P0,1 + P0,2 + . . . + P0,c + P0,c+1 + . . . + P0,K

]
906

+ λ · P0,K − λ · P0,0907

= cμ · [P0,1 + P0,2 + . . . + P0,c
]

908

+ cμ · [P0,c+1 + P0,c+2 + . . . + P0,2c
]

909

+ cμ · [P0,2c+1 + . . .
]
. . . + λ · P0,K − λ · P0,0910

Assuming cμ · [P0,1 + P0,2 + · · · + P0,c]911

≈ μ
[
P0,1 + 2P0,2 + . . . + c · P0,c

]
912

= μ ·
c∑

n=1

n · P0,n = (λ + θ1) · P0,0,913

by Equation (1) Hence,914

cμ
[
P0,1 + P0,2 + . . . + P0,c + P0,c+1 + . . . + P0,K

]
915

= (θ1 + λ)P0,0 + 2 · (θ1 + λ)P0,0 + · · · + K

c
· (θ1 + λ)P0,0916

= (θ1 + λ) · P0,0

[

1 + 2 + . . . + K

c

]

917

= (θ1 + λ) · K · (K + c)

2c2
· P0,0 (21)918

So,919

cμ ·
K∑

n=1

P0,n+c = (θ1 + λ) · K · (K + c)

2c2
· P0,0920

+ λ · P0, K − λ · P0,0,921

putting the value from Equation (21).922

Eliminating the term “λ · P0,K”, as the value is quite 923

negligible and beyond our limit, we have, 924

cμ ·
K∑

n=1

P0,n+c =
[
(θ1 + λ) · K · (K + c)

2c2
− λ

]

· P0,0. 925

Putting (θ1+λ)·K·(K+c)
2c2 = α, we have, 926

cμ ·
K∑

n=1

P0,n+c = [α − λ] · P0,0 927

Hence,
∑∞

n=1 P0,n+c = P0,0
cμ · [α − λ]. 928

D. Lemma 3 929

∞∑

n=1

P0,n−1 = [
α

cμ
+ 1]P00. 930

Proof: 931

λ ·
∞∑

n=1

P0, n−1 932

= λ · P0,0 + λ · [P0,1 + P0,2 + . . . + P0,K
]
, where K ≈ ∞ 933

= λ · P0,0 + λ

cμ
· cμ

[
P0,1 + P0,2 + · · · + P0,K

]
934

= λ · P0,0 + λ

cμ
· (θ1 + λ) · K · (K + c)

2c2
· P0,0, 935

putting the value from Equation (21), 936

= λ · P0,0 + λ

cμ
· α · P0,0, 937

putting 938

(θ1 + λ) · K · (K + c)

2c2
= α.λ ·

∞∑

n=1

P0,n−1 =
[
αλ

cμ
+ λ

]

P00 939

Hence, 940

∞∑

n=1

P0,n−1 = [
α

cμ
+ 1]P00. 941

E. Proof of Theorem 2 942

From Equation (3), we have, 943

(λ + cμ)

∞∑

n=1

P0,n = λ

∞∑

n=1

P0,n−1 + cμ
∞∑

n=1

P0,n−1 + θ2

∞∑

n=c

P1,n. 944

Putting the values from Theorem 1, Lemma 2, and Lemma 3, 945

we have, 946

(λ + cμ)

∞∑

n=1

P0,n =
[
αλ

cμ
+ λ

]

P00 + [α − λ] · P0,0 + θ1 · P0,0 947

=
[
αλ

cμ
+ α + θ1

]

· P0,0 948

=
[

α ·
(

λ

cμ
+ 1

)

+ θ1

]

· P0,0 949

IEE
E P

ro
of

14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Hence,950

∞∑

n=1

P0,n = [
α

cμ
+ θ1

λ + cμ
] · P0,0.951

F. Proof of Theorem 3952

∞∑

n=0

P0,n +
∞∑

n=0

P1,n =
∞∑

n=1

P0,n + P0,0 +
∞∑

n=0

P1,n953

=
[

α

cμ
+ θ1

λ + cμ

]

· P0,0954

+ P0,0 +
[

c · θ1

λ
+ θ1

θ2

]

· P0,0,955

by Theorem 1 and Theorem 2,956

=
[

1 + θ1

θ2
+ cθ1

λ
+ α

cμ
+ θ1

λ + cμ

]

· P0,0957

Hence, P0,0 = 1
1+ θ1

θ2
+ cθ1

λ
+ α

cμ + θ1
λ+cμ

.958

G. Proof of Theorem 4959

Given an undirected graph G(N, L) representing the phys-960

ical network, where N is the set of vertices and L is the set961

of edges. Each vertex u ∈ N and edge (u, v) ∈ L have962

assigned the capacity CN(u) and CL(u, v), respectively. Given963

another undirected graph GV(NV , LV) representing the virtual964

network, where NV is the set of vertices and LV is the set of965

edges. Here, we consider that virtual nodes refer to instances966

of the virtual functions, and virtual links refer to links between967

two instances of the virtual function in a service chain. Each968

instance of the functions has been assigned a capacity Cf , to969

represent the capacity of the instance of function f ∈ FV and970

FV is the set of virtual functions. Each virtual link has a cer-971

tain service chain demand da,b(u, v), which represents the972

demand of virtual link (a, b), on physical link(u, v).973

We see in the last example in Figure 4, in virtual and phys-974

ical mapping models, multiple virtual nodes are mapped to975

a single physical node of the network. That is, at a physical976

node u, the sum of the capacity of all the virtual nodes mapped977

to u, must be less than or equal to the maximum capacity of u.978

Again, as multiple virtual links are mapped to single physical979

links, the total sum of the demand of virtual links mapped to980

a physical link must be less than or equal to the maximum981

capacity of that physical link. In a virtual to physical mapping982

scenario, for all a ∈ NV mapped to u ∈ N, and all b ∈ NV
983

mapped to v ∈ N, and for all links, (a, b) ∈ LV mapped to984

(u, v) ∈ L is required to satisfy the following conditions:985

1)
∑

f ∈FV
Cf (u) ≤ CN(u), and

∑
f ∈FV

Cf (v) ≤ CN(v),986

∀u, v ∈ N, where
∑

f ∈FV
Cf (u) and

∑
f ∈FV

Cf (v) are the987

sum of the capacities of the virtual nodes at physical988

node u and v respectively.989

2)
∑

da,b(u, v) ≤ CL(u, v), ∀(u, v) ∈ L, ∀(a, b) ∈ LV ,990

where
∑

da,b(u, v) is the sum of the demand of the991

virtual links mapped to the physical link (u, v).992

Definition 5: A function f : δ1 → δ2 is called a mapping 993

reduction from A to B iff 994

a) For any β ∈ δ1, β ∈ A iff f (β) ∈ B, 995

b) f is a computable function. 996

Intuitively, a mapping reduction from A to B says that 997

a computer can transform any instance of A into an instance 998

of B such that the answer to B is the answer to A. By map- 999

ping the variable of the VNE problem to the variable of our 1000

problem, we have, 1001
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CP(ui) → CN(u)

CP
(
uj
) → CN(v)

CV(wK) → ∑
f ∈FV

Cf (u)

CV(wL) → ∑
f ∈FV

Cf (v)
bP
(
ui, uj

) → CL(u, v)
bV(wK, wL) → ∑

da,b(u, v)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(22) 1002

By Definition 5 and Equation (22), we can map and reduce 1003

the VNE NP-hard problem to our optimization problem. 1004

Hence, our optimization problem is NP-hard. 1005

ACKNOWLEDGMENT 1006

The authors would like to thank the associate editor and 1007

the anonymous reviewers for their valuable comments and 1008

suggestions. 1009

REFERENCES 1010

[1] S. Shafiee and E. Topal, “When will fossil fuel reserves be diminished?” 1011

Energy Policy, vol. 37, no. 1, pp. 181–189, Jan. 2009. 1012

[2] International Energy Agency, World Energy Outlook. Paris, France: IEA, 1013

2010. 1014

[3] “Renewable energy policy network for the 21st century,” Renew. 1015

2016 Glob. Status Rep., Rep., 2016. AQ51016

[4] “Greenhouse gas emission report,” Manuf. Construct. Energy Divis., 1017

Guardian, Rep., Sep, 2015. AQ61018

[5] “Make IT green report,” Greenpeace, Amsterdam, The Netherlands, 1019

Rep., 2010. AQ71020

[6] W. Zhang et al., “OpenNetVM: A platform for high performance 1021

network service chains,” in Proc. Workshop Hot Topics Middleboxes 1022

NFV, 2016. AQ81023

[7] D. Jiankang, W. Hongbo, and C. Shiduan, “Energy-performance trade- 1024

offs in IaaS cloud with virtual machine scheduling,” China Commun., 1025

vol. 12, no. 2, pp. 155–166, Feb. 2015. 1026

[8] Z. Royaee and M. Mohammadi, “Energy aware virtual machine allo- 1027

cation algorithm in cloud network,” in Proc. Smart Grid Conf. (SGC), 1028

Tehran, Iran, 2013, pp. 259–263. 1029

[9] W. Huang, X. Li, and Z. Qian, “An energy efficient virtual machine 1030

placement algorithm with balanced resource utilization,” in Proc. 7th 1031

Int. Conf. Innov. Mobile Internet Services Ubiquit. Comput., Taichung, 1032

Taiwan, 2013, pp. 313–319. 1033

[10] K. S. Rao and P. S. Thilagam, “Heuristics based server consolidation 1034

with residual resource defragmentation in cloud data centers,” Future 1035

Gener. Comput. Syst. vol. 50, pp. 87–98, Sep. 2015. 1036

[11] G. Singh and P. Gupta, “A review on migration techniques and chal- 1037

lenges in live virtual machine migration,” in Proc. 5th Int. Conf. Rel. 1038

Infocom Technol. Optim. (Trends Future Directions) (ICRITO), Noida, 1039

India, 2016, pp. 542–546. 1040

[12] R. Mijumbi et al., “Network function virtualization: State-of-the-art 1041

and research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, 1042

pp. 236–262, 1st Quart., 2016. 1043

[13] W. Dargie, “Estimation of the cost of VM migration,” in Proc. 23rd 1044

Int. Conf. Comput. Commun. Netw. (ICCCN), Shanghai, China, 2014, 1045

pp. 1–8. 1046

[14] T. Nadeau and P. Quinn, “Problem statement for service function 1047

chaining,” Internet Eng. Task Force,” Fremont, CA, USA, RFC 7498, 1048

Nov. 2015. 1049

[15] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach 1050

for service function chain routing and virtual function network instance 1051

migration in network function virtualization architectures,” IEEE/ACM 1052

Trans. Netw., vol. 25, no. 4, pp. 2008–2025, Aug. 2017. 1053

IEE
E P

ro
of

KAR et al.: ENERGY COST OPTIMIZATION IN DPVC 15

[16] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function1054

chain deployment and readjustment,” IEEE Trans. Netw. Service Manag.,1055

vol. 14, no. 3, pp. 543–553, Sep. 2017.1056

[17] R. Huang et al., “Data center IT efficiency measures,” Nat. Renew.1057

Energy Lab. (NREL), Golden, CO, USA, Rep., 2015.1058

[18] G. Chen et al., “Energy-aware server provisioning and load dispatch-1059

ing for connection-intensive Internet services,” in Proc. 5th USENIX1060

Symp. Netw. Syst. Design Implement., San Francisco, CA, USA, 2008,1061

pp. 337–350.1062

[19] C. Rose and M. Hluchyj, “The performance of random and optimal1063

scheduling in a time-multiplex switch,” IEEE Trans. Commun., vol. 35,1064

no. 8, pp. 813–817, Aug. 1987.1065

[20] Info-Tech, Top 10 Energy-Saving Tips for a Greener Data Center,1066

Info-Tech Res. Group, London, ON, Canada, Apr. 2010. [Online].1067

Available: http://static.infotech.com/downloads/samples/0704111068

_premium_oo_greendc_top_10.pdf1069

[21] X. Tang, Y. Li, R. Ren, and W. Cai, “On first fit bin packing for online1070

cloud server allocation,” in Proc. IEEE Int. Parallel Distrib. Process.1071

Symp., Chicago, IL, USA, 2016, pp. 323–332.1072

[22] L. P. Pires and B. Barán, “A virtual machine placement taxonomy,” in1073

Proc. 15th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput. (CCGrid),1074

Shenzhen, China, 2015, pp. 159–168.1075

[23] J. Dong et al., “Energy-saving virtual machine placement in cloud1076

data centers,” in Proc. 13th IEEE/ACM Int. Symp. Cluster Cloud Grid1077

Comput. (CCGrid), Delft, The Netherlands, 2013, pp. 618–624.1078

[24] A. Khosravi, S. K. Garg, and R. Buyya, “Energy and carbon-efficient1079

placement of virtual machines in distributed cloud data centers,” in Proc.1080

Eur. Conf. Parallel Process., Santiago de Compostela, Spain, 2013.1081

[25] Y. Ding, X. Qin, L. Liu, and T. Wang, “Energy efficient scheduling1082

of virtual machines in cloud with deadline constraint,” Future Gener.1083

Comput. Syst., vol. 50, pp. 62–74, Sep. 2015.1084

[26] Y.-J. Chiang, Y.-C. Ouyang, and C.-H. R. Hsu. “An efficient green con-1085

trol algorithm in cloud computing for cost optimization,” IEEE Trans.1086

Cloud Comput., vol. 3, no. 2, pp. 145–155, Apr./Jun. 2015.1087

[27] M. Ghaznavi et al., “Elastic virtual network function placement,” in1088

Proc. IEEE 4th Int. Conf. Cloud Netw. (CloudNet), Niagara Falls, ON,1089

Canada, 2015, pp. 255–260.1090

[28] S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra, “Exploiting con-1091

gestion games to achieve distributed service chaining in NFV networks,”1092

IEEE J. Sel. Areas Commun., vol. 35, no. 2, pp. 407–420, Feb. 2017.1093

[29] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network func-1094

tions placement and routing optimization,” in Proc. IEEE 4th Int. Conf.1095

Cloud Netw. (CloudNet), Niagara Falls, ON, Canada, 2015, pp. 171–177.1096

[30] S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra, “A game theo-1097

retic approach for distributed resource allocation and orchestration of1098

softwarized networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 3,1099

pp. 721–735, Mar. 2017.1100

[31] H. Moens and F. De Turck, “VNF-P: A model for efficient placement1101

of virtualized network functions,” Proc. 10th Int. Conf. Netw. Service1102

Manag. (CNSM), Rio de Janeiro, Brazil, Nov. 2014, pp. 418–423.1103

[32] P. Wang, J. Lan, X. Zhang, Y. Hu, and S. Chen, “Dynamic function com-1104

position for network service chain: Model and optimization,” Comput.1105

Netw., vol. 92, pp. 408–418, Dec. 2015.1106

[33] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal1107

placement of virtual network functions,” in Proc. IEEE Conf. Comput.1108

Commun. (INFOCOM), Hong Kong, 2015, pp. 1346–1354.1109

[34] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains1110

of virtual network functions,” in Proc. IEEE 3rd Int. Conf. Cloud Netw.1111

(CloudNet), Oct. 2014, pp. 7–13.1112

[35] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and1113

L. P. Gaspary, “Piecing together the NFV provisioning puzzle: Efficient1114

placement and chaining of virtual network functions,” in Proc.1115

IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM), Ottawa, ON, Canada,1116

May 2015, pp. 98–106.1117

[36] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for1118

the placement of service function chains,” IEEE Trans. Netw. Service1119

Manag., vol. 13, no. 3, pp. 533–546, Sep. 2016.1120

[37] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca,1121

“The dynamic placement of virtual network functions,” in Proc. IEEE1122

Netw. Oper. Manag. Symp. (NOMS), Ottawa, ON, Canada, May 2015,1123

pp. 98–106.1124

[38] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and1125

O. C. M. B. Duarte, “Orchestrating virtualized network func-1126

tions,” IEEE Trans. Netw. Service Manag., vol. 13, no. 4, pp. 725–739,1127

Dec. 2016.1128

[39] Y. Deng, W. J. Braun, and Y. Q. Zhao, “M/M/1 queueing system with1129

delayed controlled vacation,” OR Trans., vol. 3, pp. 17–30, 1999.AQ9 1130

[40] T. Phung-Duc, “Exact solutions for M/M/c setup queues,” Telecommun. 1131

Syst., pp. 1–16, 2016. AQ101132

[41] R. Basmadjian, F. Niedermeier, and H. de Meer, “Modelling 1133

performance and power consumption of utilisation-based DVFS using 1134

M/M/1 queues,” in Proc. 7th Int. Conf. Future Energy Syst., Waterloo, 1135

ON, Canada, 2016, Art. no. 14. 1136

[42] E. Gelenbe and G. Pujolle, Introduction to Queueing Networks. 1137

New York, NY, USA: Wiley, 1998. 1138

[43] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach, 1139

“Virtual network embedding: A survey,” IEEE Commun. Surveys Tuts., 1140

vol. 15, no. 4, pp. 1888–1906, 4th Quart., 2013. 1141

[44] M. Yadin and P. Naor, “Queueing systems with a removable service 1142

station,” J. Oper. Res. Soc., vol. 14, no. 4, pp. 393–405, 1963. 1143

[45] A. Dhesikan, “Data center energy efficiency: Power vs. performance,” 1144

2012. AQ111145

[46] S. Sahhaf et al., “Network service chaining with optimized network 1146

function embedding supporting service decompositions,” Comput. Netw., 1147

vol. 93, pp. 492–505, Dec. 2015. 1148

[47] B. Heller et al., “ElasticTree: Saving energy in data center networks,” in 1149

Proc. 7th USENIX Symposium Netw. Syst. Design Implement. (NSDI), 1150

San Jose, CA, USA, Apr. 2010, pp. 249–264. 1151

[48] G. Cheng, H. Chen, H. Hu, Z. Wang, and J. Lan, “Enabling network 1152

function combination via service chain instantiation,” Comput. Netw., 1153

vol. 92, pp. 396–407, Dec. 2015. 1154

[49] F. Carpio, A. Engelmann, and A. Jukan, “DiffFlow: Differentiating short 1155

and long flows for load balancing in data center networks,” in Proc. Glob. 1156

Commun. Conf. (GLOBECOM), Washington, DC, USA, Dec. 2016, 1157

pp. 1–6. 1158

Binayak Kar is currently pursuing the Ph.D. degree with the Department of 1159

Computer Science and Information Engineering, National Central University, 1160

Taiwan. His research interests include network security, cloud computing, 1161

software defined networking, and network function virtualization. 1162

Eric Hsiao-Kuang Wu received the B.S. degree in computer science and 1163

information engineering from National Taiwan University, Taipei, Taiwan, 1164

in 1989 and the M.S. and Ph.D. degrees in computer science from the 1165

University of California, Los Angeles, in 1993 and 1997, respectively. He is 1166

currently a Professor of computer science and information engineering with 1167

the Department of Computer Science and Information Engineering, National 1168

Central University, Chung-Li, Taiwan. His research interests include wireless 1169

networks, mobile computing, and broadband networks. 1170

Ying-Dar Lin received the Ph.D. degree in computer science from the 1171

University of California at Los Angeles in 1993. He is a Distinguished 1172

Professor of computer science with National Chiao Tung University, Taiwan. 1173

He was a Visiting Scholar with Cisco System, San Jose, from 2007 to 1174

2008. Since 2002, he has been the Founder and the Director of Network 1175

Benchmarking Laboratory, which reviews network products with real traf- 1176

fic and has been an approved test laboratory of the Open Networking 1177

Foundation (ONF) since 2014. He also cofounded L7 Networks Inc., in 1178

2002, which was later acquired by D-Link Corp. He published a book enti- 1179

tled Computer Networks: An Open Source Approach, with R.-H. Hwang 1180

and F. Baker (McGraw-Hill, 2011). His work on multihop cellular was the 1181

first along this line, and has been cited over 750 times and standardized 1182

into the IEEE 802.11s, the IEEE 802.15.5, the IEEE 802.16j, and 3GPP 1183

LTE-Advanced. His research interests include network security and wireless 1184

communications. He currently serves on the editorial boards of several IEEE 1185

journals and magazines. He is an IEEE Distinguished Lecturer from 2014 to 1186

2017 and an ONF Research Associate. 1187

IEE
E P

ro
of

AUTHOR QUERIES
AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF
proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us
your corrections in list format. You may also upload revised graphics via the Author Gateway.

AQ1: Please provide the postal code for “National Chiao Tung University, Hsinchu, Taiwan.”
AQ2: Please provide the better quality image for all the figures.
AQ3: Note that if you require corrections/changes to tables or figures, you must supply the revised files, as these items are

not edited for you.
AQ4: Note that the author name Ding et al. has been changed to Khosravi et al. to match the corresponding reference

citation [24]. Please check and correct if necessary.
AQ5: Please provide the location, report number for Reference [3].
AQ6: Please provide the location and report number for Reference [4].
AQ7: Please provide the report number for References [5] and [17].
AQ8: Please provide the page range for Reference [6].
AQ9: Please provide the issue number or month for Reference [39].
AQ10: Please provide the volume number, issue number or month for Reference [40].
AQ11: Please provide the complete details and exact format for Reference [45].

