
IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys2

he Internet has moved from a convenience to a mis-
sion-critical platform for conducting and succeeding in

business. As Internet applications prevail, security problems
due to intruders arise. To guarantee the secure operations of
an enterprise network, access control to block unauthorized
inbound/outbound traffic, encryption/authentication to protect
traffic from interception/modification/fabrication, and intru-
sion detection to discover attacks, must be in place at the
edge of the enterprise network. Firewalls, virtual private net-
works (VPN), and intrusion detection systems (IDS), respec-
tively, address the above three requirements. Originally they
were separate devices, but they have been integrated with
other services such as network address translation (NAT) as a
single security gateway. Their functions, together with NAT,
are described in the following sections.

FIREWALL

Firewalls can provide basic or advanced access control over
pass-through connections and are classified into three cate-
gories
• Packet filtering firewall (PF)
• Stateful inspection packet filtering firewall (SPF)
• Application proxy firewall (APF)
A PF filters individual packets according to the access control
rules, which are specified using the condition and action fields.
Condition defines the packet-matching criteria, such as a cer-
tain subnet or an application, by investigating header fields
such as protocol identifier, source/destination MAC/IP/port,
and various TCP/IP flags. However, a PF cannot inspect the
correlation among consecutive packets. An SPF records rele-
vant information of a connection to trace the validity of each

T

YING-DAR LIN, HUAN-YUN WEI, AND SHAO-TANG YU, NATION CHIAO TUNG UNIVERSITY

ABSTRACT
Network security has become a critical issue for enterprises. This article first gives a

tutorial of each basic component of a security gateway, including the firewall, content
filtering, network address translation (NAT), the virtual private network (VPN), and
the intrusion detection system (IDS). The building of an integrated security gateway,
using various open-source packages, is then described. Conflicts among the packages

are resolved to ensure interoperability. Next, we internally/externally evaluate the
performance of each component with six commercial implementations to identify the
problems for future research directions. Readers can understand how these compo-
nents deliver secure operations, how a packet can properly traverse through such a

gateway, and how many resources are consumed in each software component. Select-
ed packages include the Linux kernel, ipchains (packet filter), Squid (URL filter),

FWTK (content filter), FreeS/WAN (VPN), and Snort (IDS). ipchains and
FreeS/WAN are found viable, but FWTK and Snort suffer performance problems.

Further examining their source code and data structures reveals the improper imple-
mentation in FWTK and the less scalable linear matching algorithms in ipchains and
Snort. Finally, several approaches to scale up these software components are suggest-
ed to improve the performance. Note that installing such a security gateway does not
mean secured. This study focuses on building a product-like security gateway and on
evaluating its performance. The integrated system with a self-developed Web man-

agement console is publicly available for downloading.

BUILDING AN INTEGRATED SECURITY

GATEWAY: MECHANISMS,
PERFORMANCE EVALUATIONS,

IMPLEMENTATIONS, AND RESEARCH ISSUES

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys 3

packet in this connection. Thus, an SPF can block invalid
packets according to standard protocol specifications, such as
TCP state transitions, TCP window size/Acknowledgments,
and IP fragmentation bits. Moreover, SPF simplifies manage-
ment. For example, if the access control rules deny all outgo-
ing/incoming connections except those outgoing to the
external Web servers, an SPF can automatically open a door
for the feedback Web contents. For advanced access control
to filter the contents of a connection, such as denying outgo-
ing HTTP requests to specific URLs (URL filtering), or
blocking incoming Java/ActiveX/cookie Web objects, reassem-
bling packets is required to investigate application-layer head-
ers or payloads. An APF works as a user-space process at the
application layer and lets the underlying kernel TCP/IP stack
reassemble the packets. It acts as a “middleman” to
forward/check/intercept the content of the requests or
responses for the application. So an APF is also known as a
content filter.

VIRTUAL PRIVATE NETWORK (VPN)

A virtual private network can establish secured virtual links
among different organizations, such as branch offices. Tunnel-
ing [1] by appending additional headers facilitates the virtual
lease line while cryptographic technologies prevent private
information passing through the public Internet from being
intercepted, modified, or fabricated. However, when complex
cryptographic algorithms are employed, encryption and
decryption within VPN tunnels becomes the performance bot-
tleneck. Hence, dedicated hardware has been proposed to
maximize the throughput and minimize the latency. Modern
VPN technologies include PPTP [2], L2TP [3], and IPsec [4].
PPTP and L2TP work at the data link layer and are suitable
for secure remote access between mobile users and enterpris-
es. In contrast, IPsec works at the network layer and can pro-
vide secured tunnels among subnets. IPsec provides encryption
and authentication mechanisms for the IP protocol suite.
Encryption prevents intruders from reading information by
sniffing traffic among hosts. Authentication prevents intruders
from spoofing the hosts of a connection. Nowadays, IPsec has
become a must for the VPN service in a security gateway.
Accordingly, this study focuses on IPsec.

INTRUSION DETECTION SYSTEM (IDS)

Many network intrusions cannot be identified until the traffic
has been passively analyzed. For example, denial of service
(DoS) attacks such as ICMP-flooding are difficult to recog-
nize until numerous ICMP packets have arrived within a small
time interval; application-specific buffer-overflow1 attacks to
obtain root privilege, such as subverting an FTP server by a
long “MKDIR” command, may require buffering and reassem-
bling several packets before seeing the whole FTP command.
A network-based IDS can detect such attacks by matching a
substring, for example, the “phf” in “GET/cgi-bin/phf?,” to
identify those network packets as vehicles of a Web server
attack. When such kinds of potential hostile activities are
detected, an IDS will alert system administrators and may
block the activity.

The above examples describe the basic functions of a net-
work-based IDS. In fact, the IDS model can be host-based

IDS (HIDS) or network-based IDS (NIDS). HIDS is installed
at a host to periodically monitor specific system logs for pat-
terns of intrusions. In contrast, an NIDS sniffs the traffic to
analyze suspicious behaviors. A signature-based NIDS
(SNIDS) examines the traffic for patterns of known intru-
sions. SNIDS can quickly and reliably diagnose the attacking
techniques and security holes without generating an over-
whelming number of false alarms because SNIDS relies on
known signatures. However, anomaly-based NIDS (ANIDS)
detects unusual behaviors based on statistical methods.
ANIDS could detect symptoms of attacks without specific
knowledge of details. However, if the training data of the
normal traffic are inadequate, ANIDS may generate a large
number of false alarms.

This study focuses on the performance of signature-based
NIDS because this model is more essential at security gate-
ways [5]. Integrating such NIDS with a firewall is controversial
because NIDS will consume too many system resources. How-
ever, integrating them together has the potential advantage of
enabling an IDS to instantly notify the firewall module to
block hostile activities. Several firewall vendors have now
incorporated basic anti-DoS functions.

Obviously, the design considerations for an NIDS are:
• Distinguishing intrusions from normal traffic.
• Functioning without consuming too many system

resources.
• Performing well even under a heavy traffic load [6].
An example high-performance NIDS [7] proposes a concise
and extensible intrusion specification language, and an effi-
cient pattern-matching approach whose matching time is
insensitive to the number of patterns.

NETWORK ADDRESS TRANSLATION

Network address translation (NAT) [8, 9] is a basic require-
ment of a security gateway. Originally NAT is to save public
IP addresses by translating each packet’s source private IP
address and port number pair into those of the security gate-
way. In this way, NAT also avoids directly exposing private
hosts to the publicly accessible Internet. Thus, NAT can alle-
viate the danger of being directly attacked. Consequently,
many commercial security gateways, including all those to be
evaluated later, have built-in NAT functions.

In response to the growth of the above technologies, test-
ing has become essential to verify that they can operate prop-
erly and perform well. Additionally, this tutorial seeks to
present the experiences of building a product-like integrated
security gateway that can support a firewall, VPN, IDS, and
NAT from many open-source packages, and determine the
performance bottlenecks to suggest future research directions.

The selected open source packages include Linux kernel
[10], ipchains [11], Squid [12], FireWall ToolKit (FWTK) [13],
FreeS/WAN [14], and Snort [15]. For access control, ipchains,
Squid, and FWTK can provide packet filter, URL filter, and
content filter capabilities, respectively. For data security,
FreeS/WAN provides encryption, authentication, and Internet
key exchange services. For intrusion detection, Snort can
detect the intrusions in the protected network, and alert sys-
tem administrators when suspicious activities are detected.
Although each package works well individually, they do not
cooperate well. Thus, we trace the packet flows in a gateway
to find out the problems, and eliminate those problems by
modifying the kernel and setting proper rules. We developed
the Web management console to manage each module. The
highly integrated system is downloadable at [16]. Three spe-
cial packet flows that require extra integration efforts will be
discussed.

1 Buffer overflow attack is a common hacking approach that skillfully
feeds a long command to overflow the stack of the process. The overflowed
segment contains bad actions that are executed when the return address of
the stack points to the bad actions.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys4

After these packages are integrated, a series of external
(black-box) and internal (white-box) benchmarks are per-
formed. In external benchmarks, the integrated security gate-
way is compared with commercial ones to examine its
competitiveness, in terms of throughput and latency. In the
internal benchmarks, a detailed profiling of the integrated
security gateway is performed to examine the CPU/
memory/disk consumption and to investigate the scalability of
each key module. The questions to be answered include: Who
tops the processing time among the kernel-space modules and
the user-space processes, respectively? How much disk and
memory space does each package consume? How scalable are
ipchains, Squid, and FWTK? What are the consequences of
increasing the key length in cryptographic algorithms? Can
Snort examine each packet for suspicious activities under a
heavy traffic load? Where are the bottlenecks of these mod-
ules?

The rest of this article is organized as follows. We describe
system integration efforts, and then present the external and
internal benchmark experiments, respectively. Finally, we give
the result and present possible directions for future research.

SYSTEM INTEGRATION

The selected software packages are introduced herein. Some
can cooperate well, but some require extra integration efforts.
The complete packet flow of our integration is explained in
this section.

SELECTED PACKAGES

Table 1 lists the open-source packages chosen for integration.
They are selected because of their functional completeness
and excellent reputation. Notably, a Linux system consists of a
kernel space and a user space. Kernel space is responsible for
abstracting and managing a machine’s resources, including
process, memory, file system, devices, and networking. User

space programs use the kernel-supported system
calls. Programs that run permanently as back-
ground processes are called daemons.

EXTRA INTEGRATION WORKS

This section discusses three special access types
that require extra integration works. The follow-
ing section then illustrates the complete packet
flows of our integration. Table 2 and Fig. 1a give
the three access types and their demands of pro-

tection. Connections of type-1 access are established from pri-
vate hosts to untrusted regions (m1 to F in Fig. 1a), such as
public Internet servers, excluding the Web-server accesses that
are treated as type-3 accesses. Type-2 connections are tun-
neled between private subnets (m1 to m2 in Fig. 1a) and do
not need URL/content filtering since both sides are trusted
regions. Type-3 accesses issue HTTP requests from private
hosts to public Web servers in the untrusted regions (m1 to W
in Fig. 1a) to retrieve Web pages back to the private hosts.
These accesses should be protected by various firewall actions
shown in Table 2. Figure 1b and c detail the dynamic packet
processing flows within VPN1 and VPN2, respectively. Read-
ers can follow the labeled arrow lines to trace the processing
flows of the three access types. Figure 1c only illustrates type-
2 access because type-1 and type-3 accesses do not enter
VPN2. Detailed packet flows of each access type are then
described.

Let (X,Y) be the pair of the source IP address X and the
destination IP address Y. In Fig. 1b and 1c, the packet flows
in VPN1 and VPN2 indicate that the ipchains consists of
input, forward, and output chain tables, which are used to
check incoming, forwarding, and outgoing packets, respective-
ly. All three chains are checked in sequence when forwarding
a packet. In each chain table, the gateway searches for the
access rule linearly from top to bottom to match the packet.
Each access rule contains the “condition” and “action” fields
to define specific actions taken under specific conditions.
Condition defines the packet-matching criteria, such as a cer-
tain subnet or application. Action defines the operation
imposed on the packets, such as accept, reject, bypass, redi-
rect, or NAT. Any packet matched by a “bypass” rule will be
directly skipped to the next chain table, if any, without contin-
uing to search the rest of the table entries in the same chain
table. Packets matched by the “redirect” rules are redirected
to user-space daemon programs. In this integration ipchains
works as a dispatcher that dispatches different packets to their
corresponding processing paths. This integration ensures the
interoperability among packages so that packets of different

■ Table 1. Software package information.

ipchains Command-line management tool Kernel built-in packet filtering 63KB 1.3.9
firewall and NAT

Squid Daemon (cache server, transparent proxy**, and No 1104KB 2.3
URL filter)

FWTK Daemon (application proxies for Web content filter) No 476KB 2.1

FreeS/WAN Pluto Daemon (Internet key exchange, IKE) KLIPS kernel patch (encryption 1252KB 1.5
and authentication)

Snort Daemon (intrusion detection) No 644KB 1.7

* NAT in Linux kernel 2.2 is called IP masquerade (MASQ). For clarity, this article names all NAT services as NAT.
** A transparent proxy automatically redirects Web requests to itself. Users are exempted from explicitly setting their browsers to access

the proxy.

Package name User-space program Kernel-space program Package size Version

■ Table 2. Three access types.

1 Untrusted region services (FTP, NAT, and packet filtering
… except Web)

2 Trusted-region communications VPN, and packet filtering

3 Untrusted region Web services NAT, packet/URL/content filtering

No. Access types Demands of protection

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys 5

access types can receive appropriate protection. The packet
flows of the three access types in Table 2 and Fig. 1 are
described below:

Untrusted Region Services (Except Web Service): These
services requires NAT and packet filtering protections. The
NAT service is a built-in function of ipchains. This integration
skillfully avoids directing packets of the IP address pair (m1,
F) to the other two access types by sequencing the filters.

Trusted-Region Communications (Brach Offices): Packets
of the IP address pair (m1,m2) will first be bypassed in the
input chain to avoid being redirected to the path for filtering
URL/content. They are bypassed again in the forward chain
to avoid being NATed. Finally, they can be encrypted and
tunneled. On the other gateway (VPN2 in Fig. 1), any encrypt-
ed packets are decrypted, de-tunneled, and looped back to the
input chain for packet filtering.

Untrusted Region Web Services: Any HTTP request pack-
et from m1 with IP address pair (m1,W) and destination port
80 will first be redirected to Squid for URL filtering. Subse-
quently, it is passed to FWTK in Fig. 1b through the inter-
daemon socket. FWTK establishes a new connection to W
with the IP address pair (p1,W) such that NAT can also be
achieved. FWTK then performs content filtering to the
retrieved Web pages and forwards them back, if any, to the
private host m1 via the original connection.

COMPLETE PACKET FLOWS OF OUR INTEGRATION

Figure 2 illustrates the complete packet processing flows of
the integrated security gateway. The flows are traced by ker-
nel debugging tools/techniques: KProf [17], kdb [18], and
printk.2 Figure 2 can be employed at both-side security gate-
ways. In general, the packet flow in a gateway from the pri-
vate interface to the public interface is as follows:
• Perform checksum calculations and sanity checks of the

packet.
• Check the packet through the input chain.
• Route the packet.
• Judge whether the packet is generated by the gateway

itself.
• Check the packet through the forward chain.
• NAT the packet, if needed.
• Check the packet through the output chain.
• Perform VPN processing, if needed.
In addition, if the packet’s source and destination IP address-
es both belong to the gateway, i.e., inter-daemon communica-
tion from Squid to FWTK, the gateway passes the packet back
to the loopback (lo) interface after checking the output chain.

2 Printk is a printf-like C function used in Linux kernel to dump a message
to the screen/log.

■ FIGURE 1. Packet flows of three access types.

1
2
3

3
3
22

1

Access types
(NAT + firewall)

(VPN tunnel + firewall)

(NAT + URL/content filtering + firewall)

(a) Three access types

(b) Detailed packet flows in VPN1

(c) Detailed packet flows in VPN2

FTP server: F

Web server: W

Private
host:
m2

VPN2: p2 Private host:
m1VPN1: p1p1,W Data

p1,F1 Data

m1,m2 Data

p1,F Data

p1,W Data
FWTK

Squid

3

2

1p1,W3

N

2

2

Y

1,3Data

p1,p2 m1,m2

2

m1,m22 Data

m1,m2 Data

m1,m2 Data
2

2
m1,m2

de-VPN

Data

VPN

Null Null m1,W Data

m1,m2 Data
m1,F Data

Firewall

Masq

VPN

URL filter

Content filter

3

2
1

...

Output chain

...

ConditionAction
... ...

Null Null
...

Output chain

...

Condition Action
... ...

Null

2

3
1 Null

m1,*:80

Input chain

Redirect

Action
m1,m2 Bypass

NullNull
m2,*:80

Input chain

Redirect

Action
m1,m2 Bypass

m1,* NAT
...

Forward chain

...

m1,* NAT
Null Null

... ...

ConditionAction
m1,m2 Bypass

m1,* NAT
...

Forward chain

...

m2,* deNAT
Null Null

... ...

Action
m1,m2 Bypass

p1,F Data

p1,p2

p1,p2

m1,m2

m1,m2

if(m1,m2)

If encrypted

Firewall

Masq

VPN

Condition

Condition Condition

1

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys6

EXTERNAL BENCHMARK
BENCHMARK METHODOLOGY

This section quantifies the difference in performance between
our open-source integration and commercial products.
Because vendors tend to give their products a favorable posi-
tion in the marketplace, some of their announced perfor-
mance benchmarks confuse users. RFC1242 [19] and
RFC2544 [20] then define the benchmarking terminology and
methodology, respectively, for network interconnected
devices. RFC2647 [21] further defines the benchmarking ter-
minology for firewall performance in response to the strong
demand for firewall boxes. Table 3 lists the tested security
gateways.

Table 4 describes the benchmark tools, benchmark items,
and performance metrics of interest. URL filtering and IDS
are not tested because most products do not support them.

SmartBits [28] can offer progressively heavier traffic loads
until the gateways begin to drop packets. The highest load
with zero loss is called the no loss maximum throughput
(NLMT), and is defined as throughput in RFC2647. Web-
Stone [29] can open as many connections as possible per sec-
ond to a Web server. Hence it can measure the throughput
under the maximum connection rate. When encrypting and
tunneling a 1518-byte packet (the maximum Ethernet frame
size) from one subnet to the other, the VPN1 gateway requires
that the packet be split because encryption and tunneling
enlarge the packet size. VPN2 then reassembles it.

In the packet filtering test, the two SmartBits ports emu-
late two IP subnets. Each port emulates 200 hosts and gener-
ates 128-byte and 1518-byte UDP packets from one subnet to
the other. The maximum number of packets per second for
the two packet sizes with a 100 Mb/s interface reach 97656
and 8234, respectively. Filters are configured not to block

■ FIGURE 2. Complete packet processing flows of the integration.

Deny Deny/
reject

Nic

Select Slave
port 1000

Squid
port
3128

Fork

User space

Kernel space

Child
port 1001

TIS
port
8080

Other local
processes

(Pluto, Snort, etc.)

Check
sum
and

check
sanity Check

output
chain

Check
input
chain

Do
VPN

if
needed Nic

KLIPS

Bypass 2

Redirect

Check
forward
chain

Bypass 1
Linear
search

NAT

Deny/
reject

de-VPN

KLIPS

de-NAT

Yes

No Make
routing
decision

No

Accept

Accept
Yes

Source
ip is
local

Yes

No Accept

Accept

Accept

Deny/
reject

lo interface

■ Table 3. Devices under test.

Linux 2.2.16(open source) S/W Linux Our PC equipped with P-III 700MHz CPU, No

BorderWare [22] S/W BSD 128MB SDRAM, and 15GB hard disk No
Firewall Server v6.1.2

Check Point [23] S/W NT No
VPN/Firewall-1 v4.1 SP 2

Cisco [24] H/W IOS PIII 600 128 MB 16 MB No
PIX 525R v5.3

NetScreen [25] H/W Proprietary Galileo 64120 75 MHz 128 MB 128KB Proprietary ASIC
100 model

SonicWALL [26] H/W Proprietary Intel StrongARM 233 MHz 16 MB 4 MB VPN accelerator card
PRO VX v5.11

WatchGuard [27] H/W Linux K6-III P 366 256 MB 8 MB No
FireBox_Plus

Device under test (DUT) Solution OS CPU RAM Flash/HD Accelerator

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys 7

packets, so SmartBits can accurately trace the
NLMT.

In the content filtering test, an Apache 1.3.12
Web server is set up on one side of the gateway,
and WebStone acts as a Web client on the other
side. The Web pages obtained from the Web-
Stone package do not contain any ActiveX/Java/
JavaScript objects. Therefore, all devices under
tests (DUTs) are only to check whether any
ActiveX/Java/JavaScript objects are present in the
retrieved Web pages.

Figure 3 presents the benchmark environment
of the subnet-to-subnet VPN in the IPsec VPN
test. Both-side DUTs are connected to each
other via a wire-speed layer-3 switch. The config-
urations of SmartBits are the same as those for
packet filtering. Both gateways are set to
operate in IPsec’s ESP (Encapsulated
Security Payload) mode [30] using 3DES
(Triple Data Encryption Standard)
encryption [31] and MD5 (Message
Digest Algorithm) authentication algo-
rithms [32].

PERFORMANCE RESULTS

Packet Filter and NAT — Packet filtering
only examines packet headers and hence is
sensitive to the packet count per second,
which is determined by the offered load
and the packet size. The implementation
mechanisms and hardware specifications
affect NAT performance. Fig. 4 compares
the NLMT, with or without NAT, among
the 7 DUTs. BorderWare cannot disable
NAT, and SonicWall was returned before
the results without NAT were collected.
Although the hardware platforms of the
three software-based solutions are the
same, their performance differs consider-
ably. BorderWare is an application-proxy
firewall and therefore has the worst per-
formance. Check Point’s solution may be
bottlenecked by the Windows NT operat-
ing system. Open-source solution performs
well (86.6 Mb/s) for 128-byte packets but
is significantly degraded (57.8 Mb/s) when
NAT is enabled. In contrast, NetScreen’s
ASIC exhibits wire-speed throughput.

The NLMT of CheckPoint, SonicWall,
and WatchGuard are similar (Fig. 4), but
the latency of SonicWall is low, as depict-
ed in Fig. 5. CheckPoint and WatchGuard
are inferred to use a much larger buffer
to queue packets than is used by Son-

■ Table 4. Categories of external benchmark.

Packet filtering SmartBits 2000 governed 1. Impacts of enabling NAT 1. NLMT and latency when enabling NAT
test w/o NAT by SmartFlow 1.2 software 2. Impacts of increasing the number of filters 2. NLMT and latency when increasing

the number of filters

Content filter WebStone 2.5 1. Impacts of enabling content filter Throughput under maximum connection
2. Impacts of increasing HTTP connection rate rate

VPN SmartBits 2000 governed 1. Impacts of creating a VPN tunnel 1. NLMT
by SmartFlow 1.2 software 2. Impacts of handling packet fragmentation 2. Latency under VPN tunnel

in VPN processing

Category Benchmark tool Benchmark item Performance measures

■ FIGURE 3. Environment for Evaluating VPN throughput.

UDP
traffic

UDP
traffic

3COM Corebuilder 3500
layer 3 switch VPN gatewayVPN gateway

SmartBits NetCom
S Y S T E M S

2PTTYPE
Advanced Technology Systems
1133 Address, city, state
(888) 123-4567 (888) 123-4567

SmartBits

■ FIGURE 5. Latency with/without NAT enabled (traffic load 10 Mb/s).

WatchGuard
0

500

600

La
te

nc
y

(µ
s)

400

300

200

100

SonicWallNetscreenCiscoCheckPointBorderWareLinux
(open

source)

Disable nat, 128B
Enable nat, 128B

■ FIGURE 4. No loss maximum throughput with/without NAT enabled.

WatchGuard
0

100

N
o

lo
ss

 m
ax

 t
hr

ou
gh

pu
t

(M
b/

s)

80

60

40

20

SonicWallNetscreenCiscoCheckpointBorderWareLinux
(open

source)

Disable nat, 128B
Enable nat, 128B

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys8

icWall. In contrast, Fig. 6 reveals that, for 128-byte packets,
the open-source solution can reach 55.7 Mb/s and 45.1 Mb/s
with 10 filters and 100 filters, respectively. The differences
between the results with 10 filters and those with 100 filters
lie in the linear search against the filter database. The previ-
ously obtained experimental results3 showed that, for 1518-
byte packets (packet count reduced to 8.4 percent of that for
128-byte packets) the benchmark results are much better than
those for 128-byte packets. For 1518-byte packets, all DUTs
except BorderWare can achieve 90 Mb/s.

Content Filter — Content filtering
requires the packet to be scanned, and
can thus be sensitive to both packet
count and packet size. Figure 7 com-
pares the throughput of content filtering
under many HTTP connections. Notably,
not all DUTs support complete content
filtering. NetScreen and WatchGuard
are only aware of the “content-type”
field in the HTTP header. Thus they can
only filter out ActiveX and Java objects.
In contrast, the open-source FWTK and
Cisco solutions can scan the entire
retrieved Web page and filter out
unwanted HTML tags, such as embed-
ded JavaScripts. However, open-source
FWTK has a very low throughput. The

later section on internal benchmarking further investigates the
cause.

VPN — Packet size matters for VPN because the packet pay-
load must be encrypted/decrypted and authenticated. As
Fig. 8 shows, only five of them support the 3DES encryption
and MD5 authentication algorithms. CheckPoint delivers less
than the open-source FreeS/WAN. NetScreen and SonicWall
offload the CPU-intensive processing to their ASIC and accel-
erator card, respectively. The latencies of FreeS/WAN and

NetScreen are similar, but the NLMT of
NetScreen is much greater. However, for
1518-byte packets, the NLMT of
NetScreen falls because of the required
handling of packet fragmentation, as
described in an earlier section.

In general, the open-source solution
gives competitive performance. Howev-
er, the content filter, FWTK, suffers
from serious degradation. The bottle-
necks of each module are identified
below using white-box internal bench-
marking and code tracing.

INTERNAL BENCHMARK

BENCHMARK TOOLS AND
METHODOLOGY

To further identify the bottlenecks of the
open-source solutions, we conduct a
series of internal benchmark experi-
ments, as depicted in Table 5. SmartBits
can generate UDP packets with sizes
ranging from 64 bytes to 1518 bytes. A
self-developed HTTP traffic generator
instead of WebStone is used to generate
HTTP requests to retrieve specific Web
pages of different sizes. The CPU/mem-
ory/disk consumptions and scalability of
each key module is investigated. Time-
stamps are inserted before and after
each module. The time-stamps are taken
by the x86 RDTSC instruction to read

■ FIGURE 6. No loss maximum throughput under 10/100 filters with NAT.

WatchGuard
0

100
N

o
lo

ss
 m

ax
 t

hr
ou

gh
pu

t
(M

b/
s)

80

60

40

20

SonicWallNetscreenCiscoCheckPointBorderWareLinux
(open

source)

10 filters, 128B
100 filters, 128B

■ FIGURE 7. Throughput at maximum connection rate.

WatchGuard
0

80

Th
ro

ug
hp

ut
 (

M
b/

s)

70

60

50

40

30

10

20

NetscreenCiscoLinux (open
source)

Content filter off
Content filter on

■ FIGURE 8. No loss maximum throughput of subnet-to-subnet VPN tunnel.

Linux (open
source)

Checkpoint Netscreen SonicWall WatchGuard
0N

o
lo

ss
 m

ax
 t

hr
ou

gh
pu

t
(M

b/
s)

La
te

nc
y

(µ
s)

100

80

60

40

20

1

10000000

1000000

100000

10000

1000

100

10

128B
128B,
load=10 Mb/s

1024B
1024B,
load=10 Mb/s

1518B
1518B,
load=10 Mb/s

3 1518-byte test results among DUTs are similar
(all above 90 Mb/s except BorderWare) so we
omit it.

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys 9

the 64-bit register that increments at every
clock cycle. The accuracy achieves 1000/700 ns
when using the P-III 700MHz CPU. The test
results are saved in variables, and read off-line
after each experiment. Thus the overheads are
very low. In resource consumption experi-
ments, all security functions are enabled but
only the function that is being investigated is
time-stamped before and after the module to
avoid overhead. Unix tools, top and ps, are
used to examine the memory and disk con-
sumptions.

CONSUMPTION OF RESOURCES

CPU Time Consumption — Figure 9 quanti-
fies the CPU cost of each kernel module using
64-byte packets. The 0 Mb/s traffic load refers
to the scenario without background traffic,
and 13 Mb/s is the NLMT of the gateway
when all the functions are enabled. For a
64-byte packet, the 3DES encryption takes
24.242ms, which is four times that of the MD5
authentication, and 12 times that of NAT.
From other experimental results, the process-
ing time for encryption, authentication, and
NAT depends on the packet size because
these modules process each entire packet.
Notably, the NAT process recalculates the
transport layer checksum. For a 1518-byte
packet, the 3DES encryption takes 287.983ms,
which is nine times the time required by the
MD5 authentication, and 31 times that
required by NAT. Encrypting 24, or approxi-

■ Table 5. Benchmark methodology.

CPU cost SmartBits 2000 with SmartFlow 1.2, 1. Enable all security functions Who tops the processing
self-written HTTP traffic generator 2. No other filters in ipchains time among all the

3. Using 3DES/MD5 functions
4. 10 URL entries are configured

Memory and SmartBits 2000 with SmartFlow 5. A single HTTP connection repeatedly The disk/memory
disk cost 1.2, self-written HTTP traffic generator retrieves a 40KB Web page for 10 seconds consumptions

Packet filter SmartBits 2000 with SmartFlow 1.2 1. Only enable packet filter Scalability
2. Various numbers of filters
3. Various packet sizes

URL filter Self-written HTTP traffic generator 1. Various Web page sizes Scalability
2. Various URL lengths in HTTP request
3. A single HTTP connection repeatedly

retrieves a 64KB Web page for 10 seconds

Content filter HTTP traffic generator 1. Various Web page sizes Scalability
2. Various numbers of concurrent connections
3. A single HTTP connection repeatedly retrieves

a 64KB Web page for 10 seconds

IP masquerade SmartBits 2000 with SmartFlow 1.2 1. Security gateway equipped with 4 NICs, Scalability
one for public interface and three for
private interfaces

2. Various numbers of private hosts
3. Various packet sizes

Authentication SmartBits 2000 with SmartFlow 1.2 Various packet sizes Cost of MD5 and SHA1
algorithms

IDS SmartBits 2000 with SmartFlow 1.2 Various packet sizes 1. Packet loss rate
2. Pattern-matching time

Category Benchmark tools Settings Benchmark items

■ FIGURE 9. CPU cost of kernel modules.

0

30

D
el

ay
 (

µ
s)

25

20

15

10

5

Routing
cache

Input-chainMasq3des

0 Mb/s load
13 Mb/s load

Routing
table

md5

■ FIGURE 10. CPU cost of daemon processes.

Process

1

1000000

D
el

ay
 (

µ
s)

100000

10000

1000

100

10

IDSContent filter

0 Mb/s load
13 Mb/s load

url filter

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys10

mately 1518/64, 64-byte packets requires 581.808ms, which is
twice as much as the time to encrypt a 1518-byte packet. This
is because a 1518-byte packet requires only one encryption
operation, while 24 64-byte packets require 24 encryption
operations.

Figure 10 shows the CPU cost of each daemon process.
Again, the content filter FWTK has some design problems
that will be identified later.

Memory and Disk Consumption — Table 6
summarizes the memory and disk consumption of
each module. The swap and resident memory
shows the run-time requirements of disk space
and physical memory, respectively. Squid con-
sumes a total of 17.3MB of disk space and
12.9MB of memory, mainly because of Web
caching.

SCALABILITY ISSUES

Packet Filtering — Figure 11 plots the latency
of the input chain module under various numbers
of rules and packet sizes. The processing times

required to check the input chain under light load are 1.6ms
for 10 filters, 11.9ms for 100 filters, and 30.3ms for 250 filters.
As the load increases, the delay rises considerably mainly due
to interrupts generated by incoming packets. Figure 12 illus-
trates the data structure of ipchains. When a packet enters the
input chain, the gateway linearly checks the table entries
(organized as linked lists) of the input chain until one entry is
matched or the end of the list is traversed. Consequently, the
delay is highly dependent on the number of filters. The worst-
case time complexity of ipchains is O(l + m + n), where l, m,

and n stand for the number of filters in
the input, forward, and output chains,
respectively.

URL Filter — According to Fig. 13, the
number of regular expressions of URL
and the URL’s length in the HTTP
requests are the dominant factors.
Squid maintains the regular expressions
of URL using a linked list for the linear
matching process. Each character of the
configured URL and the request URL
is scanned only once. Thus, the worst-
case time complexity of pattern match-
ing is O(l + m), where l and m stand
for the URL’s length in the HTTP
requests, and the average length of reg-
ular expressions, respectively. Finally,
the worst case time complexity of URL
filtering in Squid is O(n(l + m)), where
n represents the number of URL regu-
lar expressions.

Content Filter — According to Fig. 14,
the mean filtering time for 500K-byte
Web pages is 68.235ms under 15 con-
current connections, which is not scal-
able. Further source-code tracing of
FWTK (Fig. 15) reveals two implemen-
tation problems. First, FWTK is found
to fork a child process to tackle every
incoming HTTP request. Moreover,
each child process re-reads the configu-
ration file, which involves slow disk
access. Second, FWTK performs the fil-
tering service using a Finite State
Machine (FSM), and FWTK reads just
one byte of the Web page at a time
from the socket interface to drive its
FSM. This implementation is ineffi-
cient. The worst case time complexity
of FWTK is O(n), where n represents
the size of the retrieved Web page.

■ Table 6. Memory and disk consumption.

Kernel 640 KB 2056 KB

Squid Parent 468 KB 3348 KB 880 KB

Squid Child 13544 KB 12092 KB

FWTK http-gw parent 1788 KB 576 KB 200 KB

FWTK http-gw child 1708 KB 668 KB

Pluto Daemon 646 KB 1516 KB 716 KB

Snortd 444 KB 3236 KB 2268 KB

Module Program size Swap memory Resident memory

■ FIGURE 11. . Scalability of packet filter in ipchains: each test case is performed until the
gateway begins to drop packets.

Traffic load (Mb/s)

100
0

45

50

D
el

ay
 (

µ
s)

40

35

30

25

20

15

10

5

908070605040302010

10 rules, 64B
10 rules, 1518B
100 rules, 512B
250 rules, 64B
250 rules, 1518B

10 rules, 512B
100 rules, 64B
100 rules, 1518B
250 rules, 512B

■ FIGURE 12. Data structure of packet filter in ipchains.

Note:
ipfw_kernel {
src_ip, src_mask,
dst_ip, dst_mask,
interface, flag,
src_port, dst_port
}

ipchain
(input_chain) ipfw_kernel

ipchain
(forward chain) ipfw_kernel

ipfw_kernel ipfw_kernel NULL

NULL

ipchain
(output chain) ipfw_kernel ipfw_kernel NULL

NULL

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys 11

Instead of reading one byte of the Web page at
a time, reading multiple bytes at once can
reduce n.

NAT — In Fig. 16, the NAT processing time
under 2997 clients is 106.81ms for 64-byte pack-
ets, and 118.248ms for 512-byte packets. Three
major tasks of NAT processing are checking out
the NAT table, rewriting the packet’s header,
and recalculating the packet’s checksum. How-
ever, the latter two tasks are not time-consum-
ing. The three tasks consume a total of 1.75ms
for 64-byte packets and 3.17ms for 512-byte
packets.

As illustrated in Fig. 17, NAT processing
uses two hash tables to maintain the mapping
between private and public hosts. Each table
consists of 256 hash buckets and many doubly
linked lists. When one new connection passes
through the gateway, the gateway creates a new
NAT entry into each table. The gateway checks
out the ip_masq_s_table and the
ip_masq_m_table for outgoing and incoming
packets, respectively. The worst case time com-
plexity of NAT is O(n), where n represents the
number of the private-to-public connections.
This NAT scales well.

MD5 and SHA1 Authentication Algo-
rithms — This internal benchmark includes
neither DES nor 3DES tests because
FreeS/WAN does not support DES algorithms.
FreeS/WAN implements HMAC-MD5 and
HMAC-SHA1 to authenticate and determine
the integrity of the data. The HMAC structure
in Fig. 19a can enhance the cryptographic
strength of its embedded hash algorithm, such as MD5 and
SHA1. The MD5 and SHA1 algorithms are quite similar since
they are both derived from the MD4 algorithm. Their main
difference is that the SHA1 digest is 32 bits longer than the
MD5 digest. Accordingly, HMAC-SHA1 executes more slowly
than HMAC-MD5 on the same hardware, as shown in Fig. 18.
The time for processing 1518-byte packets is 31.89ms and
79.84ms, for MD5 and SHA1, respectively. Figure 19b illus-
trates the digest generation process:
• Append padding bits to the original message.
• Append the length of the original message.
• Initialize input key.
• Process the message in a sequence of 512-bit blocks.
• Generate the output digest.
Therefore, as the packet size increases, the time for digest
generation is extended. The worst case time complexity of
these two authentication algorithms is O(n*m), where m and
n represent the key length and the packet size, respectively.

Intrusion Detection System — Figure 20 displays the posi-
tions of the Snort and related kernel modules. The sk_buff
structure encapsulates each packet in the kernel. The Linux
socket filter is used to collect copies of packets of interest
from the packet buffer to the sock buffer. Thus, packets fed to
Snort follow the sniffed packet flow in Fig. 20. The ordinary
packets pass through the TCP/IP stack (according to the nor-
mal packet flow in Fig. 20) as usual. However, Snort copies
one packet at a time from the kernel space to the user space
and reassembles them to check for suspicious activity. The
checking process as described above is complex and time con-
suming. Thus, the sock buffer tends to overflow when the traf-

■ FIGURE 13. Scalability of URL filter in squid.

Number of URL regular expressions

1000 20001
0

5000

6000

D
el

ay
 (

µ
s) 4000

3000

2000

1000

5002005010

URL length=25
URL length=75

■ FIGURE 14. Scalability of content filter in FWTK.

Web page size (Kbytes)

200k 500k10k
10

10000

100000

D
el

ay
 (

µ
s)

1000

100

115k64k50k45k33k20k

464

187

92
185

301 405 455 577
1038

1811
4530

1 client
5 clients
15 clients

1401
3482

4659 5074 7119
14397

25977

68235

714
1223

1746 2056 2651
4921

8845
22981

■ FIGURE 15. Program flow of content filter in FWTK.

text/html

Content filter
with FSM

receive http
response

forward http
request

Yes

Yes
(child)

Yes

No

No
 (parent)No (inetd)

START

END

-daemon

fork=0?
Read

configuration

Get user's http
request

Block transfer
between

connections

bind
listen

accept

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys12

fic load is high. Thus, Snort would miss checking those lost
packets. Note that while the loss rate of the copied packets for
Snort is so high, the kernel still forwards original packets with-
out loss.

Figure 21 plots the percentage of packets that Snort can-
not check, i.e., those that are lost, when the NLMT is

increased. The 64-byte packet loss rate is 85.27
percent under the 30 Mb/s trafic load and 99.86
percent under the 40 Mb/s traffic load. Snort
appears to only sample a few packets for check-
ing, allowing intruders to insert intruding packets
between normal packets. Fig. 22 details the intru-
sion pattern-matching time for Snort to check a
packet. Under a light load, packet size dominates
the processing time, while under a high load
packet count per second dominates the process-
ing time.

Figure 23 depicts the data structure of the
pattern-matching in Snort. Five separate chains
of rules — active, dynamic, alert, log, and pass —
are in Snort. Each chain contains three separate
linked lists that correspond to TCP, UDP, and
ICMP rule-sets. By default, Snort only uses the
alert rule chain. It generates an alert using the
selected alert method and logs the packet when a
suspicious activity is detected. When receiving an

UDP packet, Snort follows the
links to the alert rule chain, and
then checks the packet against its
UDP rule-set. Note that in the
IDS tests, the rule-set is composed
of 49 ICMP rules, 315 TCP rules,
and 69 UDP rules. On the aver-
age, UDP packets are checked
through 23 UDP rule tree nodes
and 20 UDP rule options. The
worst case time complexity of
Snort is O(l + m*n), where l, m,
and n stand for the number of
TCP/UDP/ICMP rule tree nodes,
the number of TCP/UDP/ICMP
rule options, and the packet size,
respectively.

CONCLUSIONS AND DIRECTIONS FOR
FUTURE RESEARCH

This work presents the experiences of integrating many open-
source packages into a security gateway. The conflicts among

the software components are resolved. The exter-
nal benchmark compares this open-source inte-
grated system with commercial security gateways.
The internal benchmark examines the CPU/
memory/disk consumption of our integration and
investigates the scalability of each key module.
Finally, observations concerning the benchmark-
ing and suggestions for improving performance
are presented.

Table 7 summarizes the observations of the
benchmark results. It indicates that ipchains and
FreeS/WAN are more viable than commercial
products, but FWTK and Snort have perfor-
mance problems.

RESEARCH ISSUES FOR
PERFORMANCE ENHANCEMENT

The following improvements are suggested to
scale up these packages:

Improving the Linear-Matching Algorithms:

■ FIGURE 17. Data structure of NAT table.

Note:
(1) s: source; d: destination;
m: masquerade

(2) list_entry {
m_list_ptr, s_list_ptr,
protocol,
sport, dport, mport,
saddr, daddr, maddr
}

icmp hash key:
(protocol^(saddr^daddr)^(id^(type,code)))&255
tcp, udp hash key:
(protocol^saddr^sport)&255

icmp hash key:
(protocol^(maddr^daddr)^(id^(type,code)))&255
tcp, udp hash key:
(protocol^maddr^mport)&255

ip_masq_s_table for private to public packets ip_masq_m_table for public to private packets

Hash

4

1

2

5

3 6

256 Hash

1

3

4 5

2 6

256

■ FIGURE 18. Cost of HMAC-MD5 and HMAC-SHA1 Authentication Algo-
rithms: Each test is performed until the gateway begins to drop packets: a) The
HMAC structure; b) MD5/SHA-1 algorithm.

Traffic load (Mb/s)

300
0

80

D
el

ay
 (

µ
s) 60

40

20

25 352015105

MD5, 64B
MD5, 512B
MD5, 1518B
SHA1, 64B
SHA1, 512B
SHA1, 1518B

■ FIGURE 16. Scalability of NAT: (1) Each port of SmartBits can emulate 999
hosts. Thus, the testbed (three ports for pumping traffic and one port for
receiving packets) can emulate 2997 private hosts simultaneously sending
packets to 999 public hosts through the gateway. (2) Each test is performed
until the gateway begins to drop packets.

Traffic load (Mb/s)

96
993

0

120

140
D

el
ay

 (
µ

s)

100

80

60

40

20

93
90

87
84

81
78

75
72

69
66

63
60

57
54

51
48

45
42

39
36

33
30

27
24

21
18

15
12

9
6

300 clients, 64B
300 clients, 512B
1500 clients, 64B
1500 clients, 512B
2400 clients, 64B
2400 clients, 512B
2997 clients, 64B
2997 clients, 512B

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys 13

For ipchains, Squid, and Snort, their linear-
matching algorithms can be accompanied
by a flow cache so that active flows can fol-
low a fast path. Typically, the first packet of
a flow will traverse through the normal lin-
ear-matching phase and establish a flow
state, but its following packets can match
the flow state by hashing plus linked list
(such as that in the NAT module). For
stateful inspection firewalls, of course it has
incorporated such mechanisms. For signa-
ture-based IDS such as Snort, most of the
signatures (545 of 763 signatures) attack
Web servers. By carefully caching the valid
URLs, normal URL accesses can bypass
the long linear-matching phase of URL-
related signatures.

Proper Implementation Tricks: For
FWTK, the configuration file should be
scanned only once, and the retrieved Web
page can be read multiple bytes at once
from the kernel space to the user space.
For the NAT module, a suitable bucket size
for large enterprises can be defined to avoid
hash collisions.

Function Relocation from Daemon to
Kernel: For advanced access control poli-
cies used in the application proxy, such as
FTP, SMTP proxy in FWTK, only the con-
trol-plane parts are required to be directed
to the user-space daemon process for
checking. Other data-plane objects should
pass directly through the kernel or be
blocked, according to the access-control
policy. For example, to prevent employees
from downloading MP3 files using FTP, the
FTP application proxy needs only to check
the FTP-cmd channel for MP3 file exten-
sions and leave the FTP-data channel un-
checked. Otherwise, even when nobody
downloads the MP3 files, the application proxy still has
to relay all FTP sessions, from the kernel to the user
space and back to the kernel, to enforce the policy. As
another example, some security gateways can be set to
append an extra filename extension to some types of
email attachments transmitted using SMTP/POP3/IMAP
protocols, such that users are alerted to open the file
with care. Obviously only the packets that constitute the
filename should be directed to the daemon process for
matching and modifying. The following packets, which
constitute the attached objects, can pass through the
gateway if permitted without any processing. Several
works have focused on changing the slow kernel-dae-
mon-kernel data path into a fast-kernel data path
[33–35]. The efforts differ primarily in the flexibility to
switch between slow and fast data paths. Numerical
results indicate that this pure software-based acceleration
of application proxies can improve the performance by a
factor of two to four.

For a signature-based IDS such as Snort, some crucial
patterns of intrusions can be moved to the kernel. For
example, the most common packet-level intrusions, such
as denial-of-service (DoS) attacks, can be in-kernel
detected/blocked.

Hardware Accelerators: For encryption/decryption
operations in VPN processings such as that in
FreeS/WAN, the 3-DES operations can be offloaded to

■ FIGURE 19. HMAC-MD5 / HMAC-SHA1 digest generation

Key
length

Origin message
length (64 bits)Padding

(1 to 512 bits)n x 512 bits

(a) The HMAC structure

(b) MD5/SHA-1 algorithm

Yi=ith block of message
L=number of blocks in M
b=number of bits in a block
n=key length
ipad=00110110 repeated b/8 times
opad=01011010 repeated b/8 times
K+=key padded with zeros on the
left so that the result is b bits in length

b bitsb bits

n bits

n bits

pad to
b bits

n bits
IV

n bits
IV

b bits

b bits

xor

K+ ipad

Si

xor

K+ opad

So

Y0 Y1

hash fn

hash fn

output

YL-1

512 bits512 bits512 bits512 bits

M0 M1 M2

512

Mn-1

Message

Hash

512

Hash

512

Hash
Key

length
Key

length

512

Hash
Key

length
Key

length

Key Digest

■ FIGURE 20. Position of snort.

User space

Kernel space

skb_buff
(packet buffer)

Driver

TCP/IP
protocol

stack

SnortdAfter check

Toss

Overflow
Sock

(sock buffer)

Linux
socket
filter

Sniffed packet flow

Normal packet flow

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys14

an accelerator card or ASIC. Typical opera-
tions are:
•Formatting the data to be encrypted/

decrypted.
•Feeding data to the hardware through pro-

gramming I/O or DMA channels.
•Waiting for a hardware interrupt to trigger

the Interrupt Service Routine (ISR) to
check what is happening.

•Finding that the hardware has successfully
encrypted/decrypted.

•Continuing to process the subsequent operations.
Integrating many functions into a single all-

in-one system or separating them as stand-
alone devices involves security and performance
issues. Many commercial security gateways
choose to be an all-in-one solution. According-
ly, this study focuses only on building a prod-
uct-like, all-in-one system from numerous
open-source packages and on externally and
internally evaluating the performance of such a
system. However, installing such a device does
not mean secured. Other issues, such as cor-
rectly setting the administrative policy rules,
increasing the security of the network architec-
ture, and increasing the security of the encryp-
tion algorithms, are beyond the scope of this
study and deserve further attention. The highly
integrated system presented here, together with
the self-developed Web management console, is
downloadable at [16] for hands-on practice.

REFERENCES

[1] W. Simpson, “IP in IP Tunneling,” RFC 1853,
Oct. 1995.

[2] K. Hamzeh et al., “Point-to-Point
Tunneling Protocol (PPTP),” RFC
2637, July 1999.

[3] W. Townsley et al., “Layer Two
Tunneling Protocol (L2TP) ,” RFC
2661, Aug. 1999.

[4] S. Kent and R. Atkinson, “Security
Architecture for the Internet Pro-
tocol,” RFC 2401, Nov. 1998.

[5] B. Mukherjee, L. T. Heberlein, and
K. N. Levitt, “Network Intrusion
Detection,” IEEE Network, vol. 8,
no. 3, May-June 1994, pp. 26–41.

[6] N. J. Puketza, K. Zhang, and M.
Chung, “A Methodology for Test-
ing Intrusion Detection Systems,”
IEEE Trans. Software Eng., vol. 22,
no. 10, Oct. 1996, pp. 719–29.

[7] R. Sekar et al., “A High-Perfor-
mance Network Intrusion Detec-
tion System,” Proc. 6th ACM Conf.
Comp. and Commun. Security, no.
1-4, Nov. 1999, pp. 8–17.

[8] K. Egevang and P. Francis, “The IP
Network Address Translator
(NAT),” RFC 1631, May 1994.

[9] P. Srisuresh and K. Egevang, “Tra-
ditional IP Network Address Trans-
lator (Traditional NAT),” RFC 3022,
Jan. 2001.

[10] Linux kernel, http://www.kernel. org
[11] ipchains, http://netfilter.file-

watcher.org/ipchains/
[12] Squid, http://www.squid-

cache.org

■ FIGURE 21. Percentage of missed packets.

Traffic load (Mb/s)
90 10010

0

100
Pa

ck
et

 lo
ss

 r
at

e
pf

sn
iff

ed
 p

ac
ke

t
flo

w
 (

%
)

80

60

40

20

80706050403020

64B
128B
256B
512B
1518B

■ FIGURE 22. Time for pattern-matching in snort.

Traffic load (Mb/s)

90 10010
0

300

350

D
el

ay
 (

µ
s) 250

200

150

100

50

80706050403020

64B
128B
256B
512B
1518B

■ FIGURE 23. Data structure of pattern-matching in snort.

Note:
(1) Rule_Tree_Node {
src_ip, dst_ip,
src_port_range, dst_port_range
}

(2) An example Snort Rule:
alert tcp !$HOME_NET any Æ $HOME_NET 80 (msg:"WEB-etc/passwd";flags:PA;content:"etc/passwd";
nocase;)

ListHead
(activation)

ListHead
(dynamic)

ListHead
(pass)

ListHead
(alert)

ListHead
(log)

NULL

NULL

Rule
options

Rule
options

NULL

Rule tree node

Rule
options

Rule
options

Rule
options

NULL

Rule
options

Rule
options

Rule
options

NULL

Rule
options

Rule
options

NULL

Rule
options

Rule
options

NULL

NULL

Rule
options

IcmpList

NULL

NULLTcpList TcpList TcpList TcpList

UdpList

Rule tree node

Rule options

IEEE Communications Surveys • http://www.comsoc.org/pubs/surveys 15

[13] FWTK, http://www.fwtk.org
[14] FreeS/WAN, http://www.freeswan.org
[15] Snort, http://www.snort.org
[16] “Integrated security gateway,” http://speed.cis.nctu.

edu.tw/SG.html
[17] KProf, http://kprof.sourceforge.net
[18] Using the KDB kernel debug program, http://www.rz.uni-

hohenheim.de/betriebssysteme/unix/aix/aix_4.3.3_doc/ext_doc/u
sr/share/man/info/en_US/a_doc_lib/aixprggd/kernextc/kdb.htm

[19] S. Bradner, “Benchmarking Terminology for Network Inter-
connection Devices,” RFC 1242, July 1991.

[20] S. Bradner and J. McQuaid, “Benchmarking Methodology for
Network Interconnect Devices,” RFC 2544, Mar. 1999.

[21] D. Newman, “Benchmarking Terminology for Firewall Perfor-
mance,” RFC 2647, Aug. 1999.

[22] BorderWare, http://www.borderware.com
[23] CheckPoint, http://www.checkpoint.com
[24] Cisco, http://www.cisco.com
[25] NetScreen, http://www.netscreen.com
[26] SonicWALL, http://www.sonicwall.com
[27] WatchGuard, http://www.watchguard.com
[28] SmartBits, http://www.netcomsystems.com
[29] WebStone, http://www.mindcraft.com
[30] R. Atkinson, “IP Encapsulating Security Payload (ESP),” RFC

1827 Aug. 1995.
[31] P. Karn, P. Metzger, and W. Simpson, “The ESP Triple DES

Transform,” RFC 1851, Sept. 1995.
[32] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321,

Apr. 1992.
[33] D. Maltz, “TCP Splicing for Application Layer Proxy Perfor-

mance,” IBM Research Report, Mar. 1998.
[34] O. Spatscheck et al., “Optimizing TCP Forwarder Perfor-

mance,” IEEE/ACM Trans. Net., vol. 8, no. 2, Apr. 2000.
[35] S. K. Adhya, “Asymmetric TCP Splice: A Kernel Mechanism to

Increase the Flexibility of TCP Splice,” master thesis at Dept. of
C.S., Indian Institute of Technology, Apr. 2001.

ADDITIONAL READING

[1] M. Wu and Y. Lin, “Open-Source Software Development: An
Overview,” IEEE Computer, June 2001.

BIOGRAPHIES

YING-DAR LIN (ydlin@cis.nctu.edu.tw) received his M.S. and Ph.D.
degrees in computer science from UCLA in 1990 and 1993,
respectively. He was a technical staff member at IBM Taiwan and
Bell Communications Research. Since 1999 he has been a profes-
sor at National Chiao Tung University in Taiwan. His research
interests include the design, analysis, and implementation of net-
work protocols and algorithms, quality of services, network secu-
rity, and content networking. He is a member of ACM and IEEE.
He is the founder and head of Network Benchmarking Lab (NBL).
He can be reached at ydlin@cis.nctu.edu.tw and http://www.cis.
nctu.edu.tw/~ydlin.

HUAN-YUN WEI (hywei@cis.nctu.edu.tw) is a Ph.D. candidate in
computer and information science at National Chiao Tung Univer-
sity. His interests include TCP rate shaping algorithms, integration
of security gateway functions in Linux/FreeBSD/NetBSD kernels,
and testbed design and evaluation. He can be reached at
hywei@cis.nctu.edu.tw.

SHAO-TANG YU (styu@cis.nctu.edu.tw) received his M.S. degree in
computer and information science at National Chiao Tung Univer-
sity in 2001. His interests include the integration of security gate-
way functions in Linux kernels, and testbed design. He is now an
engineer at D-Link and can be reached at gis88530@cis.
nctu.edu.tw.

■ Table 7. Summary of comparison.

ipchains CPU-intensive Increasing the number of Linear matching algorithm O(l + m + n); l, m, n: number of filters in
filters input, forward, and output chains,

respectively

Squid Memory- and Increasing the number of URL Linear matching algorithm O(n(l + m)); l: URL length in HTTP requests;
CPU-intensive regular expressions m: average regular expression length;

n: number of URL regular expressions

FWTK CPU-intensive Increasing the number of 1. Parse config file for O(n); n: size of the retrieved Web page
HTTP connections and the each request
size of the retrieved Web 2. Read only one byte of
page the Web page from the

socket interface at a time

NAT CPU-intensive Increasing the number of Data structure of NAT O(n); n: number of private-to-public
private-to-public connections table connections

FreeS/WAN CPU-intensive Using the stronger algorithms Too many computations for O(n*m); m: key length; n: packet size
encryption and authentication

Snort CPU-intensive Packet loss frequently 1. Copy each packet from O(l + m*n); l: number of TCP/UDP/ICMP rule
kernel space to user space tree nodes; m: number of TCP/UDP/ICMP

2. Linear matching algorithm rule options; n: packet size

Module Characteristics Bottleneck Reason Worst-case time complexity

